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Abstract – Considering the dynamics of non-interacting particles randomly moving on a lattice,
the occurrence of a discontinuous transition in the values of the lattice parameters (lattice spacing
and hopping times) determines the uprisal of two lattice phases. In this letter we show that the hy-
perbolic hydrodynamic model obtained by enforcing the boundedness of lattice velocities derived
in Giona M., Phys. Scr., 93 (2018) 095201 correctly describes the dynamics of the system and
permits to derive easily the boundary condition at the interface, which, contrarily to the common
belief, involves the lattice velocities in the two phases and not the phase diffusivities. The disper-
sion properties of independent particles moving on an infinite lattice composed by the periodic
repetition of a multiphase unit cell are investigated. It is shown that the hyperbolic transport
theory correctly predicts the effective diffusion coefficient over all the range of parameter values,
while the corresponding continuous parabolic models deriving from Langevin equations for particle
motion fail. The failure of parabolic transport models is shown via a simple numerical experiment.

Copyright c© EPLA, 2019

Lattice models of particle dynamics represent a ro-
bust conceptual backbone in statistical theory of
non-equilibrium processes, finding broad and diversified
applications in all the branches of physics [1,2]. They
constitute a simple gedanke experimental enviroment in
order to derive, from simple local interaction rules, the cor-
responding hydrodynamic models in a continuous space-
time setting [3,4].

Even in the case of systems of non-interacting parti-
cles, a rich variety of possible phenomenologies arises, as-
sociated with lattice heterogeneities and impurities [5],
randomly distributed multisite structures [6,7], disorder,
percolation and phase transitions [8], anomalous behavior
induced by a continuous distribution of hopping times and
hopping lengths (that can be treated within the framework
of Continuous Time Random Walk) [9,10], etc.

In recent years, lattice heterogeneity has been stud-
ied in connection with infiltration dynamics, and solute
partition in two lattice phases, defined by the decomposi-
tion of the lattice in two subsets possessing different lat-
tice parameters [11–16]. The latter problem has great
current interest in biological applications involving active
swimmers moving in non-uniform fields modulating their
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mobilities [17], and is connected to fundamental problems
involving the stochastic modeling of non-equilibrium phe-
nomena, associated with the proper choice of the most
suitable stochastic calculus (Ito, Stratonovich, Hänggi-
Klimontovich) [18,19], and with the properties of the equi-
librium invariant densities and their connection with local
transport properties [20].

Although the current research focus is mostly oriented
towards particle motion determining the occurrence of
anomalous diffusive phenomena [12], the case of the sim-
plest possible model of lattice random walk involving
noninteracting particles has shown that some interesting
properties are still to be unveiled, especially as regards
its continuous hydrodynamic description. By definition,
a lattice random walk is parametrized with respect to an
operational time n, counting the number of transitions oc-
curring in the particle motion, and corresponding to the
physical time tn, by tn = nτ , τ being the constant hop-
ping time. Consequently, a lattice trajectory {xn}n∈N is
the countable sequence of the lattice positions attained
by a particle with respect to the operational time. By
considering a space-time continuation of the lattice tra-
jectories, performed by linearly interpolating between two
subsequent space time points (xn, tn) and (xn+1, tn+1), it
has been shown recently in [21] that the classical lattice
random walk of independent particles can be described
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Fig. 1: Schematic representation of a MuPh-LRW.

in a continuous space-time setting by means of a hy-
perbolic transport model analogous to those arising in
the theory of Generalized Poisson-Kac processes [22,23].
The hyperbolic transport model accounts intrinsically for
the finite propagation velocity of the process, and pro-
vides an accurate quantitative description not only of the
long-term properties but also of the initial stages of the
dynamics [21]. In the case of a symmetric lattice random
walk, defined by the characteristic site distance δ and hop-
ping time τ between nearest neighboring sites, the hyper-
bolic continuous model involves the partial probabilities
{p±(x, t)}, where p±(x, t) dx is the fraction of particles in
the spatial interval (x, x + dx) at time t moving towards
the right (p+) or to the left (p−), satisfying the equations

∂p±(x, t)
∂t

= ∓b
∂p±(x, t)

∂x
∓ λ [p+(x, t) − p−(x, t)], (1)

where b = δ/τ , and λ = 1/τ . The overall probability
density of the process is p(x, t) = p+(x, t) + p−(x, t), and
the associated flux is J(x, t) = b [p+(x, t) − p−(x, t)].

