
                          

LETTER

Exceptional points in 1D arrays of quantum
harmonic oscillators(a)

To cite this article: A. Cabot et al 2019 EPL 127 20001

 

View the article online for updates and enhancements.

You may also like
Bethe ansatz description of edge-
localization in the open-boundary XXZ
spin chain
Vincenzo Alba, Kush Saha and Masudul
Haque

-

Addendum to ‘Algebraic equations for the
exceptional eigenspectrum of the
generalized Rabi model’
Zi-Min Li and Murray T Batchelor

-

Pure Gaussian states from quantum
harmonic oscillator chains with a single
local dissipative process
Shan Ma, Matthew J Woolley, Ian R
Petersen et al.

-

This content was downloaded from IP address 18.116.51.117 on 26/04/2024 at 04:26

https://doi.org/10.1209/0295-5075/127/20001
https://iopscience.iop.org/article/10.1088/1742-5468/2013/10/P10018
https://iopscience.iop.org/article/10.1088/1742-5468/2013/10/P10018
https://iopscience.iop.org/article/10.1088/1742-5468/2013/10/P10018
https://iopscience.iop.org/article/10.1088/1751-8113/49/36/369401
https://iopscience.iop.org/article/10.1088/1751-8113/49/36/369401
https://iopscience.iop.org/article/10.1088/1751-8113/49/36/369401
https://iopscience.iop.org/article/10.1088/1751-8121/aa5fbe
https://iopscience.iop.org/article/10.1088/1751-8121/aa5fbe
https://iopscience.iop.org/article/10.1088/1751-8121/aa5fbe


July 2019

EPL, 127 (2019) 20001 www.epljournal.org
doi: 10.1209/0295-5075/127/20001

Focus Article

Exceptional points in 1D arrays of quantum harmonic oscillators(a)

A. Cabot
1
, G. L. Giorgi

1
, S. Longhi

2 and R. Zambrini
1

1 IFISC (UIB-CSIC), Instituto de F́ısica Interdisciplinar y Sistemas Complejos - Palma de Mallorca, Spain
2 Dipartimento di Fisica and IFN-CNR, Politecnico di Milano - Milan, Italy

received 22 July 2019; accepted 23 July 2019
published online 12 August 2019

PACS 03.65.Yz – Decoherence; open systems; quantum statistical methods
PACS 42.50.-p – Quantum optics
PACS 32.70.Cs – Oscillator strengths, lifetimes, transition moments

Abstract – We consider a one-dimensional (1D) array of coupled quantum harmonic oscillators
of arbitrary size in the presence of staggered losses. The dynamics of the system is analyzed
thoroughly, through exact solutions in which exceptional points (EPs) are found to greatly impact
the system dynamics. In particular, different dynamical regimes arise due to the progressive
emergence of EPs varying the interaction strength, also allowing for single frequency emission of
all array components. Signatures of these regimes are found in the decay dynamics of the system,
in the transmission and fluctuation spectra, and in the emergence of frequency windows where
resonant absorption and emission are strongly inhibited because of interference effects.

focus  article Copyright c© EPLA, 2019

Introduction. – Coupled open quantum systems dis-
play dynamical features which cannot be inferred solely
by the unitary dynamics of the system nor by the dis-
sipative dynamics of its uncoupled units. Instead, even
in the presence of local dissipation, the interplay of co-
herent interactions and decays needs to be considered
as a whole to explain the dynamics of the system. Re-
cently, effective non-Hermitian models have been explored
in this context. Contrary to Hermitian (closed) systems,
non-Hermitian ones can show exceptional points [1–9].
An exceptional point (EP) is a point in parameter space
at which two or more eigenvalues and their respective
eigenvectors of the Hamiltonian coalesce [1,2]. Such de-
generacies are ubiquitous in open systems that exchange
energy with their surrounding environment [3] and are
at the heart of a wide variety of intriguing phenomena
observed in different physical settings, such as parity-
time symmetry breaking [4–8,10–13], extreme sensitivity
to perturbations [14,15], chiral dynamics for adiabatic EP
encircling [16–19], anomalous quantum decay [20,21], and
topological phenomena [22]. In particular, dissipation can
dramatically change the way a composed system oscil-
lates: while in closed systems any coherent coupling mod-
ifies the eigenfrequencies, dissipation can give rise to a

(a)Contribution to the Focus Issue The Physics of Quantum En-
gineering and Quantum Technologies edited by Roberta Gitro, J.
Gonzalo Muga and Bart A. van Tiggelen.

