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Abstract – Using the FLUIDICS (Fluid Dynamics in Space) experiment in the International
Space Station, turbulence of capillary waves at the air-water interface is experimentally investi-
gated in weightlessness. Capillary waves are excited in a spherical container partially filled with
water and undergoing sinusoidal or random oscillations. The fluctuations of the interface, recorded
with two capacitive probes are analyzed by means of the frequency power spectrum of wave el-
evation. For high enough forcing amplitudes, we report power-law spectra with exponents close
to the prediction of weak wave turbulence theory. However, in this experiment the free-surface
steepness is not small compared to 1 and thus the investigated regimes correspond to strongly
nonlinear wave turbulence.

Copyright c© EPLA, 2020

Wave turbulence describes the statistical behavior of a
random set of dispersive waves in nonlinear interaction.
This phenomenon occurs at very different scales in a great
variety of systems [1,2]. The case of surface waves at
the interface between a gas and a liquid constitutes an
example of prime interest, which has deserved numerous
experimental investigations [3,4]. With specifically the hy-
potheses of weak nonlinearity and negligible dissipation,
wave turbulence theory [1,2,4,5] predicts, in stationary
state, turbulent self-similar regimes, in which energy (or
another conserved quantity) is transferred from an injec-
tion scale towards a dissipation scale. These regimes are
characterized by power-law spectra both in spatial and
temporal Fourier spaces, for scales belonging to the in-
ertial range, where both the dissipation and the forcing
are negligible. In contrast to hydrodynamic turbulence
for which the Kolmogorov spectrum has not been de-
duced yet from the Navier-Stokes equation, energy spec-
tra can be analytically computed in the framework of
weak wave turbulence. Since the hypotheses used in
this derivation are drastic, the relevance of weak wave
turbulence theory to describe experimental and natural
systems remains questionable. In particular, wave tur-
bulence theory assumes a scale-invariant dispersion re-
lation of the form ω ∝ |k|α. That is not verified for

surface waves on Earth, as a result of the competition
of two restoring forces. Gravity dominates at large scales,
whereas capillarity is the main restoring mechanism for
wavelengths typically smaller than 15mm for water. Ex-
perimentally, forcing low-frequency gravity waves leads in
the capillary wave range to power-law spectra of wave el-
evation whose exponents are in agreement with those pre-
dicted for pure capillary waves [6] both for the frequency
spectrum f−17/6 [7] and for the wavenumber spectrum
k−15/4 [8,9], although the transition between gravity and
capillary waves is not described by wave turbulence theory.
Moreover, in such experiments, the degree of nonlinearity
is not weak [9] and dissipation is significant [10,11] even in
the decade over which the predictions of weak wave turbu-
lence are observed (typically between 20Hz and 200Hz).
Recent direct numerical simulations [12,13] have demon-
strated the relevance of weak wave turbulence theory for
pure capillary waves in the limit of low dissipation and
nonlinearity. Operating in microgravity conditions is re-
quired to study turbulence of pure capillary waves in labo-
ratory experiments. Note that using two fluids of the same
density leads to a different phenomenology [14]. A single
study has been performed in parabolic flights to investi-
gate turbulence of capillary waves inside a spherical con-
tainer [15]. In this geometry, surface waves propagate at
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the spherical air-water interface in the absence of walls
causing reflections or enhanced dissipation due to the con-
tact line dynamics [16,17]. Self-similar frequency spectra
of wave elevation have been reported over two decades in
satisfying agreement with the weak wave turbulence the-
ory [15]. Nevertheless, due to the short duration (22 s) of
the zero gravity phases in parabolic flights, statistically
steady states were not reached: in particular, the behav-
ior at low frequency was not accurately resolved and the
transient motion of the fluid possibly interfered with the
wave dynamics. The observed power-law spectrum could
correspond to a transient regime rather than to a capil-
lary wave turbulence regime. To strengthen these previous
observations, we report in this letter experiments in the
international space station (ISS), where the duration of
the weightlessness is not limited. The low gravity condi-
tion is excellent with a root-mean-square (r.m.s.) acceler-
ation due to external vibration less than 20× 10−6 g with
g = 9.81m · s−2, whereas the r.m.s. residual acceleration
in parabolic flight is of order 5 × 10−2 g is less. We use
the FLUIDICS (Fluid Dynamics in Space) facility [18] de-
signed by Airbus Defence and Space and by the French
spatial agency the CNES (Centre National d’Études Spa-
tiales) primarily to study the sloshing motion of liquid
propellants of satellites [19,20]. A specific tank equipped
with two fluid level sensors is dedicated to the study of
capillary wave turbulence. The experiment was installed
on the ISS and operated by ESA (European Space Agency)
astronauts (Thomas Pesquet on May 3rd 2017, Paolo Ne-
spoli on October 27th 2017, Norishige Kanai on March
13th 2018 and Alexander Gerst on September 27th 2018).