In this letter, we consider the multiphase extension
of the symmetric random walk, as depicted in fig. 1.
The MultiPhase Lattice Random Walk, henceforth MuPh-
LRW for short, is a simple random walk on a lattice Z, in
which the physical lattice parameters (δ, τ) admit a sud-
den transition at some lattice point, say z0 ∈ Z so that
(δ1, τ1) holds for z < z0, and (δ2, τ2) for z > z0. The lat-
tice point z0 represents the interfase separating the two
lattice phases.

Within each lattice phase, particle motion is a symmet-
ric LRW, corresponding, in the continuous limit, to an
emergent purely diffusive behavior defined by the phase
diffusivities Dh = δ2

h/2τh, h = 1, 2. It remains to spec-
ify the motion at the interfacial point z0. Two cases can
occur: i) if the interfacial point is “neutral” with respect
to phase selection, so that equal probabilities characterize
the jump from z0 to one of its two nearest neighboring
sites, the interface is referred to as ideal ; ii) if the prob-
abilities of moving from the interface towards the sites of
one of the two phases are different, the interface exerts a
specific and active selection, and it will be referred to as
non-ideal or active. In this letter we focus exclusively on
ideal interfaces.

In a discrete space-time description, the MuPh-LRW
corresponds to a simple symmetric LRW defined by the
dynamics zn+1 = zn ± 1 Prob. 1/2, where n = 0, 1, . . . , is

the operational lattice time. In a physical setting, indicat-
ing with xn the particle spatial position, corresponding to
the lattice coordinate zn and tn the physical time, MuPh-
LRW corresponds to a subordination of the stochastic
lattice motion according to phase heterogeneity. More
precisely, let C(1), C(2) and C(int) be the disjoint sets of
lattice sites zn belonging to phase “1”, phase “2” and to
the interface, respectively. The MuPh-LRW dynamics in
the presence of ideal interfaces is defined in the physical
space-time by the equations

xn+1 = xn + Δn, tn+1 = tn + Tn, (2)

where

Δn =

{
δ1, if (zn ∈ C(1))∪[(zn ∈ C(int))∩(zn+1 ∈ C(1))],

δ2, if (zn ∈ C(2))∪[(zn ∈ C(int))∩(zn+1 ∈ C(2))],
(3)

and analogously for Tn,

Tn =

{
τ1, if (zn ∈ C(1)) ∪ [(zn ∈ C(int)) ∩ (zn+1 ∈ C(1))],

τ2, if (zn ∈ C(2)) ∪ [(zn ∈ C(int)) ∩ (zn+1 ∈ C(2))].
(4)

This simply means that in a unit operational time, the
distance travelled by a particle is δ1, and the time elapsed
τ1, if the initial site belongs to phase “1” or if it is an
interfacial site and the particle moves towards phase “1”,
and analogously for phase “2”. Embedding the lattice in
a continuum, x ∈ R, this essentially means that for points
x belonging to phase “1” the velocity b(x) is δ1/τ1 and for
points belonging to phase “2” the velocity is δ2/τ2.

Two main questions arise: i) the definition of a continu-
ous hydrodynamic model for MuPh-LRW, and ii), strictly
connected to i), the assessment of the proper boundary
condition at an ideal interface in a continuous setting of
the dynamics. These two issues are closely related to each
other. As regards the hydrodynamic description, the hy-
perbolic approach introduced in [21] can be applied to each
phase. This corresponds to consider eq. (1) for each phase,
with p±(x, t) substituted by the phase partial concentra-
tion p

(h)
± (x, t), defined for x within each disjoint domain

of definition of the phases, and b and λ with bh = δh/τh,
λh = 1/τh. This follows also from eq. (2) by considering
the subordination of the physical time t with respect to
the lattice time n for processes possessing finite propaga-
tion velocity (Poisson-Kac processes). In the case of ideal
interfaces, there is no active effect of the interface on the
partition of solute particles in the two phases, and the hy-
perbolic approach based on eq. (1) implies the continuity
of the partial fluxes across an ideal interface located at x0

(corresponding to the lattice coordinate z0),

b1p
(1)
± (x, t)|x=x0 = b2p

(2)
± (x, t)|x=x0 . (5)