far richer variety of phenomena. For instance, a dissipa-
tive system can oscillate at the bare intrinsic frequency
of its units in spite of their mutual coupling. This effect
can be related to the normal mode splitting earlier pre-
dicted for atoms interacting with vacuum in cavity [23,24]
and observed in several platforms (see [25,26] and refer-
ences therein). Dissipation-induced frequency degeneracy
can influence also the response of the system as observed
in emission and absorption spectra. Indeed, excitations
with the same frequency can interfere destructively yield-
ing transparency windows, in which the system does not
react to resonant driving [27–31], as well as frequency win-
dows in which thermal emission is strongly inhibited [32].
The interplay between interactions and damping in com-
posite systems, besides modifying the decay of excitations
to the continuum introducing polynomial corrections to
the typical exponential decay [20,21], distributes the de-
cay rates of modes of the system leading to phenomena like
superradiance [33] and synchronization [34,35], as well as
the possibility of decoherence-free subspaces [36–38].

In this work, we study the interplay between coher-
ent dynamics and dissipation arising independently on
each unit of composite systems when we allow for dif-
ferent damping rates. We consider a 1D array of co-
herently coupled identical bosonic systems each of which
dissipates into its own independent environment with stag-
gered rates. This kind of model is of relevance in the
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context of quantum technologies, where systems made of
coupled resonators are ubiquitous, as, for instance, me-
chanical [32,39,40] and optomechanical [41,42] arrays, cou-
pled photonic modes [43], and arrays of superconducting
microwave resonators [44]. Interestingly, the 1D array
system with staggered dissipation shows a set of EPs
in both first and second moments dynamics which sep-
arate different dynamical regimes characterized by a rich
phenomenology, such as qualitative distinct temporal be-
haviors towards the stationary state and the emergence
of interference effects in the transmission and fluctuation
spectra. Quite remarkably, the EP entails the possibility
of achieving a regime where all system components oscil-
late at the same (bare) frequency for any initial condition,
in spite of coherent couplings. Finally, we briefly estab-
lish connections with phenomena already familiar in the
literature and observed in different physical systems, such
as Fano interference and electromagnetic-induced trans-
parency (EIT) [45].

Model. – We consider a 1D tight-binding chain of
quantum harmonic oscillators with uniform frequencies ω0
and tunneling rates λ. The units are weakly coupled to
independent baths in a staggered way, such that the sys-
tem is composed by N cells of two dissipative modes each.
The Hamiltonian and master equation in Born-Markov ap-
proximations describing the system in the rotating frame
with ω0 read (h̄ = 1)

Ĥ = −λ

N∑
n=1

(â†
nb̂n + h.c.) − λ

N−1∑
n=1

(â†
n+1b̂n + h.c.), (1)

d
dt

ρ̂ = −i[Ĥ, ρ̂] +
N∑

n=1

∑
o=a,b

(γc
oD[ôn] + γh

o D[ô†
n]), (2)

where D[ô] = 2ôρ̂ô† − ô†ôρ̂ − ρ̂ô†ô. Notice that in prin-
ciple we consider general out-of-equilibrium environments
in which the rates γc

a(b) and γh
a(b) do not satisfy necessarily

detailed balance. Moreover, the local character of dissipa-
tion is well justified when the coupling between units is
small λ � ω0 [46].

Dynamics of the first moments. – Let us start our
analysis considering the first moments, whose dynamics
can be understood as the superposition of N independent
pairs of interacting modes. Each of these pairs, from now
on referred as k -modes, displays two dynamical regimes
separated by an EP. These regimes are characterized by
the number of dynamical frequencies of the system and
the way it decays (fig. 1). The equations of motion of the
first moments read

d
dt

〈ân〉 = −γa〈ân〉 − iλ(〈b̂n−1〉(1 − δn,1) + 〈b̂n〉), (3)

d
dt

〈b̂n〉 = −γb〈b̂n〉 − iλ(〈ân〉 + 〈ân+1〉(1 − δn,N)), (4)

with n ∈ [1, N ], γa(b) = γc
a(b) − γh

a(b), and δn,n′

the Kronecker delta. Equations (3) and (4) can be
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Fig. 1: (a) Real and imaginary parts of Ω±
kl

are shown as red
solid lines and blue dashed lines, respectively. (b) Real part of
〈â1〉 as a function of time. In magenta λ/ω0 = 0.025 in which
all k -modes are in the single-frequency regime except for k1.
In green λ/ω0 = 0.1 in which all modes are in the two-frequency
regime except for those of k3. In blue λ/ω0 = 0.5 and all modes
are well into the two-frequency regime. The initial condition
corresponds to excitation of the first site solely. In both panels
N = 3, γa/ω0 = 0.1 and γa/ω0 = 0.01.

conveniently written in matrix notation as d
dtu =

Mu + F , where u = (〈â1〉, 〈b̂1〉, . . . , 〈âN 〉, 〈b̂N 〉)T and F =
(α1(t), β1(t), . . . , αN (t), βN (t))T represents a possible ad-
ditional driving term.

