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Abstract – In recent years, the concept of shortcuts to adiabaticity (STA), originally developed for
speeding up slow adiabatic state evolution in quantum systems, has found numerous applications
in guided-wave optics. Optical waveguides, enabled by the advanced fabrication technologies, pro-
vide an ideal platform to implement the STA protocols in terms of geometry variations; moreoever,
STA has enabled the development of short and robust waveguide components, with applications
in beam couplers, beam splitters, mode converters, mode (de)multiplexers, and polarization ma-
nipulation devices. Concepts such as counterdiabatic driving, invariant-based inverse engineering,
fast-forward approach, or fast quasiadiabatic dynamics, have been shown to provide shortcuts
to adiabatic mode evolution in optical waveguides, resulting in compact functional devices with
large bandwidth and fabrication tolerance. Novel devices have recently been fabricated following
years of theoretical efforts, showing that STA have emerged as a new paradigm in optical waveg-
uides. In this work, we discuss the major STA protocols for applications in optical waveguides
and illustrate the shortcuts with device examples.

perspective Copyright c© EPLA, 2019

Introduction. – Light transfer among waveguides
or guided modes is a ubiquitous functionality in optical
waveguide devices. In general, there are two methods
to realize light transfer in optical waveguides: resonant
coupling [1,2] and adiabatic coupling [3,4]. In resonant-
coupling–based devices, multiple supermodes of the
waveguide structure with different propagation constants
are excited, and the power transfer characteristics depend
on modal interference in the devices. For example, in
directional couplers [5,6] and multimode interference cou-
plers [7–9], the desired split ratios can be achieved when
the length of the device is at specific multiples or fractions
of the beat length, with very short device lengths. How-
ever, the beat length is sensitive to wavelength and device
geometry variations. So, resonant-coupling–based devices
generally have small bandwidth and tight fabrication
tolerance.

The operating principle of adiabatic-coupling–based de-
vices is in general based on the slow evolution of a
single waveguide mode caused by gradual changes in
the device geometry [3,10,11]. If the geometry changes
slowly enough, light remains in the mode even if the

mode underwent significant evolution during propagation.
Since the operating mechanism does not depend on a
precise definition of power-transfer length and operating
wavelength, an adiabatic (modal evolution) based device
can in principle have large bandwidth and fabrication tol-
erance. However, adiabatic devices have to be sufficiently
long to satisfy the adiabatic condition, and to minimize
unwanted power transfer into other modes [12]. This,
in turn, leads to longer device lengths in comparison to
resonantly coupled devices and reduced component den-
sity, which is a major disadvantage in integrated optics
based on densely integrated optical waveguides. There
have been numerous approaches to optimize the geom-
etry of adiabatic devices in order to reduce the device
length [12–19]. One approach is to limit the fraction of
power scattered into the unwanted modes below a constant
value [13,17]. Another approach is based on the equaliza-
tion of taper loss along each propagation step [14,16,18].
Various shape functions were also considered to minimize
coupling between the adiabatic modes [12,15]. A recent
systematic study on modal crosstalk in adiabatic cou-
plers [19] compared two adiabaticity criteria [13,17] used
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in optical waveguides. Despite numerous efforts on the op-
timization of adiabatic devices, the lack of a simple set of
design protocols makes it difficult to select the best design
for a specific engineering application. In fact, the design
problem is analogous to the problem of coherent quantum
control [20], with the goal of performing precise and robust
state transfer in a short time.