The detailed derivation of eq. (5) is developed below. This
condition can be further justified by enforcing the lat-
tice representation of the dynamics, consistently with the
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analysis developed in [24]. Equation (5) obviously pre-
dicts the continuity of the normal fluxes at the interface,
J (1)(x0, t) = J (2)(x0, t), and the boundary condition for
the overall particle density

p(2)(x, t)
p(1)(x, t)

∣∣∣∣
x=x0

=
b1

b2
=

δ1τ2

δ2τ1
. (6)

Derivation of eq. (5). – The boundary conditions
for MuPh-LRW in the presence of ideal interfaces can be
derived in several different ways. In a fully lattice descrip-
tion, MuPh-LRW is solely a simple symmetric walk on Z

parametrized with respect to the lattice time n ∈ N. Its
statistical description involves the probabilities Pn

h of find-
ing the particle at the lattice site h at the lattice time n,
fulfilling the Markov dynamics Pn+1

h = (Pn
h−1 + Pn

h+1)/2.
In a spatially continuous representation of the process,
where the particle position is defined over the real line,
i.e., x ∈ R, the spatial heterogeneity, associated with the
different values of δh in the two lattice phases plays a role.
Let Ω1, Ω2 be the subset of R, occupied by phase “1” and
phase “2”, respectively. Ω1 consists of the the union of the
intervals (zh, zh+1), zh ∈ Z, where either zh or zh+1 belong
to to C(1), since if, say zh ∈ C(1), then by definition of the
multiphase lattice structure, zh+1 belongs either to C(1) or
to C(inf), and analogously for Ω2. Introduce over the real
line the phase function σ(x), such that σ(x) = 1 if x ∈ Ω1,
and σ(x) = 2 if x ∈ Ω2, and let p(x, n) the probability
density function continuously parametrized with respect
to the spatial coordinate x.

The probability Pn
h corresponds to the integral of the

continuous p(x, n) over an interval centered at xh of width
δσ(xh), where σ(xh) = 1, 2, depending whether the xh be-
longs to phase “1” or “2”. Consequently,

Pn
h � p(xh, n)δσ(xh). (7)

The hyperbolic stochastic model associated with p(x, n),
taking a continuation of n towards real values, stems from
a local stochastic dynamics given by

dx(n) = δ(x(n))(−1)χ(n,1)dn (8)

where we have set δ(x) = δσ(x). Equation (8) is the evolu-
tion equation for a Poisson-Kac process [25], where χ(n, 1)
is a Poisson process depending on the real continued time
variable n, and characterized by a transition rate equal to
1, the statistical description of which involves the partial
probability density functions p

(h)
± (x, n) in the two lattice

phases, h = 1, 2.
The hyperbolic hydrodynamic model expressed with re-

spect to the continuation of the lattice time n towards real
values is given by

∂p
(h)
± (x, n)
∂n

= ∓δh
∂p

(h)
± (x, n)
∂x

∓ [p(h)
+ (x, n) − p

(h)
− (x, n)],

(9)

where each p
(h)
± (x, n) is defined in the disjoint subsets

Ωh, h = 1, 2, Next, account for the time subordination
of t with respect to n

dt = τ(x)dn, (10)

where

τ(x) =

{
τ1, x ∈ Ω1,

τ2, x ∈ Ω2,
(11)

which, in the present case of hyperbolic stochastic dynam-
ics, means

∂

∂n
=

dt

dn

∂

∂t
. (12)

Consequently, with respect to the physical time t, the bal-
ance equations (9) become

∂p
(1)
± (x, t)
∂t

= ∓b1
∂p

(1)
± (x, t)
∂t

∓ λ1 [p(1)
+ (x, t) − p

(1)
− (x, t)],

∂p
(2)
± (x, t)
∂t

= ∓b2
∂p

(2)
± (x, t)
∂t

∓ λ2 [p(2)
+ (x, t) − p

(2)
− (x, t)],

(13)

where bh = δh/τh, λh = 1/τh, where p
(h)
± (x, t), h = 1, 2,

are defined in the disjoint subsets Ω1, Ω2, respectively.
The boundary condition at an ideal interface follows

from the hyperbolic structure of eq. (13) by imposing that
there is no singularity at the interface (alternatively, one
can invoke steady-state conditions). To this purpose, in-
stead of eq. (13), let us consider a mollified version of it,
by defining a smooth velocity field bε(x), which is Ck(R),
with k ≥ 1 with respect to x for any ε > 0, and such that,
in the limit for ε → 0, it reproduces the discontinuity in
the lattice phase velocities

lim
ε→0

bε(x) =

{
b1, x ∈ Ω1,

b2, x ∈ Ω2,
(14)

and similarly for the transition rates λh, introducing a
smooth field λε(x). With respect to this mollified descrip-
tion, eq. (13) becomes

∂p±(x, t)
∂t

= ∓∂[bε(x)p±(x, t)]
∂x

∓λε(x) [p+(x, t)−p−(x, t)].

