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Abstract — The study of local models using finite shared randomness originates from the con-
sideration about the cost of classically simulating entanglement in composite quantum systems.
We construct explicitly two families of local-hidden-state (LHS) models for T-states, by mapping
the problem to the Werner state. The continuous decreasing of shared randomness along with
entanglement, as the anisotropy increases, can be observed in the one from the most economical
model for the Werner state. The construction of the one for separable states shows that the sep-
arable boundary of T-states can be generated from the one of the Werner state, and the cost is 2

classical bits.

Copyright © EPLA, 2019

Introduction. — Nonclassical correlations in compos-
ite quantum systems and their hierarchy are fundamental
issues in quantum information [1-5]. Many concepts of
these correlations can be traced back to the early days of
quantum mechanics, and play key roles in several quantum
information processes. On the other hand, the tasks in
quantum information also provide points of view to study
the correlations. An important example is the work of
Wiseman et al. [6], in which they define Bell nonlocality
and Einstein-Podolsky-Rosen (EPR) steering according to
two tasks, and prove that the former is a sufficient condi-
tion for the latter and entanglement is necessary for both
of them.

In the tasks of Wiseman et al. [6], two observers, Alice
and Bob, share a bipartite entangled state. Alice can affect
the postmeasured states left to Bob by choosing different
measurements on her half. Such ability is termed steering
by Schrédinger [7]. EPR steering from Alice to Bob exists
when Alice can convince Bob that she has such ability,
which is equivalent to the fact that unnormalized post-
measured states cannot be described by a local-hidden-
state (LHS) model. Further, their state is Bell nonlocal,
when the two observers can convince Charlie, a third per-
son, that the state is entangled. This is demonstrated
by the inexistence of a local-hidden-variable (LHV) model

(@) E-mail: flzhang@tju.edu.cn (corresponding author)

explaining correlations of outcomes of their joint local
measurement. A LHS model is a particular case of a LHV
model, of which the hidden variable is a single-particle
state and one of the response functions is the probability
of measurement on the state.

Construction of local models, especially the optimal
ones, provides a division between the quantum and clas-
sical worlds, in the sense of whether the nonclassical
correlations exist. However, it is an extremely difficult
problem to explicitly derive optimal models. Only a few
models beyond Werner’s results [8] have been reported,
such as the ones in [9-12], most of which are for states with
high symmetries. Our recent work [13] shows the possi-
bility of generating local models for states with a lower
symmetry, from the ones with a high symmetry. Namely,
we obtain the optimal models for T-states (Bell diagonal
states), given by Jevtic et al. [11] based on the steering
ellipsoid [14], by mapping the problem to the one of the
Werner state.

On the other hand, Bowles et al. [10] raise the issue
of constructing local models using finite shared random-
ness. This comes from their consideration about the cost
of classically, measured by classical bits encoding the local
variable, simulating the correlations in an entangled state.
They give a series of LHV models for Werner states using
finite shared randomness, and prove the existence of the
ones for entangled states admitting a LHV model. These
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results inspire a method for constructing LHV models for
entangled states, in which the problem of finding a local
model for an infinite set of measurements is mapped to the
one of a finite set of measurements [15-17]. In addition,
the concepts of superlocality [18,19] and superunsteerabil-
ity [20] stem from the study of shared classical randomness
required to simulate local correlations.

In the present work, we study local models for T-states
by extending our strategy in [13] to the case with finite
shared randomness. They are LHS models, as the shared
local variables are sets of discrete states on the Bloch
sphere and Bob’s response function is his measurement
probability on these states. Expressing the discrete dis-
tributions for Werner states in Protocols 1 and 2 of [10]
in terms of Dirac delta functions, we derive a family of
LHS models for T-states by using the mapping in [13].
The one generated from the most economical LHV model
for Werner state is discussed in detail, which provides an
example to observe the continuously changing shared ran-
domness with entanglement. Besides, we construct a LHS
model, not belonging to the two protocols in [10], for the
critical separable Werner state, by decomposing it into
product states. It can be transformed into the LHS mod-
els for the critical separable T-states by a generalization
of the original mapping in [13]. This shows the possibility
of generating the separable boundary for a class of states
with a low symmetry, and decomposing them into product
states, from a higher symmetric case.