The recent development of shortcuts to adiabaticity
(STA) in quantum control theory provides a framework
to find fast routes to the final results of slow, adia-
batic changes of the controlling parameters of a sys-
tem [21,22]. At the same time, due to the analogies
between quantum mechanics and wave optics [23], light
propagation in waveguide structures has been used as
a tool to visualize or investigate many coherent quan-
tum phenomena which may otherwise be difficult to ob-
serve. The analogy can be exploited by describing field
evolution in the devices by the coupled-mode theory,
which is equivalent to the time-dependent Schrödinger
equation describing the dynamics of an N -state quan-
tum system. The first application of STA to optical
waveguides was by Lin et al. [24], where counterdia-
batic driving [25–27] was used to shorten mode conver-
sion length in multimode waveguides; the same theory
was later applied to a similar mode converter design [28].
A development in STA where a physically feasible alter-
native shortcut can be generated, called the “multiple
Schrödinger pictures” approach [29], then solved the prob-
lem of physically unrealizable imaginary coupling terms
in counterdiabatic directional couplers [30,31]. The Lie
transform theory in Mart́ınez-Garaot et al. [32] was used
to design compact coupled-waveguide beam splitters uni-
tarily transforming the formal results of counterdiabatic
driving [33]. Invariant-based inverse engineering [34–36]
was used to improve mode converter designs in multi-
mode waveguides [37,38], coupled waveguide beam split-
ters [39], and asymmetric Y-junction mode-sorters [40]
for reduced length and good robustness in subsequent
works. The invariant-based approach was also applied
to implement waveguide-based quantum logic gates [41].
Need-based designs were then made possible by the combi-
nation of the dynamical invariant and perturbation treat-
ment [42–44], leading to directional couplers [45–47], mode
(de)multiplexers [48], and polarization rotators [49] opti-
mized against wavelength and/or fabrication variations.
Using invariant-based inverse engineering, the adiabatic-
ity of coupled-waveguide devices was optimized for short
and robust designs [50], which also lead to the design of
robust 3-dB couplers [51].

Beyond the coupled-mode theory formalism, the fast-
forward approach [52] was used to extend the STA to
full-wave regime in the design of ultra-compact waveg-
uide junctions [53] and modal filters [54]. The fast
quasiadiabatic dynamics (FAQUAD) approach [55] also
went beyond the coupled-mode formalism, providing a
shortcut design by homogenizing the adiabaticity using
only one control parameter, which is beneficial in terms

of fabrication. The FAQUAD approach was applied to
the design of short and robust Y-junction mode split-
ters [56,57] and polarization mode conversion tapers for
polarization splitting and rotation [58]. A similar rapid
adiabatic coupling (RAC) scheme which suppresses modal
crosstalk was also proposed to shorten the length of 3 dB
couplers [59]. These theoretical investigations showed that
STA in optical waveguides indeed provides a systematic
route to optimize the design of adiabatic devices with short
lengths and robustness against parameter variations.

With the fast development in theoretical efforts, exper-
imental implementations soon followed. Integrated optics
waveguide platform enabled by the advanced micro/nano
fabrication technology provides an ideal platform to real-
ize the device geometries designed by various STA proto-
cols. The first demonstration was mode (de)multiplexers
on silicon-on-insulator (SOI) [60] using invariant-based op-
timization [50]. The effort was followed by the demonstra-
tion of a compact broadband silicon 3 dB coupler [61] and
a polarization splitter-rotator [62] using invariant-based
inverse engineering [36,40]. FAQUAD-based 3 dB couplers
were also fabricated on SOI, showing broadband charac-
teristic and good fabrication tolerance [63]. A polarization
splitter-rotator using a partially etched directional coupler
was recently demonstrated on SOI [64] using invariant-
based optimization [50]. The latest experimental demon-
stration is a short RAC coupler on SOI [65].

In this paper, we start with the coupled-mode theory
formalism, introducing design protocols based on coun-
terdiabatic driving and invariant-based inverse engineer-
ing. Following the introduction of dynamical invariants,
need-based design approaches based on perturbation the-
ory and optimization of adiabaticity are introduced. We
then introduce the FAQUAD approach, which homoge-
neously distributes adiabaticity over the length of the de-
vice, speeding up mode evolution in adiabatic waveguide
devices. Finally, we discuss the robustness of STA-based
optical waveguide devices.