Exceptional points. Let us introduce the vector of mo-
ments via the orthogonal transformation ũ = PT u, where
ũ contains the k -modes âkl

, b̂kl
defined by

âkl
=

N∑
n=1

ânS(a)
n,kl

, ân =
N∑

l=1

âkl
S(a)

n,kl
, (5)

S(a)
n,kl

=

√
2

N + 1
2

sin
[
kl

(
n − 1

2

)]
,

S(b)
n,kl

=

√
2

N + 1
2

sin(kln),

with kl = πl/(N + 1/2), l = 1, . . . , N and similarly
for b̂n, b̂kl

. This transformation preserves the commu-
tation relations because

∑N
n=1 S(x)

n,kl
S(x)

n,kl′
= δl,l′ and∑N

l=1 S(x)
n,kl

S(x)
n′,kl

= δn,n′ (x = a, b), as one can readily
show. Then M̃ = PT MP with M̃ =

⊕N
l=1 M̃kl

and

M̃kl
=

( −γa −iλkl

−iλkl
−γb

)
, (6)

with λkl
= 2λ cos(kl/2). The eigenvalues of the whole

system are obtained by diagonalizing the 2× 2 blocks and
read

Ω±
kl

=
γ̄

2
± 1

2

√
(γa − γb)2 − 4λ2

kl
, (7)

with γ̄ = γa + γb. We denote the eigenvalues real and
imaginary parts as γ±

kl
and ν±

kl
, respectively (fig. 1(a)).

We obtain that, as the coupling λ is varied, below a cer-
tain threshold the eigenvalues are real, while above they
become complex. When the imaginary parts vanish (mov-
ing from the rotating frame to the lab one) all units oscil-
late at their bare frequencies, ω0, in spite of their mutual
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interactions. This is in stark contrast to what one observes
in the corresponding closed system where, for any coupling
strength, the eigenfrequencies differ from the intrinsic fre-
quency ω0. At the symmetry breaking threshold point the
square root in eq. (7) vanishes and the two eigenvalues
with the corresponding eigenvectors coalesce [1,2]. This
point is thus an EP, at which M̃kl

(and thus M) becomes
non-diagonalizable. Therefore, our system displays N EPs
(fig. 1(a)), one for each kl. The EPs separate different
regimes in which the number of frequencies varies from 1
to 2N , a feature that cannot be observed for any closed or
homogeneously dissipating system. Indeed, in the case of
balanced loss rates γa = γb, the bath would only introduce
a uniform dissipation decay, while the frequencies would
depart from ω0 and be modified as in the absence of the
environment.

Decay dynamics. To study the decay dynamics near
an EP, we proceed to solve directly the block-diagonal
system of equations using the Laplace transform method.
The equations for the k -modes are

d
dt

〈âkl
〉 = −γa〈âkl

〉 − iλkl
〈b̂kl

〉, (8)

d
dt

〈b̂kl
〉 = −γb〈b̂kl

〉 − iλkl
〈âkl

〉. (9)

Solving their Laplace transformed version we obtain in the
s-domain:

〈âkl
(s)〉 =

(s + γb)〈âkl
〉0 − iλkl

〈b̂kl
〉0

(s + Ω+
kl

)(s + Ω−
kl

)
, (10)

〈b̂kl
(s)〉 =

(s + γa)〈b̂kl
〉0 − iλkl

〈âkl
〉0

(s + Ω+
kl

)(s + Ω−
kl

)
, (11)

and the initial condition given by 〈âkl
(b̂kl

)〉0. The poles
Ω±

kl
correspond to the eigenvalues of M, which display

an EP in each k -block at |2λk| = |γa − γb|. Here, as
well as in the scattering matrix, an EP appear as a dou-
ble pole, which makes clear the emergence of polynomial
deviations from the typical exponential-decay behavior.
From eqs. (7), (10) and (11) we identify two dynamical
regimes for each k -mode, separated by an EP. i) Single-
frequency regime |γa − γb| > |2λkl

|: we have two differ-
ent real poles and no oscillations (in the rotating frame).
ii) Exceptional point |γa − γb| = |2λkl

|: we have a real
second-order pole, yielding polynomial corrections to the
exponential decay without oscillations. iii) Two-frequency
regime |γa − γb| < |2λkl

|: we have two different complex
poles, yielding oscillations with equal damping. In the time
domain the dynamics in each regime read as follows.
i) Single-frequency regime:

