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Abstract – We study a system of two atomic quantum kicked rotors with hard-core interaction.
This system shows different dynamical behavior depending on the value of the kick period. In
particular, we find that for periods close to resonance, the system shows a crossover from quantum
resonance to dynamical localization. We characterize this crossover by the analysis of momenta
distribution and density probability function in the configuration space, and discuss the role of the
hard-core interaction on the dynamical localization by comparing it to the free-bosons case. In
particular we note that dynamical localization of the center of mass persists even in the presence
of strong interaction among the atoms. Some experimental proposals are also discussed.

focus  article Copyright c© EPLA, 2019

Introduction. – The Quantum Kicked Rotor (QKR) is
a prototypical model for both theoretical and experimental
understanding of emerging phenomena like quantum res-
onance and dynamical localization. In particular, it can
be considered an outstanding quantum simulator [1,2] for
the exploration of transport in disordered quantum sys-
tems. Since the first realization of an atomic kicked rotor
by the Raizens group, consisting of a cloud of laser-cooled
atoms submitted to a periodically pulsed laser standing
wave (SW) [3], many experimental results in different
fields such as, e.g., quantum transport [4,5] and quantum
metrology [6], have followed. In particular, the quantum
resonant regime of a kicked rotor model has been realized
also in different systems, e.g., in linear molecules kicked
by periodic trains of laser pulses [7–9].

While the dynamical localization is a robust phe-
nomenon, the quantum resonance is a rather sensitive ef-
fect since being exactly at resonance in an experiment is
very challenging. Furthermore less is known about the

(a)Contribution to the Focus Issue The Physics of Quantum En-
gineering and Quantum Technologies edited by Roberta Citro,
J. Gonzalo Muga and Bart A. van Tiggelen.

quantum dynamics when the kicking period is close to,
but not exactly at resonance [10].

On the other hand, while the single-rotor systems
have been extensively studied and are well understood
(see [11–14] for a comprehensive presentation of the sub-
ject), the situation is less clear for two or more kicked
rotors (see, e.g., [15]). In fact, it was believed that interac-
tions between rotors generally destroy localization [16–24].
However Qin et al. [25] have recently studied the dynami-
cal localization of two quantum kicked rotors with contact
interaction. They have claimed that the dynamical local-
ization is destroyed for relative momentum, while being
preserved for the center-of-mass momentum. Also other
recent studies have shown that the interplay of quantum-
ness and interactions dramatically modifies the system dy-
namics of N kicked rotors inducing a transition between
energy saturation and unbounded energy increase depend-
ing on the kick strength [26,27]. Consequently the under-
standing of systems formed by two or more QKR is still
challenging.

This article aims to study the interplay between
quantumness and interaction of two kicked rotors made
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of two bosons both in the non-interacting (free) and
hard interacting (Tonks) limits, in the quasi-resonance
and in the dynamical localization regime. Moreover the
obtained results in Tonks limit are compared with the
case considered in [25] of two bosons interacting through
a contact potential.

We show that a dynamical localization persists in the
momentum space when looking at the center-of-mass mo-
mentum, while a spreading of the distribution of the rel-
ative momenta is visible. In particular, we focus on a
quasi-resonant regime for T = 2πn− δ, where δ measures
the distance from resonance, showing a crossover to a dy-
namically localized regime both in the case of interacting
and free particles.

The paper is organized as follows. We firstly in-
troduce the model and discuss its solution in the non-
interacting and Tonks cases, respectively. We successively
show the results of the system dynamics in the quasi-
resonant regime, and discuss the differences between the
non-interacting and strongly interacting regime (Tonks
case) by analyzing the momentum distribution and the
probability density function in the configuration space.
Finally we draw the conclusions and discuss the possible
experimental implications.

Resonant and quasi-resonant regime in the
QKRs. – Starting from the QKR model (see [11] for fur-
ther details), we explicitly calculate the wave function for
two QKRs, both for the case of particles interacting via
an infinite contact interaction (Tonks’ particles) with anti-
periodic boundary conditions (APBC), and in the case of
the non-interacting particles (free bosons) with periodic
boundary conditions (PBC).