Coupled-mode theory. – Under the scalar and
paraxial approximation and assuming weak coupling, the
changes in the amplitudes of N guided modes in a mul-
timode waveguide, or N coupled single-mode waveguides,
|Ψ〉 = [a1, a2, . . . , aN ]T along the propagation direction z
are described by the coupled-mode equation as [23]

i
d
dz

|Ψ〉 = H(z)|Ψ〉. (1)

In multimode waveguides, the matrix elements of H(z)
represent the coupling coefficients (complex-valued) be-
tween the guided modes enabled by waveguide grat-
ings [66]. In coupled waveguides, the diagonal elements
of H(z) describe the mismatch of the waveguides, and the
upper and lower diagonal elements (real-valued) describe
the coupling coefficients between neighboring waveguides
(assume only nearest-neighbor coupling, the other matrix
elements are zero). Replacing the spatial variation z with
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the temporal variation t, eq. (1) is equivalent to the time-
dependent Schrödinger equation (� = 1) describing the
dynamics of an N -state system, and H is the Hamiltonian.
We can rewrite eq. (1) in the adiabatic basis using a uni-
tary operator Ua, and the resulting Hamiltonian in the
adiabatic basis is Ha(z) = U †

a(H(z)− iU̇aU
†
a)Ua. The first

term U †
aH(z)Ua is diagonal, and the adiabatic approxima-

tion neglects the second term to solve the uncoupled sys-
tem in the adiabatic basis. So, the system evolution can be
approximated by the adiabatic states, and the evolution
can be designed by engineering H(z). If the adiabatic cri-
terion is not satisfied, the system state cannot follow the
adiabatic states, resulting in low conversion efficiency.

Counterdiabatic driving. A counterdiabatic term
Hcd = iU̇aU

†
a can be added to H(z) to undo the effect

of non-adiabatic coupling such that the system evolution
follows the adiabatic states exactly even when the adia-
batic criterion is not satisfied [25–27]. This was used to
design STAs for short and robust mode converters in mul-
timode waveguides [24,28] by superimposing additional
gratings to implement the counterdiabatic term. How-
ever, for coupled waveguide systems, the Hcd term in-
cludes imaginary parts in the coupling coefficients that
are not physically realizable. A way to generate feasible
shortcuts is to perform unitary transformations U , such
that the resulting Hamiltonian U †[(H(z)+Hcd)− iU̇U †]U
is physically realizable. For two-waveguide couplers, the
“multiple Schrödinger picture” transformation [29] was
used to generate shortcuts for adiabatic directional cou-
plers [30,31]. Beam propagation method (BPM) simu-
lation of a counterdiabatic directional coupler is shown
in fig. 1 [30]. A Lie-transform–based approach [32] was
used to design arbitrary ratio three-waveguide beam split-
ters [33], and it can be generalized to generate compact
beam splitters for N waveguides. In these devices, the
key is to determine the corresponding waveguide geometri-
cal variations specified by the Hamiltonian. In multimode
waveguides, this relation corresponds to the periods and
strengths of the superimposed gratings [66], while varia-
tions in waveguide spacings and widths are used to imple-
ment the Hamiltonian in coupled-waveguide systems [30].

Invariant-based inverse engineering. A dynamical in-
variant I, which satisfies ∂zI + (1/i)[I, H ] = 0, gives the
relation i�∂z(I|Ψ〉) = H(z)(I|Ψ〉) [67]. That is, acting
on a solution of the Schrödinger equation, the invari-
ant produces another solution of the Schrödinger equa-
tion. The result implies that an arbitrary solution of the
Schrödinger equation can be written as a superposition
of the eigenstates |φn(z)〉 of the invariant. According to
the Lewis-Riesenfeld theory [67], we can write |Ψ(z)〉 =∑

n cneiγn |φn(z)〉, where γn is the Lewis-Riesenfeld phase,
and cn is a time-independent amplitude. The fact that
cn’s are time-independent allows us to engineer the evolu-
tion of |Ψ(z)〉 using the eigenstates of the invariant, which
are now decoupled during the system evolution [34–36].
For example, the coupled-mode equation for a directional