Preliminaries. —

LHS model. We first give a brief review of the concepts
of EPR steering and LHS model, under the context of two-
qubit system and projective measurements. An arbitrary
two-qubit state shared by Alice and Bob can be written as

1 . - L
pas = H®H+a-a®]1+]1®b~a+ZTijai®aj ,

ij

) 1)
where I is the unit operator, @ and b are the Bloch vectors
for Alice and Bob’s qubit, & = (04,0, 0.) is the vector of
the Pauli operators, and 7j; is the correlation matrix. We
focus on the case in which Alice makes a projection mea-
surement on her part. The measurement operator of Alice
uniquely corresponds to a unit vector # and an outcome
a==1 as

o1
I = S (I+ ad - &), (2)

After the measurement, Bob’s state becomes

Tr(IIZ @ Ipag)

pE

1 e (3)
= 1[(1+aa~m)]l—|—(b+aT T) - a,
where T is transposed 7. The set of p? is called an
assemblage.

A LHS model is defined as

P15 = [ (el SyosdX (1)

Here, p5 is a hidden state depending on the hidden vari-
able X with the distribution function w(X). And, p(a|Z, X)
is a response function simulating the probability of Alice’s
outcome, with p(alZ, X) > 0 and p(1|Z, X)+p(—1|Z,X) = 1.
If there exists a LHS model satisfying
Py = pH (5)
for all the measurements, the outcomes of Alice’s mea-
surements and Bob’s collapsed state can be simulated by
a LHS strategy without any entangled state [6]. On the
contrary, if a LHS model satisfying (5) does not exist, pap
is termed steerable from Alice to Bob.
Without loss of generality, we may take a hidden vari-
able to the unit Bloch vectors and the local hidden states
to be corresponding pure qubit states [12] as

—

a1 =
px = INA= ST+ A-9). (6)
Then, dX is the surface element on the Bloch sphere. We
can take

1

p(a’|f7 X) = 2

[1+af(Z V)], (7)

with f(&, X) € [~1,1]. The LHS model can be rewritten as

pLHS — /w(j\')i[ﬂ+x.5’+af(j7X) +af(Z, X)X - F]dX.
®)

Consequently, eq. (5) requires

/w(X)dX =1, (9a)
/ W) F(F Ndx = - 7, (9b)
L/mnxﬁ:a (9c)
/ W) f (@ NAdX =TTz (9d)

The spin correlation matrix can always be diagonalized by
local unitary operations, which preserve steerability or un-
steerability. Hence, we consider the diagonalized T', that
T = Diag{T,,T,,T.}, and omit its superscript T in the
following parts of this paper. Constructing a LHS model

for a state pap is equivalent to finding a pair of w(\) and
f(Z, ) fulfilling these requirements.

T-states.  The state (1) is called a T-state, when the
Bloch vectors, @ and b, vanish. In our recent work [13],
we present an approach to derive the optimal LHS model
for T-states. We first assume the correlation matrix on
the EPR-steerable boundary being Ty and 7' = tTy with
t > 0. That is, the T-state with ¢t > 1 is EPR-steerable,
and the one with 0 <t < 1 admits a LHS model.

The key step is multiplying both sides of eq. (9d) by TO_1

and defining the unit vector X = T, ' X|T; ' X| 7L, where
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| -] is the Euclidean vector norm. Then the condition (9d)
is rewritten as

.1 e o
W (N)——— f(Z, M) NAN =t
/ N @D

\»Rl

(10)

where w/(X) is the distribution function of the new defined
hidden variable X, and d)\ is a surface element on its
unit sphere. These variables are connected by a Jacobian
determinant as

AX = |det To|| Ty ' XPAN,  w(X)dX = o' (X)dX. (11)

In the optimal LHS model of the critical Werner
state [6,8], with Ty = —Diag[1/2,1/2,1/2], the functions
in (10) satisfy

. 1 - . .

W' (N = —|ToN|, F(Z ) =sgn(z-)N). (12)
T

We find that, these relations give exactly the optimal LHS

model for an arbitrary T-state and leads to the critical

condition [11,13,21]

1. = -
—|ToN|dN = 1. 1
[ 5 mx (13)
An explicit expression for this integral can be found in the

work of Jevtic et al. [11].