Experimental setup. – The experimental setup is de-
picted in fig. 1. A spherical container of internal radius
R = 50mm and made of polycarbonate is partially filled
with 30% of water (mineral water Luchon c©) and with
air at atmospheric pressure. In the ISS, the tempera-
ture is regulated around 22 ◦C. The water density and
the water/air surface tension are ρ = 998 kg · m−3 and
γ = 72mN · m−1. The tank is rotated about the axis Oz

distant L = 175.4mm with an oscillating angle θ(t) in or-
der to generate waves at the air-water interface, θ(t) being
either a sine function or a low-frequency noise. Two cam-
eras image the transparent container in the rotating frame
(see fig. 1(c)). A force sensor (S in fig. 1(d)) located ap-
proximately at a distance of 74.8mm from C provides the
three components of the force exerted by the tank on the
rotating arm, so that the tank acceleration can be eval-
uated. Two capacitive probes [21] (isolated copper wires
of diameter 0.32mm) measure the thickness of the liquid
layer at two different positions, η1(t) and η2(t). More de-
tails on the experimental setup and on the data interfacing
can be found in ref. [18]. In weightlessness, the water wets
the internal surface of the tank at rest, forming a large
air bubble in the center and a homogeneous water shell of
thickness h0 = 5.60mm. This observation previously re-
ported [15] can be understood by an energetic argument.

Fig. 1: (a) Picture of the experimental spherical tank. The
cylinder visible on the top of the picture is the filling orifice
and the fastening point. The two circular electronic boards
measure the capacity for each fluid height probe. (b) Technical
drawing of the experiment without, the acquisition system and
the cameras (Airbus Defence and Space). (c) Horizontal cross
section through the center of the tank. (d) Schematic view of
the experiment (see text for definitions).

Let V0 denote the volume of water, Rh = R − h0 the in-
ner radius of the uniform shell and R0 = (3V0/4π)1/3 the
radius of a water sphere not in contact with the solid sur-
face, and ϑ = 78◦ the static contact angle between water
and polycarbonate [22]. The capillary potential energy of
the wetting liquid shell is smaller than the inner liquid
sphere, if (R2

h − R2
0) < cos ϑR2, i.e., if the filling ratio

(R0/R)3 > 0.31. Although the experimental value of this
ratio 0.3 is slightly smaller than the critical value, we ob-
serve at rest a homogeneously wetted sphere (see fig. 1(a)).
Nevertheless, the capillary forces are not sufficient to pre-
vent some dewetting events when the tank is oscillated.

Considering now small oscillations of angular frequency
ω of the wetting spherical shell, the free-surface deforma-
tion η can be decomposed using the spherical harmonics
Y m

l and the amplitudes Cl,m:

η(t, θ, φ) = Rh +
∞∑

l=0

l∑

m=−l

Cl,mY m
l (θ, φ)eiωt.