(
m
)

( m)

Fig. 1: BPM simulation of light propagation in a 200 µm coun-
terdiabatic coupler [30]. Solid lines indicate the waveguide
cores.

coupler consisting of two waveguides is

i
d
dz

[
A1
A2

]
=

[ −Δ Ω
Ω Δ

] [
A1
A2

]
, (2)

where Ω is the coupling coefficient, and Δ describes the
waveguide mismatch. We can parameterize the eigenstates
of the invariant as

|φ1(z)〉 = eiγ/2

⎛
⎜⎜⎝

cos
θ

2
e−iβ/2

sin
θ

2
eiβ/2

⎞
⎟⎟⎠, (3)

and the orthogonal one (for all times 〈φ1(z)|φ2(z)〉 = 0)

|φ2(z)〉 = e−iγ/2

⎛
⎜⎜⎝

sin
θ

2
e−iβ/2

− cos
θ

2
eiβ/2

⎞
⎟⎟⎠. (4)

The system evolution is now described by these new pa-
rameters. To construct the Hamiltonian (specify the de-
vice parameters Ω and Δ) inversely, we substitute eqs. (3)
or (4) directly into the Schrödinger equation (2), and find
the following auxiliary differential equations:

θ̇ = −Ω sinβ, (5)

β̇ = −Ω cot θ cosβ − Δ, (6)

γ̇ = θ̇ cotβ/ sin θ. (7)

These equations are equivalent to those obtained by the
invariant dynamical theory [67], since

∑
i=1,2 Ωi|φi(z)·

〉〈φi(z)| is a dynamical invariant with constants Ωi keeping
the same unit as the Hamiltonian [42–44]. Using one of
the eigenstates of the invariant, we can engineer the sys-
tem evolution for the desired input and output states with
an appropriate choice of boundary conditions. Figure 2
illustrates the various paths for mode conversion in a
multimode waveguide using different paths designed by
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(
m
)

Fig. 2: BPM simulations of beam evolution in an invariant-
based mode converter in multimode waveguide and their corre-
sponding modal power evolution [38]. (a), (b): path A; (c), (d):
path B; (e), (f) path C. Dashed white lines indicate the waveg-
uide core.

(
m
)

Fig. 3: BPM simulated mode sorting operation of the invariant
based Y-junction mode sorter [40]. Input: (a) fundamental
mode (b) second mode.

the invariant [38]. Mode converters in multimode waveg-
uides [37,38] and coupled waveguide beam splitters [39]
were designed using this approach. A short asymmetric
Y-junction mode-sorter [40] based on this STA is shown
in fig. 3.

Need-based inverse engineering. In invariant-based in-
verse engineering, we can choose an arbitrary ansatz to
interpolate the function θ, as long as the boundary con-
ditions are satisfied. The freedom allows us to combine
the inverse engineering and optimal control to select the
most robust state dynamics in the presence of various
noise and systematic errors for need-based device engi-
neering [42–44]. A perturbation theory treatment was
used to design directional couplers that are robust against
wavelength or fabrication variations [45]. A directional
coupler that is robust against both wavelength and fabri-
cation errors was also designed [46]. We note that these
approaches, while being robust against particular errors
by design, do not guarantee adiabaticity. A design that is

(
m
)

Fig. 4: Waveguide geometries and the corresponding BPM sim-
ulation for a short and robust directional coupler designed with
optimized adiabaticity [50]. White lines indicate the waveguide
cores.

robust against a particular error might be highly suscep-
tible to other sources of error. Another strategy is to use
invariant-based inverse engineering to design the system
evolution to be as close to the adiabatic state as possible,
thus guaranteeing adiabaticity [50,68]. Adiabatic devices
designed with this approach are now robust against vari-
ous sources of errors, instead of only robust against specific
errors by design. Figure 4 shows a short and robust direc-
tional coupler designed with optimized adiabaticity [50].
In addition, optimal control techniques can be applied to
further improve the shortcuts [69].