The Hamiltonian of the system of two QKRs for
a generic contact interaction is given by the following
expression:

H =
∑

j=1,2

Hj +Hint, (1)

where Hj , j = 1, 2 is the Hamiltonian for the j-th particle:

Hj = Hfree
j +Hkick

j , (2)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H free
j =

∂2

∂ϑ2
j

,

Hkick
j = g

∑
j=1,2

cos(ϑj)
∑

n

δ(t− nT )

and Hint is the interaction term:

Hint = λδ(θ1 − θ2). (3)

In the last equations g = ξT , ξ and T being, respectively,
the strength and the periodicity of the kicks, ϑj is the an-
gular position, and n is the number of kicks. The interac-
tion cos(ϑj) has been chosen having in mind experiments
on laser control of ultracold atoms [28–30]. Furthermore,
we have expressed the energy in units of �

2

2m (m being the

mass of a single particle) and the time in units of 2m
�

.
Finally, since we consider exclusively the two limit cases
of free and hardcore bosons, for the strength interaction
appearing in eq. (3) we have to consider respectively the
limits λ → 0 and λ → ∞.

We note that, due to the different nature of particles,
the symmetry of the wave function at any time depends on
the interaction regime: in the free and strong interacting
case the wave function will be, respectively, symmetric and
antisymmetric.

Consequently, for free bosons, we can expand the initial
wave function in plane waves as

ψ(ϑ1, ϑ2, 0)B =
∑

n

1√
2(1 + δk1,k2)

[ϕk1,k2(ϑ1, ϑ2)

+ ϕk2,k1(ϑ1, ϑ2)], (4)

where ϕki,kj (ϑi, ϑj) = 1√
2π
ei(kiϑi+kjϑj), n = n(k1, k2) is

the energy level identified by the momenta (k1, k2), with
k1, k2 ∈ Z, δk1k2 is the Kronecker delta, and 1√

2π
is the

normalization factor that comes from the PBC conditions.
For the hardcore bosons case, we have to consider the

APBC conditions. Furthermore it is useful to resort to
the Bose-Fermi mapping [31], which relates the wave func-
tion of hardcore bosons to that of non-interacting spin-
less fermions in the same periodic interaction potential.
Consequently, starting from the wave function for free
fermions,

ψ(ϑ1, ϑ2, 0)F =
1√
2

∑
n

[ϕk1,k2(ϑ1, ϑ2) − ϕk2,k1(ϑ1, ϑ2)],

(5)
we obtain through the mapping the following expression
for the wave function:

ψ(ϑ1, ϑ2, 0)HB = A ψ(ϑ1, ϑ2, 0)F , (6)

with
A = sgn(ϑ1 − ϑ2),

where “sgn” is the sign function and A is the unit antisym-
metric function, which ensures that ψ(ϑ1, ϑ2, t)B has the
proper symmetry under the exchange of two bosons. We
note that the APBC force the momenta to be half-integer
(ki = mi + 1/2, ∀ mi ∈ Z). Finally we choose for the two
systems the ground state as the initial state.

Concerning the system evolution, even if the single-
particle Hamiltonian equation (2), is explicitly time-
dependent due to the kick interaction, the latter is only
of importance for times t = nT , while the system evolves
freely between kicks. Resorting to standard methods [11]
the system evolution can then be obtained via a combina-
tion of free evolution and kick interaction:

ψi(θ1, θ2, nT ) = Un(T )ψi(θ1, θ2, 0), i = B,HB, (7)

with

U(T ) = Uδ(T )Uf(T ) = e−i
∑2

j=1 Hkick
j T e−i

∑2
j=1 Hfree

j T .

50008-p2



Dynamical localization of interacting ultracold atomic kicked rotors

Fig. 1: Behavior of the mean energy 〈E〉 and the mean relative
momentum 〈k〉 as a function of the number of kicks in the
resonant T = 2π and quasi-resonant T = 6.28 regimes.

The quantum resonant regime is a constructive interfer-
ence phenomenon, characterized by the fact that the wave
function acquires the same phase for each kick, namely
the effect of kicks adds coherently. This regime can be
obtained choosing T = 2πn in eq. (7): the evolution oper-
ator becomes U(T )n = Un

δ (T ), the free evolution operator
Uf (T ) being identity one.

On the other hand, when the frequency of the kicks is
not fine tuned exactly at resonance, decoherence effects
generate non-diagonal terms in the free evolution opera-
tor Uf , which dramatically change the dynamics of the
system. In fact, as we will see below, a localization regime
appears above a certain critical time that depends on the
strength of the kick.