With the assumption of potential flow, the dispersion re-
lation can be derived [23]:

ω2 =
γ

ρ

l(l − 1)(l + 2)
R3

h

( R
Rh

)2l+1 − 1

1 + l
l+1 ( R

Rh
)2l+1

. (1)

When l ≥ 9 (i.e., f = ω/(2π) > 3.7Hz), the usual
dispersion relation for capillary waves,

ω2 =
γ

ρ
k3, (2)
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Fig. 2: Snapshots of the tank from camera 1, for a sinusoidal
forcing with F = 1.75 Hz and θ0 = 0.04. Presence of air bub-
bles is noted. In the right image (b), a strong transient dewet-
ting is visible on the top right corner.

with k = l/Rh is accurate with an error less than 5%. Note
that this corresponds to a scale-invariant dispersion rela-
tion as assumed by the theory of weak wave turbulence.

Forcing characterization. – We consider first a sinu-
soidal forcing, θ(t) = θ0 sin(2πFt), applied in most cases
during 450 s. In the reference frame of the tank, the tan-
gential and centrifugal accelerations at the center of the
sphere read, respectively, aθ = −Lθ0(2πF )2 sin(2πFt)eθ

and ar = −Lθ2
0(2πF )2 cos2(2πFt)er. Therefore, to de-

crease the relative influence of the centrifugal force, which
acts as an effective gravity, we restrict our study to the
case of small oscillations, i.e., θ0 ≤ 0.04 (less than 2.5◦).
For a typical forcing F = 1.75Hz and θ0 = 0.04, the liquid
is strongly agitated and remains most of the time in con-
tact with the surface of the sphere. However, a significant
amount of bubbles of few millimeters are generated by the
motion as it can be seen on the images from camera 1 (see
fig. 2). Morever a few dewetting events occur especially
close to the tank fastening.

The second set of measurements corresponds to a ran-
dom forcing with θ(t) = θ0 sin(φ(t)), where φ(t) is a ran-
dom noise, band-pass filtered in the frequency interval
ΔF = [F1, F2] with typically F1 = 1Hz and F2 = 2Hz
and θ0 = 0.04. The visual observations are very similar.

The actual forcing can be characterized using the an-
gular displacement of the motorized arm and the force
sensor, power spectra being reported in fig. 3. The
arm follows satisfyingly the programmed instructions, al-
though we notice significant third and fifth harmonics for
the sinusoidal forcing in the spectrum of the tangential
force. This spectrum differs from the one from the force
sensor, due to the inertia of the water during the mo-
tion and we observe a higher content between 10 and
100Hz. For the random forcing, the power spectrum is
not flat in the expected range [0.5, 2]Hz due to the me-
chanical response of the motor, with a maximum of ex-
citation at about 1.7Hz. The peak around 9Hz in the
force sensor data could be due to a sloshing eigenmode or
to a vibration of the structure. For both sinusoidal and
random forcing the spectra of the radial force is smaller
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Fig. 3: Examples of Fourier forcing power spectra. Dashed
magenta line: tangential force evaluated from θ̈(t). Tangential
force (continuous blue line) and radial force (dotted green line)
are measured by the force sensor at S. (a) Sinusoidal forcing
θ0 = 0.04 and F = 2 Hz. (b) Random forcing θ0 = 0.04 and
ΔF = [0.5, 2] Hz.

by roughly a factor of 500 for f ∈ [1, 30]Hz. Moreover,
the average value of the radial centrifugal acceleration at
the furthest point of the tank from the rotation axis is
geff = 0.058m · s−2 in the sinusoidal case with θ0 = 0.04
and F = 2Hz, making this effective gravity negligible for
frequencies f � 0.29Hz. At the same location, the r.m.s.
tangential acceleration is aθ = 1.4m · s−2. In this setup
in microgravity, deformation of the air-water interface can
therefore be considered to be pure capillary waves, for fre-
quencies larger than 1Hz instead of about 20Hz on Earth.