〈âkl
〉 =

{
〈âkl

〉0
(γb − γ+

kl
)e−γ+

kl
t − (γb − γ−

kl
)e−γ−

kl
t

γ−
kl

− γ+
kl

−iλkl
〈b̂kl

〉0 e
−γ+

kl
t − e

−γ−
kl

t

γ−
kl

− γ+
kl

}
θ(t), (12)

where θ(t) is the Heaviside step function. Notice that in
all cases the solution for 〈b̂kl

〉 is obtained from the one
of 〈âkl

〉 by exchanging the labels a ↔ b and the initial
conditions. In this regime the poles are real and read as
2γ±

kl
= γ̄ ±

√
(γa − γb)2 − 4λ2

kl
.

ii) Exceptional point:

〈âkl
〉 = e− γ̄

2 t

{
〈âkl

〉0
[
1 +

γb − γa

2
t

]
− iλkl

t〈b̂kl
〉0

}
θ(t),

(13)
iii) Two-frequency regime:

〈âkl
〉 = e− γ̄

2 t

{
〈âkl

〉0
[
γb − γa

2νkl

sin(νkl
t) + cos(νkl

t)
]

−i
λkl

νkl

〈b̂kl
〉0 sin(νkl

t)
}

θ(t), (14)

Here the poles are complex, and the imaginary part is
νkl

= 1
2

√
4λ2

kl
− (γa − γb)2.

The solution in the site basis is obtained reversing the
orthogonal transformation, i.e., u = Pũ (eq. (5)). Hence,
in the site basis, the local dynamics is a combination of the
different k -modes ones. As anticipated, the number of fre-
quencies at which the modes can oscillate change depend-
ing on the regime. Below the first EP, the modes oscillate
mono-chromatically, despite the finite coherent coupling.
This region of monochromatic evolution of all units oc-
curs in a parameter window that depends on the size of
the system: in the limit of large N the decay contrast
|γa − γb| > 4λ is required to overcome coupling, while for
just a pair of oscillators one would get a smaller contrast
|γa − γb| > 2λ.

When the previous condition is not fulfilled, for instance
increasing the coupling λ between elements, more k -modes
enter in the two-frequency regime and, in the site basis,
up to 2N frequencies are observed (fig. 1). At the EP,
the first moments present an exponential-power-law de-
cay [21]. The exponent of the polynomial corrections can
be at most h − 1, where h is the number of eigenvalues
that coalesce, i.e., the order of the EP. For higher-order
EPs, more frequencies merge at the EP, and the variabil-
ity in the number of frequencies displayed by the system
is magnified. This could occur in our system when peri-
odically modulating losses over larger cells. Finally notice
that, despite the peculiar behavior at the EP and its singu-
lar spectral character, the solutions are continuous in the
transition from one regime to the other, as also observed
in other physical contexts (see below).

Driven system and transmission spectrum. Let us now
move to the case of a system with driving, i.e., non-zero F .
The details on the general solutions are provided in the
supplementary material Supplementarymaterial.pdf
(SM). Here we focus on the particular case in which
we only drive one mode with an oscillatory input
of frequency ωn, i.e., αn(t) = ηcαeiΔntθ(t) with
Δn = ω0 −ωn. Then in the k -basis the driving terms read
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as αkl
(t) = ηcαS(a)

n,kl
eiΔntθ(t) and βkl

(t) = 0 ∀ l, where
α is the driving strength and ηc characterizes the input
channel. Assuming vanishing initial conditions (SM), the
solution in the s-domain is given by

〈âkl
(s)〉 =

(s + γb)ηcαS(a)
n,kl

(s − iΔn)(s + Ω+
kl

)(s + Ω−
kl

)
, (15)

〈b̂kl
(s)〉 =

−iλkl
ηcαS(a)

n,kl

(s − iΔn)(s + Ω+
kl

)(s + Ω−
kl

)
. (16)

Notice that the only pure imaginary pole is s = iΔn.
Hence, in the transient dynamics towards the steady
state, the different dynamical regimes are manifested in
the dynamical response of the system to the oscillatory
drive through Ω±

kl
. In fact, in the steady state, the

intrinsic dynamics of the system appears through the
residue of s = iΔn, which leads to the following stationary
amplitudes for the k -modes:

〈âkl
〉ss =

(iΔn + γb)ηcαS(a)
n,kl

eiΔnt

(iΔn + Ω+
kl

)(iΔn + Ω−
kl

)
, (17)

〈b̂kl
〉ss =

−iλkl
ηcαS(a)

n,kl
eiΔnt

(iΔn + Ω+
kl

)(iΔn + Ω−
kl

)
. (18)

It is useful for the discussion that follows to particularize
the expression for 〈âkl