Results. – Since we compare the resonant and quasi-
resonant regimes, we consider the period varying in a
neighborhood of T = 2π. Following the current litera-
ture [25] we resort to various quantities whose behaviour
is a clear indicator of the resonance, both in the configu-
ration and momentum space.

Mean energy and mean relative momentum. In fig. 1
the behavior of the mean energy 〈E〉 and the relative mo-
mentum 〈k〉 is reported as a function of the number of
kicks, in the resonant T = 2π and quasi-resonant T = 6.28
regimes. In the former both systems have a diffusive be-
haviour, highlighted by the ballistic evolution of the mean
energy [11] and the linear growth of the mean relative
momentum, the different slope in the two cases due to the
different interaction strength between particles. Regard-
ing the quasi-resonant regime, after the mean energy and
the mean relative momentum have reached a maximum,
preceded by a diffusive behaviour, the system enters in
an oscillating phase, which is a typical signature of a lo-
calized regime [11]. The qualitative trend is the same for
both interaction limits.

Center of mass and relative momentum. A more in-
sightful analysis of the resonant and localized phases can
be obtained considering the expansion coefficients of the

Fig. 2: Density of states in the resonant regime (T = 2π) in
terms of the center of mass momentum K and the relative
momentum k as a function of the number of kicks n.

Fig. 3: Density of states in the quasi-resonant regime (T =
6.28) in terms of the center of mass momentum K and the
relative momentum k as a function of the number of kicks n.

wave function expressed in the basis labeled by the mo-
menta (K, k) [25]:

|ψi(nT )〉 =
∑
K,k

CK,k(nT )|ψK,k
i (0)〉, i = B,HB. (8)

Figure 2 shows the amplitude distribution |CK,k(nT )| for
different kicks in the resonant regime. We observe that the
mean value of the center of mass momentum K remains
localized around zero during the evolution, while there is
a strong delocalization for the relative momentum k, since
the system expands along the k-direction.

In fig. 3 we observe for the quasi-resonant case a
crossover from the resonant regime to the localized regime.
Indeed, after an initial diffusive phase, characterized by
a rapid growth of the amplitude distribution along the
k-direction (leftmost panel at n = 50 kicks), the system
localizes (as shown in the remaining panels), in an inter-
action strength depending way. In fact the free-bosons
system localizes faster: the momenta K and k assume
almost the same values. Furthermore, in the long time
limit (n = 600), they localize towards the ground state
(K = k = 0). On the other hand in the Tonks case, after
many kicks (n ≥ 100), while the momentum K localizes
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Fig. 4: Probability density in configuration space as a function
of the angular position θ1 of the first particle, the second par-
ticle being fixed at θ2 = 2.0 rad. The number of kicks is fixed
to n = 100. The behaviour is presented both for the resonant
T = 2π and quasi-resonant T = 6.28 regime.

at zero, the momentum k expands in the region of excited
states. This effect, due to the interaction, is observed also
by Qin et al. [25], in the Tonks limit the expansion in the
k-direction being more restrained than the finite contact
interaction case, because the hardcore bosons in momen-
tum space behave as free fermions.

Probability density function and one-particle mean po-
sition. The effect of resonant regime in configuration
space can be conveniently analyzed through the form of
the probability density function fixing one of the rotors
(for example the value θ2 = 2.0 in fig. 4), the mean value
position and its variance (fig. 5). Indeed the former can
be obtained straightforwardly for both interaction regimes
through eqs. (4), (5) and (7). In the case of free bosons it
can be shown that the function assumes a constant value
(|ψ(θ1, 2, t)|2 = |ψ(θ1, 2, 0)|2 = 1/(4π2)) (see footnote 1)
as reported in the left upper panel of fig. 4, while for hard-
core bosons, due to the strong interaction, the probability
density presents an oscillating behaviour.

In the quasi-resonant regime (the right panels of fig. 4),
the form of the probability density function is a clear sig-
nature of the localization regime: indeed we observe that
both systems are delocalized over all space, as expected
since they are localized in momentum space. Further-
more, the effect of the interaction manifests itself through
the symmetry: the probability density is symmetric for
free bosons, due to the strong attraction between parti-
cles, while for Tonks particles it is asymmetric, due to the
strong contact interaction.

Finally, in fig. 5 we plot the mean value position and its
variance as a function of the number of kicks for one ro-
tor, the other being constrained in the interval [0, π]. We
observe that in the resonance case both the mean value po-
sition and its variance are constant, due to the coherently
interference of kicks. The effect of the different interaction
manifests in the different value of 〈θ1〉: for Tonks particles

1The wave function is normalized with respect to the variables
θ1, θ2 ∈ [0, 2π].

