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Abstract – During the last ten years, the studies on non-Markovian open system dynamics has
become increasingly popular and having contributions from diverse sets of research communities.
This interest has arisen due to fundamental problematics as to how to define and quantify memory
effects in the quantum domain, how to exploit and develop applications based on them, and
also due to the following question: what are the ultimate limits for controlling open system
dynamics? We give here a simple theoretical introduction to the basic approaches to define
and quantify quantum non-Markovianity —also highlighting their connections and differences.
In addition to the importance of the development for open quantum systems studies, we also
discuss the implications of the progress for other fields including, e.g., formal studies of stochastic
processes and quantum information science, and conclude with possible future directions the recent
developments open.

perspective Copyright c© EPLA, 2019

Introduction. – The research on quantum dynam-
ics —which describes how quantum systems evolve over
time— is vital to our understanding of quantum physics
and microscopic phenomena both in nature and in con-
trolled experiments. In general, solving the dynamics gets
increasingly difficult when the quantum system has a large
number of degrees of freedom or when it is composed of
several interacting subsystems. However, in this case we
are often interested in how the dynamics of one of the sub-
systems, or the combination of some of them —the open
system— is influenced by the interaction with the remain-
ing subsystems or degrees of freedom —the environment.
Thereby, we do not necessarily need to solve the complete
unitary dynamics of the total system, composed of both
the open system and its environment, but instead we can
ask how the system-environment interaction influences the
dynamics of the open system only.

This leads to the field of open quantum systems [1–3]
and also means that the dynamics of an open system is

(a)E-mail: cfli@ustc.edu.cn
(b)E-mail: jyrki.piilo@utu.fi

in general non-unitary leading to decoherence and loss of
various quantum properties of the open system with time.
Thereby, understanding decoherence and open system dy-
namics is interesting for fundamental reasons and crucial
for practical applications of quantum physics which rely
on our ability to preserve quantum properties of open sys-
tems. In general and most strictly speaking, all realis-
tic quantum systems interact with their environments and
thereby must be considered as open systems.

The state of open quantum system is commonly de-
scribed by a density operator (or density matrix) and
in general there is no unique equation of motion for its
evolution. The specific mathematical form may depend,
e.g., on the used techniques and approximations done in
its derivation. Moreover, there exists also a large num-
ber of stochastic methods where the density operator of
the open system is obtained as an average over the gener-
ated ensemble of pure state evolutions [4–9]. However, for
open-system density operators there exists an equation of
motion which represents perhaps the most important re-
sult in the theory of open systems to date. This is the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
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equation [10–12],

dρS(t)
dt

= −i[H, ρS(t)]

+
∑

k

γk

[
CkρS(t)C†

k − 1
2

{
C†

kCk, ρS(t)
}]

. (1)

Here, ρS is the density operator of the open system while
the Hamiltonian H generates its unitary dynamics. γk are
positive constant rates, and Ck are the jump operators
with k indexing the different decoherence channels. We
have also used h̄ = 1.

There is direct connection between the form of this
equation and the semigroup property of the correspond-
ing family of dynamical maps Φt,0 parametrised by time t.
In general, the dynamical map is introduced via relation
ρS(0) → ρS(t) = Φt,0ρS(0) = trE [U(t)ρS(0) ⊗ ρEU

†(t)].
Here, E refers to the environment of the open system and
U(t) is the time evolution operator corresponding to the
total system HamiltonianHS+HE+HSE , whereHSE con-
tains the system-environment interaction. The semigroup
property of the map, in turn, corresponds to the condition
Φt1+t2,0 = Φt2,0Φt1,0. Yet another important property of
the dynamical map is complete positivity (CP), i.e., map
Φt,0 is CP when it fulfils the condition (Φt,0⊗IdS)ρSA ≥ 0.
Here, IdS is the identity map arising from ancillary Hilbert
space having the same dimension dS as the open-system
Hilbert space and ρSA is the density operator for the com-
bined state of the open system and ancilla. This guaran-
tees that the eigenvalues of the density operator remain
non-negative when including possible ancillary systems.
Thereby, an important feature of the GKSL equation (1) is
that it guarantees the CP property of the dynamical map
and the corresponding open-system time evolution. In
other words, when the CP dynamical map fulfils the semi-
group property, the master equation is of the form of (1),
and this guarantees that physical and positive initial states
of the open system also remain such during their time evo-
lution. Note that CP is a stronger condition than that of
positivity (P) which corresponds to ρS(t)=Φt,0ρS(0) ≥ 0.