〉ss in the two dynamical regimes,
making use of the explicit expression of Ω±

kl
. In the

single-frequency regime we have

〈âkl
〉ss =

ηcαS(a)
n,kl

eiΔnt

γ+
kl

− γ−
kl

[
γ+

kl
− γb

iΔn + γ+
kl

− γ−
kl

− γb

iΔn + γ−
kl

]
, (19)

while in the two-frequency regime we have

〈âkl
〉ss =

ηcαS(a)
n,kl

eiΔnt

2iνkl

[ γa−γb

2 + iνkl

i(Δn + νkl
) + γ̄

2

−
γa−γb

2 − iνkl

i(Δn − νkl
) + γ̄

2

]
. (20)

We can find signatures of these dynamical regimes in
the transmission spectrum of the driven mode. Within
the assumption that the system is driven through the
environment described in eq. (2), the input-output rela-
tion for the driven mode is just âout

n = âin
n − ηcân, where

〈âin
n 〉 = αeiΔntθ(t) and ηc =

√
γa [47]. The transmission

coefficient is defined as T = 〈âout
n 〉/〈âin

n 〉, which in the
steady state reads

Tss = 1 − √
γa

N∑
l=1

S(a)
n,kl

〈âkl
〉ss

〈âin
n 〉 . (21)

It is clear that the different regimes described explicitly
by eqs. (19) and (20) translate into different behaviors
of the transmission spectrum. This can be observed in
fig. 2, in which we plot eq. (21) (red solid lines) for three
different cases: in (a) and (b) λ/ω0 = 0.02 all k -modes
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Fig. 2: Spectral transmission |Tss|2 for mode â1 driven at
frequency ω1/ω0 with Δ1 = ω0 − ω1. (a) λ/ω0 = 0.02.
(b) Zoom-in of the interference window. (c) λ/ω0 = 0.1 and
(d) λ/ω0 = 0.35. In all cases N = 3, γa/ω0 = 0.1, and
γb/ω0 = 0.001. Red solid lines: exact expression. Blue dashed
lines: approximate expression.

are in the single-frequency regime, in (c) λ/ω0 = 0.1
(only the modes of k3 are in the single-frequency regime),
while in (d) λ/ω0 = 0.35 (all k -modes are well into the
two-frequency regime).

A surprising feature of this spectrum is that, in
cases (a), (b), (c), the system displays a transparency win-
dow centered at ω0, despite the presence of k -modes of this
frequency that naively should resonate perfectly with the
driving. This can be understood by analyzing the sta-
tionary amplitude of the k -modes in the single-frequency
regime. Indeed, from eq. (19) we see that these ampli-
tudes have two contributions that interfere destructively,
both centered at the same frequency but with different
decay rate. In fact, for weak coupling γa 	 λkl

, large dis-
parity γa 	 γb, and near the resonant driving γa 	 |Δn|,
we can approximate the transmission spectrum as

Tss ≈
N∑

l=1

(λ2
kl

/γa)(S(a)
n,kl

)2

iΔn + γb + λ2
kl

/γa
, (22)

where we have made the replacements γ+
kl

≈ γa, γ−
kl

≈
γb + λ2

kl
/γa and γa + iΔn ≈ γa, accordingly to the above

approximations. In fig. 2(a) and (b) we compare this ap-
proximate expression (blue dashed lines) with the exact
one, finding good agreement in the expected region. Thus,
eq. (22) enables us to clearly visualize the Lorentzian
transparency window that emerges in the single-frequency
regime. Notice that the height and width of this window
increase with the coupling strength, as is clear from this
expression and panels (a) and (c). The interaction-induced
transparency windows have been already observed in dif-
ferent systems and configurations, as, for instance, in op-
tical resonators [27,28] or optomechanical systems [29–31],
and can be ultimately traced back to the rather general
phenomena of Fano interference and EIT [45,48].
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In the two-frequency regime we find the more intuitive
result that each k -mode contributes to the transmission
spectrum with a Lorentzian absorption line centered at
its frequency (see eq. (20) and fig. 2(d)). In this case it is
no surprise that the system is fully transparent at Δ1 = 0
as there are no k -modes resonant to this frequency. Fur-
thermore, a distinctive feature of our system is that it can
work in both regimes simultaneously, as in case of fig. 2(c),
in which there is the transparency window due to the
k3-modes, but there are also two double-peak Lorentzian
absorption lines due to the other k -modes. Finally we ob-
serve that the transmission coefficient is continuous along
the different dynamical regimes, as follows from eqs. (17)
and (21) and the fact that Ω±

kl
are continuous. This is in

spite of the singular character of the EPs and in accor-
dance with what we have commented previously.