(15)
Let x0 be the position of an ideal interface. Integrating
eq. (15) in the interval [x0 − η, x0 + η], where η > 0 is a
small parameter, and introducing the bounded quantities

Dpmax = max
x∈[x0−η,x0+η]

∣∣∣∣∂p±(x, t)
∂t

∣∣∣∣,
λmax = max

x∈[x0−η,x0+η]
λε(x), (16)

Δmax = max
x∈[x0−η,x0+η]

|p+(x, t) − p−(x, t)|.

All these quantities are to be finite, at least for sufficiently
long timescales. Consequently,

|bε(x0 + η) p±(x0 + η, t)− bε(x0 − η) p±(x0 − η, t)| ≤ 2η K,
(17)
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where K = Dpmax + λmaxΔmax. In the limit for η → 0
the condition

bε(x−
0 ) p±(x−

0 , t) = bε(x+
0 )p±(x+

0 , t), (18)

is recovered. Taking the limit for ε → 0, the velocity-based
boundary condition follows, b1p

(1)
± (x0, t) = b2p

(2)
± (x0, t),

corresponding to eq. (5).
It is possible to provide a lattice dynamics-based analy-

sis of the interfacial boundary conditions leading to eq. (5)
generalizing the approach developed by Ovaskainen and
Cornell [24] which derive the same boundary condition in
Appendix A.1 Case A (in the case of pure spatial hetero-
geneity). In point of fact, in the Ovaskainen and Cornell
paper, the symmetric case of an ideal interface (consid-
ered in the present work), corresponds to z = 0, and the
quantities q± used in their analysis are proportional to δh,
h = 1, 2.

Numerical experiments. – In point of fact, eq. (6)
represents a change of paradigm with respect to the
usual approach to boundary conditions applied at inter-
faces in the presence of diffusion, in which p(2)/p(1)|x=x0

is assumed equal to the ratio of the diffusivities
D1/D2 [11,14–16]. Equation (5) finds its natural expla-
nation in the stochastic models in which the finite value of
the propagation velocities bh is assumed, while it is “alien”
to the classical parabolic approach. In this framework, the
analysis of MuPh-LRW is a significant benchmark to test
the importance of the physical assumptions underlying hy-
perbolic transport theories [23,26,27].

Direct numerical simulations of MuPh-LRW provides a
clear answer to this question. Consider a MuPh-LRW on
a closed domain x ∈ [−1, 1] equipped with zero-flux con-
ditions at the endpoints. The interval [−1, 0) corresponds
to the lattice phase “1”, (0, 1] to the lattice phase “2”, and
the interface is located at x = x0 = 0. In the simulations,
δ1 = 1/N , N1 = N is the number of lattice sites in phase
“1”, δ2 = δ1/α, where α is an integer, so that N2 = αN
is the number of sites of phase “2”, while τ1 = 1 and τ2

freely varies. An ensemble of 106 particles is considered,
initially located at the interface.

Figures 2 and 3 depict the comparison of the lattice sim-
ulations of MuPh-LRW with the results obtained by inte-
grating the hyperbolic equations (1) for each phase and
in each disjoint phase domain where the boundary condi-
tions (5) have been applied at the interface x = 0. Figure 2
refers to δ2 = δ1/4, τ2 = τ1, so that p(2)/p(1)|x=0 = 4,
while the classical diffusive boundary condition provides
p(2)/p(1) = 16. Figure 3 refers to δ2 = δ1/2, τ2 = τ1/2, at
which the hyperbolic theory predicts a smooth overall con-
centration profile across the interface as p(2)/p(1)|x=0 = 1,
while the diffusive boundary condition implies a disconti-
nuity p(2)/p(1)|x=0 = 2.