Turbulent dynamics of the air-water interface. –
The fluctuations of the free surface are monitored using
the two capacitive probes. Examples of temporal evolu-
tions are displayed in fig. 4. The repetition of the se-
quences shows a good reproducibility. The sensor 1 η1(t)
can be affected by the dewetting. As the position of sen-
sor 2 corresponds to the point of maximal centrifugal force,
dewetting does not occur there and we favor this sensor in
our further analysis. The sensor 2 η2(t) is sometimes satu-
rated, which means that the sensor is completely immersed
in water. However, the shape of the power spectra is not
perturbed by these short saturations. For a sinusoidal
forcing of frequency F = 2Hz and amplitude θ0 = 0.04,
corresponding to a forced wavenumber of k ∼ 130m−1,
we observe r.m.s. fluctuations of the free surface of order
ση ∼ 5mm. This order of magnitude close to the simple
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Fig. 4: Examples of temporal evolution of the local wave am-
plitude measured with the capacitive probes. blue (bottom):
sensor 1, η1(t). Red (top): sensor 2, η2(t), the signal has been
vertically shifted 35 mm for better visualization. (a) Sinusoidal
forcing θ0 = 0.04 and F = 2 Hz. (b) Random forcing θ0 = 0.04
and ΔF = [0.5, 2] Hz. At t � 127.5 s, a sharp decrease of η1(t)
is interpreted as a dewetting of the liquid from the tank wall
at the location of sensor 1. Note that sensor 2 is not affected.

relation at/(2πF )2 implies a relatively large value of the
wave steepness s ≈ kση ∼ 0.6 using the linear disper-
sion relation equation (2). This high value of s, which
quantifies the importance of nonlinear effects for surface
waves, shows that these experiments do not lie in the
weakly nonlinear regime. However, the analytic solution
of Crapper [24] shows that the change of the dispersion re-
lation of a plane monochromatic capillary wave does not
exceed 10% at the maximal steepness value s = 4.59 corre-
sponding to the trapping of air bubbles. Therefore, we use
in the following the linear dispersion relation equation (2),
which was experimentally verified in microgravity [15].

The dynamics of the free surface is characterized by the
frequency power spectrum of wave elevation Sη(f). The
runs last for 450 s or more and the spectra are computed
on a duration of 400 s (typically 20 times longer than for
the parabolic flight experiments). Typical spectra for sen-
sors 1 and 2 are plotted in fig. 5(a) for a sinusoidal forcing
of high amplitude (F = 2Hz and θ0 = 0.04). We ob-
serve, for sensor 2, an absence of the forcing peak and
a decay of the spectrum with frequency following fairly
the power law predicted by the weak wave turbulence the-
ory for capillary waves Sη(f) ∼ f−17/6 [6]. Similarly to
previous experiments operated in parabolic flights [15], a
capillary wave turbulent cascade is reported for a sinu-
soidal forcing of the tank, which is only observed for few
experiments on Earth using a parametric forcing in the
capillary wave range [25,26]. In contrast, when capillary
waves are generated from nonlinear interactions of grav-
ity waves, a random forcing appears necessary to gener-
ate the capillary wave power-law spectrum [7–9]. In the
present experiment, we observe a peak at 4Hz (the sec-
ond harmonic of the forcing frequency) superposing on
the turbulent cascade. To avoid a possible saturation,
the sensitivity of the capacitive probes specially realized
for this setup is lower than the ones used in our previous
experiments on Earth or in the parabolic flights [15] and
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Fig. 5: (a) Power spectrum of wave elevation Sη1(f) (blue dot-
ted line) and Sη2(f) (red continuous line) for a sinusoidal forc-
ing θ0 = 0.04 and F = 2 Hz. The power laws f−17/6 and
f−1 are also indicated, respectively, as a black continuous line
and as a black dashed line. (b) Magnitude-squared coherence
functions Cxy between η1 and Ft (blue dashed line), between
η2 and Ft (red dotted continuous line) and between η1 and η2

(magenta continuous line).

the spectrum reaches the electrical noise level typically for
f ≥ 20Hz. We display for information, the power law f−1,
recently reported for turbulent capillary waves and inter-
preted as a statistical equilibrium of large scales [27]. In
addition, we compute the magnitude-squared coherence
function Cxy(f), which indicates the correspondence de-
gree between two temporal signals x(t) and y(t) at a given
frequency f . Cxy between η1(t) and the tangential force
Ft measured with the force sensors in fig. 5(b) shows that
the local free-surface dynamics results mainly from the
motion of the tank. In contrast, Cxy between η2(t) and
Ft is lower, except at the peak at 4Hz, showing that the
free-surface dynamics at the position of sensor 2 is weakly
correlated to the forcing and results from the turbulent
dynamics of the capillary waves. Similarly, the coherence
between the two wave height signals is small.