Dynamics of the second moments. – Let us now
consider the dynamics of the second moments. We will
first discuss the general method to solve the set of coupled
equations of motion, showing that in general the dynam-
ical scenario becomes more complex. Nevertheless, the
same dynamical regimes will be shown to emerge in some
special instances. Then we will compute the stationary
state, which will be used to analyze signatures of the EPs
in the fluctuation spectrum of the system.

Equations for the second moments. The system of dif-
ferential equations describing the dynamics of the second
moments is divided into two uncoupled blocks: a homo-
geneous set of equations for the dynamics of all possible
moments of the kind 〈â†

nâ†
n′〉, 〈b̂†

nb̂†
n′〉, 〈â†

nb̂†
n′〉 and their

Hermitian conjugates, and an inhomogeneous system of
equations set for the dynamics of all terms of type 〈â†

nân′〉,
〈b̂†

nb̂n′〉, 〈â†
nb̂n′〉 together with their conjugates. The inho-

mogeneous block of equations (the only relevant part in
our analysis) can be readily written from eqs. (1) and (2)
(as done in the SM) and its structure is that of a square
lattice with four different sites per unit cell, fig. 3(a). This
suggests that the system of equations can be brought to
a block diagonal form by means of the orthogonal trans-
formation P generalized to a 2D lattice. Thus, two wave
vectors are needed, kx and ky, and each block reads

Ȧkx,ky = i(λkxDkx,ky − λky Ckx,ky)

− 2γaAkx,ky + 2γh
aδkx,ky , (23)

Ḃkx,ky = i(λkxCkx,ky − λky Dkx,ky)

− 2γbBkx,ky + 2γh
b δkx,ky , (24)

Ċkx,ky = i(λkxBkx,ky − λky Akx,ky ) − γ̄Ckx,ky , (25)

Ḋkx,ky = i(λkxAkx,ky − λky Bkx,ky ) − γ̄Dkx,ky , (26)

where we have defined Akx,ky = 〈â†
kx

âky〉, Bkx,ky =
〈b̂†

kx
b̂ky〉, Ckx,ky = 〈â†

kx
b̂ky〉, and Dkx,ky = 〈b̂†

kx
âky 〉 and

we have used the dot in place of the time derivative.
Hence, we have transformed a general set of 4N coupled
differential equations into a reduced one of only 4 coupled

Fig. 3: (a) Lattice model for N = 3, red dots (1) 〈â†
nâm〉, green

dots (4) 〈b̂†
nb̂m〉, blue dots (2) 〈â†

nb̂m〉, orange dots (3) 〈b̂†
nâm〉.

(b) Population of the first site for λ/ω0 = 0.01 (magenta),
λ/ω0 = 0.025 (green), and λ/ω0 = 0.2 (blue), with N = 3,
γa/ω0 = 0.01, γb/ω0 = 0.1, γh

a /γa = γh
b /γb = 0, na = 10,

nb = 1.

equations, which can readily be solved. In the following we
calculate explicitly the general solution of eqs. (23)–(26)
in the cases in which EPs are observed and the stationary
state of the system.

EPs in the second moments. Let us take an initial
condition that is uniform along each sublattice, 〈â†

nâm〉0 =
naδn,m, 〈b̂†

nb̂m〉0 = nbδn,m and 〈b̂†
nâm〉0 = 〈â†

nb̂m〉0 = 0
∀ n, m, and analyze the evolution of the population of each
mode. Using the orthogonality properties of the canonical
transformation defined in eq. (5), we can show that in the
k -basis the initial condition reads as 〈â†

kx
âky〉0 = naδkx,ky ,

〈b̂†
kx

b̂ky〉0 = nbδkx,ky and the rest of the second moments
zero. Then all sectors of eqs. (23)–(26) with kx �= ky vanish
identically at all times. The solutions in the k -basis and
in s-domain are

Akl,kl
(s) =

[2λ2
kl

+(s+2γb)(s+γ̄)]A(s)+2λ2
kl

B(s)

(s+γ̄)(s+2Ω+
kl

)(s+2Ω−
kl

)
, (27)

Bkl,kl
(s) =

[2λ2
kl

+(s+2γa)(s+γ̄)]B(s)+2λ2
kl

A(s)

(s+γ̄)(s+2Ω+
kl

)(s+2Ω−
kl

)
, (28)

Ckl,kl
(s) =

iλkl
[(s + 2γa)B(s) − (s + 2γb)A(s)]
(s + γ̄)(s + 2Ω+

kl
)(s + 2Ω−

kl
)