Beyond the coupled-mode formalism. – The STA
described so far have been limited to finite-dimensional
systems where the dynamics of light transport can be
reduced to coupled-mode equations, allowing a direct
adaptation of STA protocols developed in quantum me-
chanics. However, the coupled-mode theory, based on the
perturbation methods, is limited in its application to high
index contrast waveguides such as the SOI. For applica-
tions to high index contrast waveguides, care must be
taken to ensure that the device is working in the weak-
coupling regime [48]. In Della Valle et al. [53], a STA for
an infinite-dimensional system was developed based on the
fast-forward approach [52]. Non-adiabaticity in the struc-
ture can be compensated by a suitable gradient refrac-
tive index profile. Another approach is to suppress modal
crosstalk during system evolution [59,65]. Here, we re-
view another full-wave approach based on the concept of
adiabaticity engineering and fast quasiadiabatic dynamics
(FAQUAD) [55].

Adiabaticity engineering. In quantum control, the
“slowness” of the evolution of a system can be charac-
terized by [70]

c =

∣∣∣∣∣
〈m| ∂

∂t |n〉
βm − βn

∣∣∣∣∣ � 1, (8)

where c is the adiabaticity parameter, and βm,n is the
eigenvalue associated with Hamiltonian eigenstates |m〉
or |n〉. The same parameter can be used to quantify the
adiabaticity of optical waveguides by replacing t with z
in eq. (8). For two modes m and n in an optical waveg-
uide, the adiabaticity parameter along any point of the
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evolution region for vectorial fields can be defined as [57]

c =

∣∣∣∣∣
∫
[Emt × ∂

∂z H∗
nt] · ẑdS

βm − βn

∣∣∣∣∣ , (9)

where Emt and Hnt are the transverse components of the
electric field and magnetic field associated with the m-th
and n-th eigenmodes of the optical waveguide, βm,n is the
propagation constant associated with the m-, n-th eigen-
modes, and S is the entire waveguide cross-section. Con-
sider a single control parameter D(z) during evolution,
we can relate the adiabaticity parameter to the control
parameter by

c(z) =

∣∣∣∣∣
〈m| ∂

∂z |n〉
βm − βn

∣∣∣∣∣ =

∣∣∣∣∣
∂D

∂z

〈m| ∂
∂D |n〉

βm − βn

∣∣∣∣∣ =
∣∣∣∣∂D

∂z
F (D)

∣∣∣∣ ,

(10)
where the chain rule ∂

∂z |n〉 = ∂
∂D

∂D
∂z |n〉 is used. F (D)

is a measure of adiabaticity that is strictly related to the
control parameter D. Assuming a monotonically changing
D (∂D/∂z ≶0) and F (D) ≶ 0, we have

F (D)∂D = c(z)∂z. (11)

This result allows one to engineer the distribution of adia-
baticity c(z) along the propagation direction using a single
control parameter D(z).

FAQUAD. The FAQUAD protocol homogenizes the
adiabaticity during the evolution by imposing a constant
adiabaticity on the device c(z) = ε [55]. Rearranging the
terms in eq. (11), we find ∂z/∂D = F (D)/ε, which can
be integrated to set the functional form of z(D) with the
boundary conditions at the beginning (z = 0) and the end
(z = L) of the mode evolution region. For example, with
the boundary conditions z(Di) = 0, z(Df) = L, we have

z(D) =
1
ε

∫ D

Di

F (D′)dD′, (12)

with

ε =
1
L

∫ Df

Di

F (D′)dD′. (13)

To design F (D), we first look at the adiabaticity pa-
rameter clin of an evolution region with a linearly varying
control parameter D(z) = (Df − Di)z/L + Di. Using
eq. (10), we can write

clin =
Df − Di

L
F (D). (14)

In a linearly varying evolution region, the adiabaticity pa-
rameter is decoupled from ∂D/∂z, allowing us to solve for
F (D) from the calculated clin using eq. (14). Finally, sub-
stituting eq. (14) into eq. (12) gives the FAQUAD design

zFAQUAD(D) = L

∫ D

Di
clindD′

∫ Df

Di
clindD′

. (15)

Fig. 5: A short and robust FAQUAD 3dB coupler fabricated
on SOI [63]. (a) SEM image of a FAQUAD 3dB coupler with
a 26.3 µm mode evolution region. (b) SEM image of the junc-
tion between Regions 1 and 2. (c) SEM image of the junction
between Regions 2 and 3.