Fig. 5: Behaviour of the mean position 〈θ1〉 and the variance
of the first particle as a function of the number of kicks in the
resonant T = 2π and quasi-resonant T = 6.28 regimes.

the effect of the repulsion translates in a different value of
the mean. Furthermore, the constant value for the vari-
ance in both cases (left lower panel of fig. 5) indicates the
presence of a diffusive regime in momentum space.

A different behaviour for the mean value in instead ob-
served for the two systems in the quasi-resonant regime
(right upper panel of fig. 5): while the mean value of
the free bosons is constant, the value of the hardcore
bosons, after a ballistic initial phase (the parabolic trend),
is a rapidly oscillating function. Consequently we deduce
that the strong interaction makes the system more sensi-
tive to the change of the kick period with respect to the
free-particle ones, that instead localize rapidly. We thus
find that the non-interacting boson rotors are more ro-
bust against localization phenomenon with respect to the
strongly interacting one.

Finally the variance in the quasi-resonant regime (the
right lower panel of fig. 5) presents a damped oscillating
trend, that corresponds to a semi-diffusive regime. In par-
ticular the Tonks position variance presents another oscil-
lation frequency, that is a clear signature of the strongly
contact interaction.

Scaling of the mean energy and the mean relative mo-
mentum. In fig. 6 we plot the mean energy and the mean
relative momentum both for the free bosons and the Tonks
particles as a function of ε = 2π − T , where T is the kick
period taken close to resonance.

We observe that both the mean energy and the relative
momentum diverge when the system approaches the res-
onant regime (the limit ε → 0). On the other hand, for
ε → ∞, the mean values converge and both systems lo-
calize. We thus find that the behaviour of the plotted
quantities resembles a localization length for both sys-
tems. Indeed this is analogous for systems that interact
with a disordered potential: the resonant regime is equiv-
alent to a weakly disordered system (diffusive regime),
characterized by the parabolic growth of the mean en-
ergy, and by the linear trend of the mean relative momen-
tum. In contrast the choice of a kick period closed to 2π
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Fig. 6: Scaling of the mean energy and the relative momentum
as a function of ε = 2π − T , where the period T ∈ [6.2, 6.277].
The data was fitted with the function f = a + b/εc, a, b, and c
being the fitting parameters. The error is much smaller than
the values obtained and it is not reported.

(non-resonant regime) corresponds to the increase of the
disordered strength, that forces the particles not to ex-
change energy among each other, and the system is local-
ized. This result is a direct evidence of the kicked rotor
mapping to the Anderson localization [26].

Conclusions and perspectives. – By analyzing the
dynamical behaviour of two quantum atomic kicked rotors
we have analyzed the fate of the many-body localization in
the presence of strong correlations. We have characterized
the behaviour of the free particles vs. the interacting ones
by looking at the momentum amplitude distribution and
the probability density in the configuration space. The
former shows that states with small center of mass and
relative momentum are preferably occupied by free bosons
while the interaction mainly affects the occupation of the
states at higher momenta. The results for the dynamical
behavior in the configurational space is consistent with
that in the momentum space and we have shown that the
mean position of a single particle (having fixed the posi-
tion of the other particle) grows first quadratically in time,
then the system dynamically localizes. Moreover, our re-
sults show that, irrespectively of the strong interaction,
the localization regime persists also for hardcore bosons in
agreement with the results of [25] where two atomic kicked
rotors with finite contact interaction were considered.

In experimental applications the regime close to reso-
nance can be easily generated by a controlled detuning of
the pulse train period from the revival time when acting on
a gas of ultracold atoms and the interaction among atoms
can be tuned by a Feshbach resonance. In particular one
can develop a complex optical setup capable of generating
high-intensity trains of femtosecond pulses, that are fo-
cused onto a vacuum chamber containing a constant flow
of molecules (such as nitrogen gas) or atoms.

To fully determine the fate of dynamical localization,
we need to consider many interacting atoms and study the

highly complex case of many-body interactions for quan-
tum kicked rotors. While this is still a challenging task,
we refer to the Bose-Hubbard model studied in [32] where
the persistence of a dynamical localization is shown. Fi-
nally, the robustness of a localized regime makes the kicked
rotors systems useful for precision quantum sensing and
metrology applications.
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