, (29)

with Dkl,kl
(s) = C∗

kl,kl
(s), A(s) = na + 2γh

a/s and
B(s) = nb + 2γh

b /s. As before, the dynamics of the
second moments in the site basis can be obtained trans-
forming back to time domain and writing 〈â†

nâm〉 =∑N
l=1 Akl,kl

S
(a)
m,kl

S
(a)
n,kl

, 〈b̂†
nb̂m〉 =

∑N
l=1 Bkl,kl

S
(b)
n,kl

S
(b)
m,kl

and 〈â†
nb̂m〉 =

∑N
l=1 Ckl,kl

S
(a)
n,kl

S
(b)
m,kl

. From eqs. (27)–(29)
it is clear that Akl,kl

, Bkl,kl
and Ckl,kl

, display the same
dynamical regimes as the first moments, and, thus, the
time evolution of the second moments presents also the
characteristic features of each regime: only one frequency
(ω0) and multiple decay rates in the single-frequency
regime, polynomial corrections in the decay just at the
EP, and multiple frequencies with the same decay rate in
the two-frequency regime. Indeed, here at the EP three
poles coalesce, which makes the polynomial corrections to
be quadratic in time. Examples of the emergent dynamics
in the site basis are plotted in fig. 3(b).
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Stationary state. Two key observations are needed
to find the stationary state: only the equations for the
blocks with kx = ky have sources, and all blocks described
by a homogeneous system of equations go to zero in the
stationary state. Then, setting the time derivatives of
eqs. (23)–(26) to zero and solving the algebraic equations,
we can obtain the non-zero moments in the stationary
state. In this way the obtained stationary second moments
recombined in the site basis read as

〈â†
nâm〉ss =

N∑
l=1

[
(γbγ̄+λ2

kl
)γh

a +λ2
kl

γh
b

γ̄λ2
kl

+γaγbγ̄

]
S(a)

n,kl
S(a)

m,kl
, (30)

〈b̂†
nb̂m〉ss =

N∑
l=1

[
(γaγ̄+λ2

kl
)γh

b +λ2
kl

γh
a

γ̄λ2
kl

+γaγbγ̄

]
S(b)

n,kl
S(b)

m,kl
, (31)

〈â†
nb̂m〉ss =

N∑
l=1

[
iλkl

(γaγh
b − γbγ

h
a )

γ̄λ2
kl

+ γaγbγ̄

]
S(a)

n,kl
S(b)

m,kl
, (32)

and 〈b̂†
nâm〉ss follows from eq. (32) exchanging the labels

a ↔ b. In case that sublattice effective temperatures are
the same, n0 = γh

a /γa = γh
b /γb, we recover the famil-

iar scenario, induced by the presence of local losses in the
Lindblad equation (2) in which the only non-zero moments
are 〈â†

nân〉ss = 〈b̂†
nb̂n〉ss = n0 ∀ n. However, in the general

case off-diagonal terms are also present, which can lead
to the presence of correlations in the stationary state of
the system. Indeed, as the master equation (2) is bilinear
in the mode operators, if the initial state is Gaussian the
stationary state is Gaussian too, and we can fully describe
it constructing the covariance matrix, σ, from the above
solutions [49], which displays the characteristic block diag-
onal structure of our system: σ =

⊕N
l=1 σkl

. Notice that
even though the difference in sublattice effective temper-
ature can induce non-local correlations in the stationary
state, such correlations are not related to the transient dy-
namics and to the presence of EPs and will not be reported
here.

Emission spectrum. – As described by eq. (2), our
open quantum system is subjected to the influence of the
environments, which cause fluctuations and fluxes of en-
ergy. These effects can be characterized by means of the
emission and absorption fluctuation spectrum which can
be computed from two-time correlation functions in the
stationary state [47,50,51]. In this section we show that
in these quantities, we also find signatures of the different
dynamical regimes, and thus of the presence of EPs.

In fig. 4 we plot the emission spectrum S(Δ) =
Re[〈â†

1â1(Δ)〉] vs. the coupling strength for a chain of
six elements (N = 3) and with n0 = γh

a /γa = γh
b /γb.

This quantity is defined from 〈â†
1â1(Δ)〉 = limt→∞

∫ ∞
0 dτ ·

〈â†
1(t)â1(t + τ)〉eiΔτ with Δ = ω − ω0, which can be com-

puted from the previous results following the quantum
regression theorem [50] (see SM). In panels (b) and (d)
we show two limiting cases in which, for λ/ω0 = 0.02,
the system response is characterized by one frequency

0.05 0.1 0.15 0.2 0.25 0.3 0.35
λ/ω0

-0.4
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0.0

0.2

0.4
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/ω

0
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0
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S
/n
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0

10

0
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S
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0
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Δ/ω0
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5

(b)

(c)

(d)

Fig. 4: (a) In color the emission spectrum, S(Δ/ω0)/n0, of
the first site. Dashed white lines correspond to the eigen-
frequencies of the system given by the imaginary part of
eq. (7). (b)–(d) S(Δ/ω0)/n0 of the first site for different
coupling strengths: (b) λ/ω0 = 0.02, (c) λ/ω0 = 0.1, (d)
λ/ω0 = 0.35. In all figures N = 3, γa/ω0 = 0.1, γb/ω0 = 0.01
and n0 = γh

a /γa = γh
b /γb.