Despite the usefulness and celebrated status of the
GKSL master equation (1), there exists also many models
and open-system evolutions which go beyond what this
equation and semigroup dynamics are able to describe. In
this case, the decoherence rates γk, and possibly also jump
operators Ck, become time-dependent, i.e., γk → γk(t)
and Ck → Ck(t). Traditionally the GKSL master equa-
tion has also been used as a border line separating mem-
oryless Markovian and non-Markovian regime. In general,
the increase in the ability to control the open-system dy-
namics and properties of the environment during the last
two decades has stimulated the need to develop tools
and understanding of quantum dynamics beyond GKSL
equation.

The difference between Markovian and non-Markovian
character of classical stochastic processes has a clear and
rigorous formulation (see, e.g., ref. [1] and references

therein). However, if, how, and to which extent these re-
sults can be exploited to define non-Markovianity in quan-
tum domain and for open-system dynamics is a highly
subtle question. As a matter of fact, open quantum sys-
tems can display very rich dynamical features, e.g., re-
coherence (recovery of earlier lost quantum properties),
which do not have a direct classical counterpart. There-
fore, it is useful not only to use the previous knowledge
about non-Markovianity in classical domain but also to
look for ways to exploit quantum features of open-system
dynamics when defining and quantifying quantum non-
Markovianity. Considering memory effects in some sense
indicating past states influencing the changes of the state
at the current point of time, seems a plausible approach.
However, when scrutinising this approach more rigorously,
it is not obvious how to define Markovian–non-Markovian
border for quantum dynamics.

Indeed, during the last decade, a large number of differ-
ent definitions and quantifiers of non-Markovian memory
effects in the quantum domain have appeared in the liter-
ature, see, e.g., [13–26]. The debate about their features,
connections, and usability has been intense [27–30] —to
say the least. Generally speaking, there are two early ma-
jor lines of research here: i) focus on the mathematical
properties of the dynamical map; ii) a physically oriented
approach independently of whether the dynamical map
is known or not. In the former case, the starting point
is the CP-divisibility property of the dynamical map [15]
—and in the latter case the focus is on the concept of
information flow between the open system and its envi-
ronment [14]. In general, the two lines were initiated as
separate directions of enquiry and do not coincide. How-
ever, during the last few years their relations and con-
necting interpretations have become increasingly known
including also attempts to develop a general hierarchy for
non-Markovian features of open-system dynamics and for
methods used for this purpose [30]. When going beyond
information flow or divisibility properties, one can use also
several other characterisations and concepts for describing
memory effects in open-system dynamics. These include,
e.g., concepts of Fisher information [16], correlations [17],
Bloch volume [18], negativity of the decay rates [19], chan-
nel capacities [21], interferometric power [22], Gaussian
channels [23], and spectra of dynamical maps [26].

This Perspective focuses on some theoretical develop-
ments of defining and quantifying non-Markovianity whilst
applications and experiments will be discussed in an ac-
companying Perspective [31]. These articles could be used
as short primers for recently published extensive reviews
on non-Markovian quantum dynamics [27–30,32] and for
research literature dealing with this fascinating area of
modern quantum physics.

System-environment information flow. – It has
been perhaps well known for a long time that in general the
open system and its environment exchange information
in addition to energy [33]. One of the early works that
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discussed the system-environment information exchange
in the context of non-Markovian open-system dynamics
is a stochastic non-Markovian quantum jump (NMQJ)
method [9]. The open-system density operator ρS is ob-
tained as an ensemble average over stochastic pure state
evolutions, ρS(t) =