LHS models for T-states with finite shared
randomness. — We now generate the LHS models for
T-states with finite shared randomness, using our ap-
proach reviewed above. The formulas in the above sec-
tion are derived based on continuous local variables. To
utilize these results, we represent the distribution of the
finite hidden variables as delta functions. We mainly con-
centrate on the details of the two models corresponding to
the most economical one of the Werner state and the one
for the separable Werner state.

LHS model on the icosahedron. In the most econom-
ical model simulating an entangled Werner state, Alice
and Bob share ¢ = {1,...,12} uniformly distributed, cor-
responding to 12 vertices of the icosahedron represented
by the normalized vectors ¥;. That is, the distribution is
given by

w(X) = Z 1%5@ - 7). (14)

The radius of a sphere inscribed inside the icosahedron is

I =1/(5+2v/5)/15. The icosahedron is symmetric under

U; — —70;, and its vertices satisfy the properties Zj sgn(v;-
U;); = 2y7; with v = 1 4+ /5. Then, the vector IZ can
always be represented as a convex decomposition [Z =
> wil; with w; > 0 and ), w; = 1. Defining the function
DI

F(Z,X) = (15)

one can obtain

_, I
/[;126 —’U]:||: szbgn }/\d/\——Gaj,
(16)
which is the relation (9d) for the Werner state.
To fulfill the condition (9d), equivalently eq. (10), for
T-states, an intuitive construction is given by

. S .
1NN /
Ww'(N) = E —125()\
f(, X Zwlbgn

where S is a constant determined by the normalization
condition (9a). They lead to the visibility parameter
in (10) being

— )| TN, (17)

(18)

B Sll B 271
6 > [Tow|

Straightforward calculation gives the distribution of X as

(19)

- S - . o .
w(A) = Z 55(/\ — Toi| Tow;| ) | To ). (20)

Then, both the integrals in (9b) and (9c) can be easily
checked to be zero, by using the symmetries w(—X) = w(X)
and f(Z,—X) = —f(Z, X). Therefore, the functions (18)
and (20) represent a LHS model for the T-state with the
visibility parameter in (19). And the extension to smaller
amounts of t is straightforward.

Obviously, in our LHS models for T-states, the hidden
variable ¢ = {1,...,12} distributes nonuniformly, whose
probability is proportional to |Tp¢;|. The corresponding
unit vectors X locate on v;, and the Bloch vector of hid-
den states X on Tow;| Tow;| . Both the distribution and
visibility parameter, given in (19), covered by the model,
depend on the orientation of the icosahedron. A natural
question is which orientation is optimal, in the sense of
maximizing the parameter ¢, or equivalently .S.

Optimal icosahedron.  Since it is a complex problem
to perform general maximisations, we consider the special
case with an axial symmetry that |1 .| = |To,,| with the
aid of numerical calculation. Then, the relation between
|To..| and |Tp, .| can be written as a simple formula [11].
And the orientation of the icosahedron can be represented
by the intersection of the Z-axis with the surface of the
icosahedron. There are three types of special points on the
surface, which are vertices, midpoints of edges and centre
of faces. We suspect that the maximum of S occurs at
these special points.

Choosing a trajectory of the intersection, as shown in
fig. 1, consisting of an edge and two medians of faces,
one can plot the values of S ws. the location of inter-
section (we omit the figures here). These curves indi-
cate that the maximum of S on the trajectory occurs
at vertices when |Tp .| < 1/2, at the centre of faces

20007-p3



Yuan-Yuan Zhang and Fu-Lin Zhang

Az

Fig. 1: The icosahedron in the construction of LHS models in
Protocol 1. Dashed blue lines show intersections of the Z-axis
with the surface of the icosahedron during our rotation. Ver-
tices, midpoints of edges and centre of faces on the dashed blue
lines are marked as A;, B; and C}, respectively.

when 1/2 < |Tp .| < 0.89, or at midpoints of edges when
|To,-| 2 0.89. These maximums, in the same sequence,
can be analytically expressed as

6

Sa = VZ +V20X £5Z 1)
V30

S = 99

¢ Xay +ZB- +/Xa_ + 28, (22)

Sp Sv10 , (23)

V10X + /Xa; + Za_ +/Xa_ + Zay

where X = T3, Z = T¢,, ax = 5+ V5 and By =
5/2++/5. We find that they are optimal among arbitrary
orientations of the icosahedron, by comparing them with
one hundred thousand randomly generated intersections.
One-tenth of the random points are shown in fig. 2, in
company with the corresponding maximums of ¢.