(all k -modes are in the single-frequency regime) and for
λ/ω0 = 0.35 the system response is characterized by six
frequencies (all k -modes are in the two-frequency regime).
In panel (a) one can observe the progressive emergence
of EPs with the coupling, i.e., a continuous splitting of
peaks as the coupling λ increases. This is in agreement
with what we found above: despite the singular character
of EP, the dynamical behavior is continuous in the transi-
tion from one regime to the other.

In order to better understand these results we look at
the spectrum S(Δ) =

∑N
l=1 S(a)

1,kl
Re[〈â†

1âkl
(Δ)〉] consider-

ing its components in the k -basis and for the different
regimes. In the single-frequency regime we find

〈â†
1âkl

(Δ)〉 =
n0S(a)

1,kl

(γ+
kl

− γ−
kl

)

[
(γ+

kl
− γb)(γ+

kl
+ iΔ)

Δ2 + γ+2
kl

− (γ−
kl

− γb)(γ−
kl

+ iΔ)

Δ2 + γ−2
kl

]
, (33)

while in the two-frequency regime we find

〈â†
1âkl

(Δ)〉 =
n0S(a)

1,kl

2iνkl

[
(γb−γa

2 + iνkl
)( γ̄

2 + i(Δ + νkl
))

γ̄2

4 + (Δ + νkl
)2

− (γb−γa

2 − iνkl
)( γ̄

2 + i(Δ − νkl
))

γ̄2

4 + (Δ − νkl
)2

]
. (34)

The similitude between the expressions given in eqs. (19)
and (20) and the ones obtained here, for the same regimes,
is remarkable. In fact, in panels (b) to (d) of fig. 4
one can observe the same characteristic features of each re-
gime: the interference windows in the single-frequency
regime, and the expected Lorentzians in the two-frequency
regime. These phenomena can be clearly identified in
eqs. (33) and (34). In the single-frequency regime we al-
ways have γ+

kl
> γ−

kl
≥ γb. Hence, from eq. (33), we clearly

see that the spectrum is made of a Lorentzian dip with the
smaller decay rate on top of a Lorentzian with the larger
one. In fig. 4(b) all k -modes are in this regime, which
explains the observed shape. This dip is also observed
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in panel (c) as λk3 is still below the critical value (EP).
Thus, in eq. (33) we recognize a clear manifestation of the
interference effect also found in the transmission spectrum:
in the single-frequency regime two modes with the same
frequency but different damping rate γ±

kl
interfere destruc-

tively and inhibit (in the present case) thermal emission
at a frequency in which the system is actually resonant.

In contrast, this interference effect is not present in the
two-frequency regime. From eq. (34) we see that the spec-
trum is composed of different frequencies which, for large
enough coupling strength, can be observed as well-defined
resonance peaks in the spectrum (fig. 4(d)). These two
different regimes have been observed in different physical
systems, as, for instance, inhibited emission in a system
of two coupled mechanical modes [32] (single-frequency
regime) or the so-called parametric normal mode splitting
in optomechanical systems [25,26] (two-frequency regime).

Concluding remarks. – 1D coupled open quantum
systems with staggered losses display a rich dynamical
scenario that emerges from the interplay between coher-
ent and incoherent effects. By a detailed analysis of the
dynamics for first and second moments, we disclosed qual-
itative different behavior as compared to what one would
naively expect from the closed system, or from the un-
coupled dissipative units. A major result of our analysis
is the appearance of different regimes due to the progres-
sive emergence of EPs, both in first and second moments
dynamical equations, for increasing interaction strength.
Remarkably, we have shown that the existence of EPs
can even cause the whole open system to oscillate at a
single frequency, despite the presence of a finite coupling
strength between the many units. This single frequency
emission can be achieved also in the limit of long chains, as
the contrast is bounded by the bare coupling strength. In
the presence of an external driving force, our open system
presents peculiar properties in its transmission spectrum,
such as transmission windows arising from destructive in-
terference effects. The present results could be generalized
to include additional effects, for example in the presence of
frequency mismatch between units [52] and/or non-local
dissipation effects [46,53].
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