∑
α

Nα(t)
N |ψα(t)〉〈ψα(t)|. Here, Nα(t)

is the number of ensemble members in the state |ψα(t)〉 in
the total ensemble of sizeN and each pure state realization
contains randomly occurring quantum jumps. The key
feature of the method is the appearance of reverse jumps
in the non-Markovian region which —instead of destroy-
ing quantum coherences— restore coherence (recoherence)
describing the reverse information flow from the environ-
ment back to the system. For example, for a undriven
two-level atom interacting with electromagnetic environ-
ment in its ground state, the atom may emit a spontaneous
photon in the Markovian regime destroying superposition
cg|g〉 + ce|e〉 → |g〉, where cg and ce are the probability
amplitudes prior to the quantum jump. However, when
the electromagnetic environment has non-trivial structure
and spectral density, in the corresponding non-Markovian
regime, the two-level atom may recreate its earlier lost su-
perposition via reverse jump in a given realization taking
the atom from the ground state back to a superposition
state |g〉 → c′g|g〉 + c′e|e〉. This shows up in the ensemble
average over all realizations and in the open-system den-
sity matrix ρS as non-monotonic behaviour of the excited
state population and magnitude of coherences. This gives
an insight into the memory effects but does not quantify
nor define non-Markovianity.

In principle and a priori, there are a number of choices
for rigorous quantification of the information flow depend-
ing on what one means by the word “information”. It
is also worth keeping in mind that for an open system
both the system-environment correlations and changes in
the environmental state influence how the open-system
evolves and how the information flow should be under-
stood [29,34]. One of the first attempts to quantify the
system-environment information flow was based on the
concept of trace distance [14],

D(ρ1, ρ2) =
1
2
||ρ1 − ρ2||1. (2)

Here, ρ1 and ρ2 are two density operators and the trace
norm for the trace class operator A is defined via ||A||1 =
tr|A| with the modulus of A given by |A| =

√
A†A. The

trace distance is invariant for unitary dynamics and con-
traction for CP-dynamical maps, i.e., given two initial
open-system states ρ1

S(0) and ρ2
S(0), the trace distance

between the time-evolved states never exceeds its initial
value D[ρ1

S(t), ρ2
S(t)] ≤ D[ρ1

S(0), ρ2
S(0)].

In terms of the concept of information, the trace dis-
tance D gives the maximum probability to distinguish two
quantum states in a single-shot experiment —the proba-
bility being equal to 1

2 [1 +D(ρ1, ρ2)]. Therefore, with in-
creasingD, we also have more information on which one of
the two alternative states we have. Even though D cannot

increase under CP maps, and hence under the dynamical
map Φt,0, this does not mean that the trace distance be-
haves in a monotonic way as a function of time. There-
fore, we can quantify the degree of non-Markovianity and
information backflow by calculating how much the trace
distance —and thereby the distinguishability— increases
during the whole time evolution of the open system. To
obtain a single number, we maximise over all initial pairs
of states and define the measure NBLP as

NBLP = max
ρ1,2

S (0)

∫
Ḋ(t)>0

dt Ḋ(t), (3)

where Ḋ(t) = d
dtD[ρ1

S(t), ρ2
S(t)].

For simple qubit open systems with limited number of
decoherence channels, this measure is often straightfor-
ward to calculate. For example, a two-level atom under-
going amplitude damping with jump operator σ− = |g〉〈e|
and time-dependent decay rate γ(t) in the master equa-
tion corresponding to eq. (1), the optimizing initial pair
is composed of the ground state |g〉 and excited state |e〉.
Moreover, for this pair of states there is a direct relation-
ship between the change of the trace distance and the sign
of the decay rate given by Ḋ(t) = −γ(t) exp[−Γ(t)] where
Γ(t) =

∫ t

0 dt′γ(t′). For further simple examples, see, e.g.,
the recent Colloquium [29]. In general, the sign of the de-
cay rate, in particular when the rates become negative, can
be often associated to the backflow of information though
in general the question is a subtle one [19,35,36]. With
increasing size of the open system’s Hilbert space, the op-
timization task becomes increasingly difficult and one has
to often use numerical techniques or random sampling of
states, and possibly also restrict the study to a specific
set of initial states. For further simplifications on how to
find the maximizing pair, see [37,38]. In general, the trace
distance measure has become quite common when dealing
with non-Markovian dynamics and has been also used in
various applications and experiments, see, e.g., [39–44].