The lattice simulation results are accurately described
by the hyperbolic hydrodynamic model, and the validity
of the velocity-based interfacial condition (6), or eq. (5),
is highlighted by the data depicted in fig. 4 referred to the

Fig. 2: Probability density function p(x, t) vs. x at several
time instants for δ2 = δ1/4, τ2 = τ1. Symbols (◦) are the
results of lattice simulations, continuous lines the solutions of
the corresponding hyperbolic model. Panel (a) refers to t =
2 × 102, (b) to t = 103, (c) to t = 5 × 103, (d) to t = 104.

Fig. 3: Same as in fig. 2 at δ2 = δ1/2, τ2 = 1/2.
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Fig. 4: Particle frequency p∗
1 in phase “1” at steady state as

a function of τ1/τ2 in a MuPh-LRW closed cell x ∈ [−1, 1]
at δ2 = δ1/2. Symbols are the results of lattice simulations,
curve (a) corresponds to p∗

1 = (b2/b1) p∗
2, curve (b) to p∗

1 =
(D2/D1) p∗

2.
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particle fraction p∗1 at steady state in phase “1”, obtained
from lattice simulations, as a function of the ratio τ1/τ2,
compared with the result deriving from eq. (6) and con-
strasted with the parabolic interpretation of the boundary
conditions based on the ratio of the phase diffusivities. An
important observation is related to the connection between
the theory developed in this letter and the existing liter-
ature in the field, specifically the works [11–13]. Korabel
and Barkai [11–13] apply the boundary condition based on
the ratio of the diffusivities in the framework of anoma-
lous diffusion problems, finding numerical confirmation of
this via stochastic simulations of a Continuous Time Ran-
dom Walk (CTRW) model. In point of fact, the results
presented in these articles are not in disagreement with
the present theory and, in some sense, provide a further
confirmation of it. This is because the authors consider
a multiphase lattice structure possessing the same lattice
spacing homogeneously throughout the two phases, and
such that the phase heterogeneity is characterized by two
different statistics of the hopping times in the two phases.
Transferring this setting into a regular MuPh-LRW, this
means that δ1 = δ2 = δ while τ1 
= τ2. Consequently,
D1/D2 = τ2/τ1 = b1/b2, and therefore the ratio of the
phase diffusivities coincides with the ratio of the phase
velocities, so that the boundary condition used in [11–13]
reduces to eq. (5).

Dispersion in a periodic multiphase lattice. –
Once the qualitative and quantitative validity of the

hyperbolic description and of the interfacial conditions
arising from it has been assessed, it is possible to use this
hydrodynamic model to investigate finer transport proper-
ties of MuPh-LRW. Specifically, we consider a dispersion
experiment on a lattice composed by the periodic repeti-
tion of a multiphase unit cell as depicted in fig. 5. The unit
lattice structure is the same used for the data in figs. 2
and 3, with physical length L = 2, L1 = L2 = 1 and
δ1 = 1/N , where N = N1 = 100, τ1 = 1, δ2 = δ1/α and
τ2 varies. By considering an ensemble of 106 particles ini-
tially located at z0 = 0 (x0 = 0), the first order moments
(mean and mean square displacement) are estimated, and
from their linear scalings with time t in the long-term
regime, the value of the effective velocity Veff and effective
diffusivity Deff (dispersion coefficient) obtained. From the
simulations one obtains Veff = 0, while the results for Deff

as a function of τ1/τ2, varying δ1/δ2 are depicted in fig. 6.
These data should be compared with the long-term

properties derived from the continuous hyperbolic model
based on eq. (1) obtained from exact moment analy-
sis [28]. In order to have a qualitative picture of the in-
fluence of the finite velocity assumption in the long-term
hydrodynamic behavior of MuPh-LRW, we consider also
the modeling of particle motion in terms of a Langevin
equation driven by a Wiener process, and leading to a
parabolic Fokker-Planck equation. Taking into account
the nonlinear and discontinuous nature of the resulting
Langevin equation, we consider the most general interpre-

Fig. 5: Schematic representation of a LRW in a periodic lattice
structure possessing a multiphase unit periodicity cell.
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Fig. 6: Dispersion coefficient Deff/D1 for particle transport in a
periodic multiphase lattice as a function of τ1/τ2. Symbols are
the results of lattice simulations, solid lines are the predictions
of homogenization theory applied to the hyperbolic transport
model. Line (a) and (�) refers to δ1/δ2 = 1, line (b) and (�)
to δ1/δ2 = 2, line (c) and (◦) to δ1/δ2 = 3, line (d) and (•) to
δ1/δ2 = 4, line (e) and (�) to δ1/δ2 = 5.