Our construction provides a family of LHS models with
a fixed dimensionality of the local variable. It is inter-
esting to observe the continuously changing shared ran-
domness, and its relation with the region of T-states
admitting our models. We plot the maximums of ¢ in
fig. 2, which measure how close our models get to the EPR-
steerable boundary. The corresponding shared random-
ness, measured by the entropy of the distribution (20) [10],
H = =3, qilogyq; with ¢; = |[Ty7;]S/12, is shown in
fig. 3. Obviously, the visibility parameter and entropy
show two opposite trends. The anisotropy of the corre-
lation matrix enhances the maximums of ¢, while it de-
creases the entropy. Among the family of T-states, the
LHS model for the Werner state, with the maximum dis-
tance to the EPR-steerable boundary, requires the most
shared randomness.

This anomalous phenomenon prompts us to go back to
the original point: the cost of classically simulating the
correlations of entangled states [10]. It is direct to derive

0.94
0.92
0.90 /3
0.88}

~ 086
0.84
0.82 ;
0.80} ki

Fig. 2: The solid curve shows the maximum of ¢ in the LHS
models based on the icosahedron, in company with the values
for ten thousand random orientation, and the dashed line is for
the value of the Werner state.

Shared Randomness (& of bits)

0.0 0.2 0.4 0.6 0.8 1.0
Toz

Fig. 3: The solid curve shows the shared randomness in the
LHS model based on the icosahedron in optimal orientation,
and the dashed line is for the value of the Werner state.

the entanglement, measured by concurrence [22], for axial
symmetric T-states as max{0, (2¢|Tp | +¢|To, .| —1)/2}. As
shown by the solid line in fig. 4, the entanglement reveals a
similar tend as the number of classical bits to simulate it.
The degree of entanglement reaches its maximum at the
point of Werner states, Ty, = 1/2, and decreases with the
anisotropy. Comparing with the maximums of ¢, one can
find that the points on the EPR-steerable boundary with
small entanglement are easy to approach, in the sense of
the cost of classically simulating the correlations of entan-
gled states.

In fig. 4, a noteworthy point is the small interval with
zero entanglement. This indicates that our LHS models
are not the most economical ones, at least for the separable
state in the small interval. This is because a 4-dimensional
local variable is sufficient to simulate a separable two-qubit
state, while the least shared bits in our construction for
T-states is 2.96. We shall present more discussion about
the LHS models for separable T-states below.

Separable boundary. The above results can be
straightforwardly extended to any LHS model for the
Werner state in Protocols 1 and 2 of [10] using a
3-dimensional polyhedron with D vertices. We omit these
formulas for brevity.

In this part, we focus on the case with a shared vari-
able of dimension D = 4. In the results for Werner
state [10], the tetrahedron, with 4 vertices, is without
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0.25}

0.20f Pl S

Entanglement

TO,z

Fig. 4: The solid curve shows the entanglement of T-states
admitting the optimal LHS model based on the icosahedron,
the dashed line is for the value of the Werner state, and the dot-
dashed curve is for T-states on the EPR-steerable boundary.

inversion symmetry and hence be excluded from Proto-
cols 1 and 2. On the other hand, the maximum visibility
parameter one can simulate with D = 4 is the boundary
of the separable Werner state [10]. Here our question is
whether one can generate the boundary of the separable
T-states from the one of the Werner state, as we do in the
study of EPR-steering [13].

To answer the above question, we restrict the response
function to the form
where 77 is Alice’s Bloch vector depending on X. We term
the corresponding LHS model as a LHS model for sepa-
rable state. The entanglement of the two-qubit state pap
is demonstrated by the inexistence of a LHS model with
f(Z X) in the above form.