Divisibility of the dynamical map. – The divisi-
bility property of the dynamical map characterises essen-
tially whether a given map can be divided into two or
more legitimate maps fulfilling a given criterion. Con-
sider the following concatenation of a CP dynamical map
Φt2,0 = Φt2,t1Φt1,0 with t2 ≥ t1 ≥ 0. If the dynamical
map from point of time t1 to t2, Φt2,t1 , is not CP (not
P), then the original map from time 0 to t2, Φt2,0, is not
CP-divisible (not P-divisible). In other words, if the origi-
nal legitimate map cannot be obtained as concatenation of
two legitimate maps with given criteria, then the original
map is called non-divisible.

In related contexts, the mathematical divisibility prop-
erties of quantum channels have been studied already in
ref. [45]. Soon after this, a measure for non-Markovianity
by using the concept of CP-divisibility for dynamical maps
was developed [15]. The starting point here is the following
definition considering the points of time t and t+ ε:

f(t+ ε, t) = ||
(
Φ(t+ε,t) ⊗ IdS

)
(|Ψ〉SA SA〈Ψ|) ||1. (4)
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Here, |Ψ〉SA is a maximally entangled state between the
open system S and ancillary system A whilst f(t+ε, t) = 1
for a CP map and f(t + ε, t) > 1 for a non-CP map. By
using infinitesimal ε, one can then define g(t) as

g(t) = lim
ε→0+

f(t+ ε, t) − 1
ε

(5)

and integrate this over time

IRHP =
∫ ∞

0
g(t)dt (6)

to quantify the non-CP-divisible character of the dynam-
ical map and non-Markovianity in this sense. As for the
trace distance measure NBLP , the divisibility measure
IRHP can be calculated in a quite straightforward manner
for simple qubit systems. For example, a qubit undergoing
dephasing with σz as a jump operator and time-dependent
rate γ(t) in the master equation corresponding to eq. (1),
the quantifier obtains the value IRHP = −2

∫
γ(t)<0 γ(t)dt.

Relation between information flow and divisibil-
ity. – In general, the non-Markovianity measures based
on the CP-divisibilty property and the trace distance dy-
namics do not coincide. If there is information backflow
in terms of trace distance, then the map breaks the CP-
divisibility. However, the converse does not always hap-
pen. The two measures coincide for single qubit and single
decoherence channel open system dynamics but otherwise
their relation is quite a subtle issue. For example, there ex-
ist maps, which break CP-divisibility for all points of time,
while the dynamics is still P-divisible, the trace distance
decreasing in a monotonic manner and with the possi-
bility to simulate them with a classical Markovian pro-
cess [19,36]. Further work has demonstrated interesting
relations between information flow and divisibility mea-
sures. However, this requires the use of ancillary systems
or some additional prior information, or both of them.

The trace distance D is based on equal probabilities of
preparing the two states, i.e., the preparation is uniformly
random and there is no prior additional information on
which one of the two states is prepared. However, addi-
tional information, which is not initially contained in the
open system, can be helpful for further modifications. In
particular, one can consider the Helstrom matrix Δ,

Δ = p1ρ
1 − p2ρ

2, (7)

where p1 and p2 are the prior probabilities of the cor-
responding states. The information interpretation with
the one-shot two-state discrimination problem is also valid
here [46]. Consider now two time-evolved states 1 and 2
with ancillary system

ρ1,2
SA(t) = [Φt,0 ⊗ IdS ]ρ1,2

SA(0). (8)

Now, it is possible to show that the trace norm E(t) of
the Helstrom matrix Δ, E(t) = ||Δ(t)||1 = ||p1ρ

1
SA(t) −

p2ρ
2
SA(t)||1, monotonically decreases if and only if the map

Φt,0 is CP-divisible [46]. This is valid for bijective maps,
for generalization see [47]. Therefore, one can also consider
the case d

dtE(t) > 0 in an analogous manner, compared
to the trace distance measure, as a quantifier for non-
Markovianity. This demonstrates that the CP-divisibility
measure has information flow interpretation when using
ancillary systems and prior information about the prepa-
ration probabilities of the states.