tation of it, namely dx(t) =
√

2D(x(t)) ∗λ dw(t), where
D(x) = D(x + L) is the discontinuous and spatially pe-
riodic diffusivity profile attaining the values Dh in each
lattice phase, dw(t) the increment of a Wiener process in
the time interval dt and “∗λ” indicates that the λ-calculus,
λ ∈ [0, 1], has been chosen in the definition of the stochas-
tic Stieltjes integrals (λ = 0, 1/2, 1 correspond to the Ito,
Stratonovich and Hänggi-Klimontovich interpretation, re-
spectively) [29]. A detailed account of the exact homog-
enization analysis of the different hydrodynamic models
can be found in [28]. The final result (for L1 = L2 = 1) is

1
Deff

=
1
2

(
1
b1

+
1
b2

)(
1

b1τ1
+

1
b2τ2

)
(19)

for the hyperbolic model, and

1
Deff

=
1
4

(
1

D1−λ
1

+
1

D1−λ
2

)(
1

Dλ
1

+
1

Dλ
2

)
(20)

for the Langevin-Wiener model associated with a
λ-interpretation of the stochastic integrals. The data
depicted in fig. 6 clearly indicate that the hyperbolic
transport model accurately accounts for the dispersion
properties in a multiphase lattice. Conversely, even keep-
ing λ as an adjustable parameter, it is impossible for any
Langevin-Wiener model of MuPh-LRW diffusion to pro-
vide a quantitative estimate of the long-term dispersion
properties. This claim is supported by the data depicted in
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Fig. 7: Deff/D1 vs. (τ1/τ2)
1/2 for dispersion in a periodic multi-

phase lattice for a fixed ratio D1/D2. Symbols are the results of
lattice simulations, solid lines (a) and (b) are the predictions of
the hyperbolic transport model eq. (19). Line (a) and (�) refer
to D1/D2 = 1, line (b) and (◦) to D1/D2 = 4. The horizontal
lines represent the lower and upper bounds in the predictions
of the parabolic transport model obtained by varying λ: line
(c) refers to D1/D2 = 1, lines (d) and (e) to D1/D2 = 4.

fig. 7. These data refer to the effective diffusion coefficient
in a periodic multiphase lattice at δ2 = δ1/γξ, τ2 = τ1/ξ2

by varying the parameters γ, and ξ. For fixed values of
γ, the ratio D1/D2 = γ2 is constant. From eq. (20) it
follows that any Langevin-Wiener model of particle trans-
port would predict a constant value of Deff independently
of the value of ξ. Conversely, the hyperbolic model based
on eq. (1) predicts a value of Deff/D1 that depends con-
tinuously on the ratio τ1/τ2 = ξ2 for fixed γ. Lattice
simulation results depicted in fig. 7 support the latter pre-
diction of the hyperbolic hydrodynamic model. In the
case D1/D2 = 1, one has Deff/D1 = 1 from the parabolic
model, independently of λ (line (c) in fig. 7), while in
general Deff/D1 in parabolic Langevin-Wiener models is
lower- and upper-bounded by the values attained at λ = 0
and λ = 1/2.

This result indicates that the hyperbolic hydrodynamic
model not only provides a more quantitatively consistent
alternative to parabolic models for describing LRW at
short timescales, as addressed in [21], but it is the only
continuous model deriving from a continuous stochastic
description of particle transport constistent with long-
term dispersion data in multiphase periodic lattices.

Reversing the latter argument, it implies that the as-
sumption of finite-time propagation velocity is a funda-
mental prerequisite in order to predict correctly both the
long-time dispersion properties in infinite multiphase lat-
tices and the equilibrium properties in closed multiphase
cells.

The latter observation opens up interesting perspec-
tives in the hydrodynamic modeling of particle sys-
tems based on the fundamental assumption of finite
propagation velocity. This observation finds a signif-
icant experimental confirmation in the ubiquitous evi-
dence of ballistic transport at short timescales both in
micro- and nanostructures [30–32], and sheds new light

on the conceptual relevance in non-equilibrium statistical
physics of stochastic approaches deeply grounded on the
“weak relativistic principle” of finite propagation velocity.
The same approach can be extended to electron-transport
in periodic lattices, in order to determine the effective
electron mass in all the solid-state systems in which
experimental evidence suggests an effective relativistic
constraint associated with a bounded velocity of carrier
particles [33,34].
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