On can derive the solution for Werner states to the con-
ditions (9), by decomposing the critical separable Werner
state into four product states. Let the Bell states |W1) =
(]00) +[11))/v/2 and |®4) = (]01) +[10))/v/2. The critical
separable Werner state is p% 5 = (3|@_)(P_|+|P4) (P4 |+
W ) (P |+ ]P_)(T_]|)/6. We assume the normalized state

60) 0 VBI®-) €0 4) 42U + €50, (25)

to be separable, and to satisfy p% = 307 |¢:)(¢/4.
There exist two solutions to these conditions, one of which
is given by

e a
I61) = (sm§|0) —cos56ﬁ|1>)

® (cos %|o> +sin %efﬁm) , (26)
|p2) = 02 ® 0a|¢n), |#3) = 0y ® 0y[¢1), and [¢ps) = 0. ®
0.|$1), where a = arccos(1/v/3) and 8 = —m/4. Alice’s
measurements on the decomposition p¥ 5z = Zf |di) (il /4

lead to a LHS model using the tetrahedron. Namely, it is
defined by

o 1 - o
= Z POA=T), ==

with the 4 vertices of the tetrahedron o7 = (1,
\/ga 772 = (171a_1)/\/§7 63 =
Uy = (—1,—1,—1)/v/3. They satisfy

/{Zj:im—

The other solution leads to a model on the mirror image
of the tetrahedron.

We now turn to the T-states on the separable boundary.
It is universal to consider a positive definite T', as any
minus sign can be merged into ﬁ(X) Here we perform
T~ on the condition (9d), and define the unit vector
X/ = T2 X[T~2 X~ and its distribution w”(X”). Then
the condition (9d) for a separable state is rewritten as

—-1,1)/
(-1,1,1)/v/3 and

Ui)] - (— M) AdX = —%f. (28)

- 1
/ w”()\”)‘T%X//l[(T_m) AN =z (29)

Defining the unit vector 77/ = T~ 27|~ 27| "%, one can find
that (T~ 27)-ij = & _'”|T2 |71, From the 1ntegral (28), it
was easy to find a pair of w”(\”) and 77’ satisfying (29) as

)\// Z 5 )\//

The normalization condition (9a) and the coordinates of
v; lead to

G)TEw)?, 7 =N (30)

|Tw| + |T1/| + |TZ‘ =1, (31)

which is nothing but the separable boundary of
T-states [23,24]. Then, in the space of A, the distribu-
tion and Bloch vector of Alice are

=

w(X) = (32)

Substituting them into egs. (9b) and (9c¢), one can confirm
both the integrals to be zero.

In the LHS models for separable T-states, defined
by (32), the shared variables are encoded on /3T 33;, and
are uniformly distributed. The amount of shared random-
ness is 2 bits, which is not affected by the anisotropy of the
correlation matrix. The models are optimal in the sense of
reaching the separable boundary. However, the question
as to whether they are the most economical remains open.

Summary. — We study LHS models for T-states us-
ing finite shared randomness. The models are gener-
ated from the ones for Werner states, two of which are
mainly discussed. The first is derived by using our re-
cent approach [13] on the most economical model for the
Werner state. It provides an example to observe the con-
tinuously changing shared randomness with an entangled
state. With the increase of anisotropy, the amount of
shared classical bits drops along with entanglement, al-
though the model gets closer to the EPR-steerable bound-
ary. The second one is restricted to simulate a separable
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state by a condition on Alice’s response function. It is de-
rived from the one for the Werner state by a generalized
generating approach, and reaches exactly the separable
boundary of T-states. The cost of classical randomness in
this model is 2 bits, which is not affected by the anisotropy
of the correlation matrix.

It would be interesting to consider the open questions or
extensions below. First, our approach to derive the LHS
models for T-states on the separable boundary is actually
to decompose them into product states. Geneneralizing
this method may be a starting point to define T-states in
higher-dimensional systems, which has been raised in our
recent work [13]. Second, in what region is our model using
the icosahedron the most economical one? Third, what is
the minimal cost to classically simulate a separable state?
This is a nontrivial question, as in LHS models on the
separable boundary, the amount of bits is different from
the entropy of states. This difference originates from the
superposition of states in composite quantum systems, and
may be interpreted as a kind of quantum correlation.

k% X%
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