One can take a step further and instead of consider-
ing only two states in the discrimination problem, ask
how to minimise the discrimination error in the ensemble
E = {pi, ρ

i} of quantum states with arbitrary and finite
ensemble size N [48]. Here, pi is the prior probability
to have state ρi. This leads to the concept of guessing
probability

Pg(E) = max
∑

i

pi tr[P iρi], (9)

where the maximisation is over all Positive Operator Val-
ued Measures (POVMs) P i and leads to the maximum
average probability for correct guesses about the states.
Consider now the combined Hilbert space of the open-
system space with an ancillary space given by HS ⊗ HA.
The corresponding time evolution of the joint state ρSA

is given by ρSA(t) = (Φt,0 ⊗ IdA)ρSA(0). Now it is possi-
ble to show [48] that the dynamical map Φt,0 breaks the
CP-divisibility if and only if there exists auxiliary Hilbert
space HA, finite ensemble of time-evolved bipartite states
Et = {pi, (Φt,0 ⊗ IdA)ρi

SA(0)} and discrete times t2 > t1
so that

Pg(Et2) > Pg(Et1). (10)
In other words, if the above condition holds, then the
information flow interpretation for CP-divisibility is
provided this time via temporarily increasing guessing
probability which also has a connection to data processing
inequalities [48,49]. This result is satisfying from the
mathematical point of view and general from the infor-
mation theoretical point of view. However, optimising
over the type of auxiliary Hilbert space, the probability
distributions and POVMs seem to make it difficult for
practical purposes.

Let us now take a step back, and ask whether it is
possible to find information flow interpretation for CP-
divisibility when considering only two states, instead of
the ensemble of states, and using the trace distanceD with
a uniformly random choice of states, instead of prior in-
formation used by the Helstrom matrix Δ. This is indeed
possible for bijective maps and when using an ancillary
system which has a dimension dS + 1 when the open sys-
tem has dimension dS [50]. In other words, the dynamical
map Φt,0 is CP-divisible if and only if the trace distance
D decreases or remains constant as a function of time for
all pairs of initial system-ancilla states. In mathematical
form this can be expressed with times t2 > t1 as

D[(Φt2,0 ⊗ IdS+1)ρ1
SA(0), (Φt2,0 ⊗ IdS+1)ρ2

SA(0)] ≤
D[(Φt1,0 ⊗ IdS+1)ρ1

SA(0), (Φt1,0 ⊗ IdS+1)ρ2
SA(0)]. (11)
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Table 1: The basic features of connecting information flow and
divisibility. Here, D denotes the trace distance, E the trace
norm of the Helstrom matrix Δ, Pg the guessing probability,
CP-div (P-div) indicates CP (P) divisibility. For those using
ancillas, the dimensionality of the corresponding Hilbert space
is mentioned when dS is the dimension of the open-system
Hilbert space.

Ref. Quantifier Prior Ancillas Information
information flow

[14] D no no D
[15] CP-div no dS -
[46] CP-div yes dS E
[48] CP-div yes dS Pg

[50] CP-div no dS + 1 D
[52] P-div yes no E

Therefore, when this inequality is broken, the dynamical
map is not CP-divisible, and there is information backflow
when using an extended system with (dS +1)-dimensional
ancilla [50] —for results beyond bijective maps, see [47,51].

Let us consider now the case where no ancillas are used
and this time using the Helstrom matrix Δ instead of the
trace distance D. Having two initial open-system states,
ρ1

S and ρ2
S , with corresponding prior probabilities p1 and

p2, it is then possible to prove for bijective maps that the
map is P-divisible if and and only if the trace norm E of
the Helstrom matrix with evolved states

E(t) = ||Δ(t)||1 = ||p1Φt,0(ρ1
S) − p2Φt,0(ρ2

S)||1 (12)

decreases monotonically [52], i.e., Ė(t) = dE(t)
dt ≤ 0 —for

results beyond bijective maps, see [47]. This means that
when Ė > 0, P-divisibility is broken, and one has now
information flow interpretation for P-divisibility provided
that one has prior information about the probability of
the two initial states.

Table 1 collects the basic features of all the quanti-
fiers described above. It is also worth noting that it is
possible to generalize previously mentioned CP- and P-
divisibility properties to the concept of k-divisibility and
use this to quantify the degree of non-Markovianity [53].
This may become useful when considering open-system
Hilbert spaces which have dimension dS > 2.