Equation (15) describes how the original linear design is
modified to obtain the control parameter in the FAQUAD
design. We can see from the equation that when the lin-
ear clin is small (adiabatic), the device length changes
less with dD (the control parameter varies faster in z)
in the FAQUAD design; and when clin is large (non-
adiabatic), the device length changes more with dD (the
device parameter varies slower in z) in the FAQUAD de-
sign. The protocol can thus homogenize the adiabaticity.
The FAQUAD protocol was used in the design of asym-
metric Y-junction mode (de)multiplexers [56,57] and a po-
larization splitter-rotator [58]. Figure 5 shows a FAQUAD
3 dB coupler fabricated on SOI.

Device robustness. – It is known that the conven-
tional adiabatic designs require less precise control over
waveguide parameters and have larger bandwidth, while
on the opposite end, resonant coupling techniques re-
quire a very precise definition of the coupling length and
coupling coefficient and have smaller bandwidth. So the
question that naturally arises is: how the STA devices
compare with the adiabatic devices and the resonant de-
vices in terms of robustness to parameter variations? For
the counterdiabatic couplers [30], it was shown that its
tolerance is the same as the resonant coupler at the short
length extreme, see fig. 6. As the device length increases,
the tolerance of counterdiabatic couplers exceeds that of
resonant couplers and is comparable to the adiabatic cou-
plers; at the same time, the ripples seen in adiabatic cou-
plers are reduced, indicating higher fidelity than adiabatic
couplers. For even longer device lengths, the tolerance
of counterdiabatic couplers becomes the same as adia-
batic couplers because the counterdiabatic correction is
negligible. For invariant-based devices, the devices can
be engineered to have comparable bandwidth, fabrication
tolerance, or both at shorter lengths than the conventional
adiabatic designs [45–50,58]. The fabricated FAQUAD de-
vices [63] also show large bandwidth and fabrication tol-
erance across an 8-inch SOI wafer, see fig. 7.
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Fig. 6: Coupling efficiency against coupling coefficient varia-
tions for couplers designed using (a) adiabatic, (b) counterdia-
batic, and (c) resonant coupling schemes [30].

Fig. 7: Measured normalized bar and cross ports transmission
coefficients of the fabricated FAQUAD 3dB coupler on SOI
with a L = 26.3 µm mode evolution region [63].

As discussed in [42,44], “robustness” is a relative con-
cept depending on the kind of noise and perturbations.
A protocol may be robust with respect to certain errors
but not to others. For the invariant-based approach, there
are several protocols to design the system path for ro-
bustness. The perturbative approach nullifies the error
integrals against particular perturbations. The optimal
adiabaticity approach is robust in the sense that the in-
sensitivity to fluctuations and uncertainty are provided
by adiabaticity. We also note that the derived protocols
under the set boundary conditions are not unique. Vari-
ous solutions exist for the system of nonlinear differential
equations, and suitable solutions must be chosen depend-
ing on the physical constraints.

Conclusions. – The concept of STA in optical waveg-
uides has proven to be very useful in designing compact
and robust photonics devices. Together with the ad-
vances in waveguide theory and fabrication technology,

STA optical waveguide devices have now come to fruition
with applications in beam couplers, beam splitters, mode
converters, mode (de)multiplexers, and polarization ma-
nipulation devices. We expect the STA to find applica-
tions in other areas of guided-wave optics, such photonic
crystals [71], or plasmonic waveguides [72]. Shortcuts can
also be constructed for non-Hermitian optical waveguide
systems with gain or loss [73,74].
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