For runs operated with a random forcing, typically with
an angular amplitude θ0 = 0.04 and a frequency range
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Fig. 6: (a) Power spectrum of wave elevation, Sη1(f) (blue dot-
ted line) and Sη2(f) (red continuous line) for a random forcing
θ0 = 0.04, Fc = 1.25 Hz and ΔF = 1.5 Hz. The power laws
f−17/6 and f−1 are also indicated, respectively, as a black con-
tinuous line and as a black dashed line. (b) Magnitude-squared
coherence functions Cxy between η1 and Ft (blue dashed line),
between η2 and Ft (red dotted continuous line) and between
η1 and η2 (magenta continuous line).

f ∈ [0.5, 2]Hz, the spectrum displayed in fig. 6(a) shows
significant differences. The wave amplitude is lower at the
maximal motor capacities, because the forcing is less co-
herent. The capillary wave turbulence power law is again
observed for the second sensor without forcing peaks but
on a narrower frequency range f ∈ [1, 8]Hz. At frequen-
cies lower than the forcing range, the spectrum is also
compatible with the power law f−1 expected for a sta-
tistical equilibrium of large scales [27]. At the location
of the first sensor, we observe a significant peak at 9Hz
also visible on the data of the force sensor, which could be
interpreted as a sloshing mode or a vibration of the struc-
ture. The coherence function in fig. 6(b) between η1 and
Ft displays indeed a quite high value around 9Hz. The
coherence between η2 and Ft is low outside frequencies
belonging to the forcing range. The coherence between η1

and η2 remains also quite low, except for f > 12Hz, where
the spectrum becomes dominated by the electrical noise,
which is identical on both sensors.

0 0.2 0.4 0.6 0.8 1 1.2

 a
t
 ( m.s-2 )

0

2

4

6

 σ
η (

m
m

) 

0 1 2 3 4 5 6
 σ

η
 (mm)

0

0.2

0.4

0.6

 s
 

(a)

(b)

(a)

(b)

Fig. 7: (a) Standard deviation of the free surface as a func-
tion of the tangential forcing r.m.s. acceleration. ◦: sensor 1
sinusoidal forcing; ∗: sensor 2 sinusoidal forcing; �: sensor 1
random forcing; ×: sensor 2 random forcing. (b) For the sensor
2 only, wave steepness s ≈ |〈∇η2〉| as a function of the standard
deviation of η. s is derived from the spectrum Sη2(f) and is a
slowly growing function of ση. ∗: random forcing; ×: sensor 2
random forcing.

During the operations of the FLUIDICS experiment, 20
independent sinusoidal forcing runs (F varying from 1.5
to 6Hz and θ0 varying from 0.01 to 0.04) and 13 random
forcing runs (Fc varying from 1 to 3.5Hz, ΔF varying
from 0.5 to 1.75Hz and θ0 varying from 0.01 to 0.04) have
been carried out, mostly for the highest possible torque
of the motor, which is performing small oscillations. To
summarize, the results from the different runs the stan-
dard deviation of wave elevation ση is plotted in fig. 7(a)
as a function of the forcing tangential acceleration at at
the tank center location. For most of the runs, at is of or-
der 1.2m · s−2 and 0.9m · s−2, respectively, for sinusoidal
and random forcing, but the r.m.s. free-surface defor-
mation remains close to 5mm for both sensors. Using
the linear dispersion relation eq. (2), the spatial spec-
trum Sη(k) is computed and the wave steepness from
the signals of the second sensor can be evaluated as
s = (