Classical vs. quantum stochastic processes. –
In addition to the problematics concerning how to

define and quantify memory effects in open-quantum-
system dynamics described by density operator evolutions,
it is worthwhile to ask what the relationship of non-
Markovianity between classical and quantum stochastic
processes is. Take a classical stochastic process where the
random variable can take a value from the set {xi} and
consider different points of time tn ≥ tn−1 ≥ ... ≥ t1 ≥ t0.
The corresponding stochastic process is Markovian if the
following equation holds for the associated conditional
transition probabilites:

P (xn, tn|xn−1, tn−1; . . . ;x0, t0) = P (xn, tn|xn−1, tn−1).
(13)

In other words, the transition probability for the current
value depends only on the most recent value of the
random variable and is independent of all the other
previous points of time and values. It is not obvious, if
and how this property of the process can be transferred or
generalized to quantum realm since for quantum processes
measurements influence the state of the quantum system
and their evolution.

One of the early quantifiers of quantum non-
Markovianity —the loss of CP-divisibility property [15]—
can be considered analogous to the classical definition
in the following sense [28,54]. Consider a classical pro-
cess with one-time probability P (x, t) and linear map
(transition matrix) T connecting the values and prob-
abilities at two different points of time as P (x1, t1) =∑

x0
T (x1, t1|x0, t0)P (x0, t0). The stochastic process can

be defined to be divisible when T fulfils the following re-
lations: i)

∑
x2
T (x2, t2|x1, t1) = 1; ii) T (x1, t1|x0, t0) ≥ 0;

iii) T (x3, t3|x1, t1) =
∑

x2
T (x3, t3|x2, t2)T (x2, t2|x1, t1)

for all points of time t3 ≥ t2 ≥ t1 ≥ t0. However, note that
there exists divisible processes which are non-Markovian.
Going for a quantum case, one replaces now the di-
visibility property of the transition matrix T with the
divisibility of the dynamical map Φt,0. In particular, con-
sidering CP-divisibility, one checks when the map Φt2,t1

becomes non-CP in the concatenation Φt2,0 = Φt2,t1Φt1,0
for t2 ≥ t1 ≥ 0. Therefore, it is reasonable to consider the
loss of CP-divisibility as an analogous indicator of non-
Markovianity when going from classical to quantum pro-
cesses. However, it is worth keeping in mind the restriction
of the analogy to one-time probabilities only. Moreover,
there is another subtle point involved for the quantum
case related to the assumption that the density opera-
tor remains diagonal in the same basis over the evolution.
For more details see [28]. In similar spirit and restric-
tions, it is also possible to show that when the dynamical
map is P-divisible, then one can write down a correspond-
ing classical Markovian stochastic rate process [52] —also
demonstrating a connection and analogy with the classical
definition of non-Markovianity.

To develop a more general correspondence of non-
Markovianity between classical and quantum processes,
one needs to go beyond the traditional concept of a CP-
dynamical map describing open-system dynamics. This
may also indicate the difference between the studies of ex-
pectation values and multi-time statistics. For the latter,
it is also possible to quantify the violation of the quan-
tum regression theorem [55]. For the correspondence to
classical Markovianity, a recent series of papers [56–58]
exploited the concepts of process tensor and causal break.
Consider a sequence of times t0 < t1 < . . . < tk−1 where
at each point of time one applies a control operation
(CP-map) A(r)

j on the open system. Here, j labels the
point of time and r one of a set of operations. The whole
sequence of operations is denoted by Ak−1:0. The process
is now characterised by the process tensor Tk:0 which maps
the sequence of operations to the density operator at a
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later time ρk = Tk:0[Ak−1:0]. Suppose now a measurement
is done on the open system at time tk recording its out-
come r and the corresponding positive operator being Π(r)

k .
After the measurement, the open system is prepared in a
randomly chosen but known state P (s)

k belonging to a set
{P (s)

k }. This is said to break the causal link for the open
system between its past tj ≤ tk and future tl > tk and
describes the concept of causal break. The open-system
state in a later point of time can be formally described
with a normalized state ρl = ρl(P

(s)
k |Π(r)

k ;Ak−1:0). In
other words, this opens the possibility to check whether
the state ρl depends on its conditional argument, i.e., on
the choice of control operations and choice of prior mea-
surement. The claim of [56] is now that this state is con-
sistent with conditional classical probability distributions
—and not limited to one-time probabilities only.

Thereby this allows to define a quantum stochas-
tic process to be Markovian when the following holds:
ρl(P

(s)
k |Π(r)

k ;Ak−1:0) = ρl(P
(s)
k ) for all control operations,

measurements, preparations, and points of time. This
means that the current state of the open system depends
only what the randomly chosen state was after the mea-
surement and is independent of all the control operations
prior the measurement. Subsequently, one can then clas-
sify a quantum stochastic process being non-Markovian if
and only if there exists two different controls which pro-
duce different open-system states after the causal break at
time tl, i.e.,

ρl(P
(s)
k |Π(r)

k ;Ak−1;0) 	= ρl(P
(s)
k |Π

′(r′)
k ;A′

k−1;0). (14)

This criterion was given in ref. [56]. Note also earlier
works [59,60], and the use of the process matrix for-
malism [61,62] for non-Markovian studies. In [56], it is
also stated that all time-independent system-environment
Hamiltonians produce non-Markovian open-system evolu-
tion according to the criteria above when considering more
than two time steps. Thereby, most, if not all, commonly
used theoretical microscopic system-environment models
presented in the earlier literature should display memory
effects in the open systems evolutions. This include cases
where the exact open-system dynamics —without being
disturbed by control operations and measurements— fol-
lows the GKSL master equation (1) and the corresponding
dynamical map has the semigroup property [55].

At this point, it is legitimate to ask, whether, e.g., semi-
group dynamics —per se and in itself— carries memory
effects or not. One possible answer here is that if one
considers the control operations as probes, then the an-
swer may be positive. However, the probe is disturbing
and modifying the quantum dynamics. Thereby another
answer may be that semigroup dynamics itself does not
carry memory effects but it is the combination of this with
probe and measurement modified dynamics which displays
memory effects. Here, one could also conclude that it is

the non-Markovian character of the system-environment
interaction Hamiltonian combined with the access to
multi-time statistics which is being discussed, and not that
of the dynamical map. It is also useful to keep in mind
here the large-scale hierarchy presented in [30].

Conclusions and perspectives. – Even though open
quantum systems have been studied for several decades,
during the last ten years there has been a large amount of
increasing activity in this area. This has been motivated
by urge in understanding various dynamical features when
going beyond the simplest open-system dynamics —and
for increasing the understanding of their mathematical
description when using and connecting several earlier de-
veloped concepts from different fields including mathe-
matical foundations of quantum mechanics and quantum
information theory. The early developments and com-
monly used approaches include the concepts of informa-
tion flow [14] and divisibility [15]. By now, we have a large
variety of quantifiers for non-Markovian quantum dynam-
ics [16–26,28–30] and to different facets of memory effects
which are also related to the way one is allowed to probe
the open system. For applications and experiments, see
the forthcoming Perspective [31].

The emphasis of the research seems to be turning
from developing more definitions and quantifiers for
non-Markovianity to understanding memory effects as a
resource and how to combine the control of complex quan-
tum systems with exploitation of memory effects. Indeed,
discussion on full resource theory of non-Markovianity has
begun [63,64], though not yet completed in a similar man-
ner as has been achieved in a number of other fields of
quantum physics or concepts therein.

Even though several quantifiers of non-Markovianity are
very general by definition, it is not always obvious how to
use them when the dimensionality and complexity of the
structure of an open system increases. Thereby, there is a
need to develop and find connections to, e.g., directly mea-
surable observables which could be used in practical open
systems to indicate the presence of memory effects. This
would be very important when considering, e.g., many-
body open quantum systems. It is also possible to consider
and exploit recent developments on non-Markovianity in
the contexts not usually considered in an open-system
community. This could include, e.g., studying the con-
cept of information flow when running a quantum algo-
rithm [65]. Moreover, interesting future directions also
include problems on non-classical features and characteri-
zation of non-Markovian temporal processes [66,67], which
may be helpful when developing the general resource the-
ory of non-Markovianity.

In general, recent progress has been a fascinating and
fruitful interplay between various formal mathematical
descriptions and more practically motivated approaches
allowing rapid developments, and we expect this to con-
tinue with implications beyond the traditional problems
dealt by the open-system community.
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