∫
k2Sη(k)dk)1/2 = |〈∇η2〉|. Figure 7(b) shows that s

is a slowly growing function of ση, with a typical wavenum-
ber of k ∼ s/ση ≈ 110m−1 corresponding to a frequency
of 1.6Hz, which corresponds to the beginning of the cap-
illary cascade. This estimation validates this indirect esti-
mation of the wave steepness and shows that different runs
of these experiments can be compared equivalently using
the wave amplitude or the wave steepness. Moreover,
s reaches quite large values, showing that the presented
experiments are not performed in a weakly nonlinear
regime.
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Fig. 8: For the sensor 2 only, (a) fitted exponent of the power
spectrum Sη ∼ f−α as a function of the steepness s. ∗: sinu-
soidal forcing; ×: random forcing. The horizontal dashed line
indicates the value predicted by the capillary wave turbulence
theory αtheo = 17/6. (b) Effective energy flux εeff as a function
of the steepness s.

For all these runs, the power spectra are fitted in a vari-
able frequency range as power laws Sη = K1f

−α. The
results are gathered in fig. 8 as a function of the wave
steepness s. We observe first in panel (a), that for all
measurements the exponent α is surprisingly robust, be-
ing close to αtheo, especially at high s. The frequency
interval of each fit is defined as the range of the capillary
wave cascade, i.e., f ∈ [2.5, 20]Hz for sinusoidal forcing
and f ∈ [1.5, 8]Hz for random forcing. To estimate the
quality and the relevance of the fits, we compute a fit er-
ror ratio as |Sη − K1f

−α|/(K1f
−α) in the fit frequency

range. For sinusoidal forcing, we report a fit error of order
15%. Note that at small values of s, the fit error is sig-
nificantly larger because it corresponds to runs operated
at a smaller motor displacement, the corresponding spec-
tra being not well described by a power law. For random
forcing, we obtain a fit error of order 11%. The error is
less than for sinusoidal forcing due to the absence of the
peak at 4Hz superposed on the cascade.

Wave turbulence theory predicts an elevation power
spectrum Sη(ω) = 4π/3CKZ(γ/ρ)1/6ε1/2ω−17/6 [6,7,9],
where ε is the energy flux and the dimensionless con-
stant CKZ can be analytically computed [28,29] in the
weakly nonlinear limit. To estimate the amplitude of the
capillary wave turbulent cascade, our power spectra are
fitted by Sη(f) = K2f

−17/6. Although the present ex-
periments do not meet all the hypotheses of the theory
(weak nonlinearity, negligible dissipation, . . .), an effec-
tive flux εeff = (K2(2π)11/6(ρ/γ)1/6)2 can be computed

by assuming arbitrarily 4π/3CKZ = 1, thus providing a
quantity of the same order of magnitude of the energy flux.
Figure 8(b) shows that this effective energy flux increases
with the wave steepness. The values of εeff are comparable
with the estimations from the dissipated power by viscos-
ity, which were obtained in a previous capillary wave tur-
bulence experiment in a nonweakly nonlinear regime [9].
From the scaling of the three-wave interaction collision in-
tegral, for a given value of the energy flux ε a critical wave-
number can be defined kNL ≈ ε2/3(γ/ρ)−1 [30,31]. For
k < kNL the linear time (the wave period) is smaller than
the characteristic nonlinear time (the timescale of the wave
interaction). Therefore, capillary waves cannot propagate
at too large scales, because they disappear due to non-
linear interactions on a time smaller than the period. With
the gravest experimental value of εeff ≈ 7× 10−5 m3 · s−3,
kNL ≈ 23m−1. According to eq. (1), the largest possible
mode k2 = 2/Rh ≈ 45m−1 exceeds kNL and corresponds
to a frequency of f2 = 0.22Hz. Then, a breakdown of the
wave turbulence due to a too large value of the energy flux
does not occur in these experiments, although the level of
nonlinearity is significant.

Discussion. – Using the FLUIDICS experiment, the
turbulent fluctuations of an air-water interface have been
investigated in weightlessness. Due to the excitation sys-
tem by a rotating arm, the dynamics of the interface at
the position of the first wave height sensor is perturbed
by frequent dewetting events that affect the shape of the
power spectra. However, this does not affect the signal at
the location of the second wave height sensor that displays
a surprisingly robust power law in the frequency range
[2.5, 20]Hz for sinusoidal forcing and [1.5, 8]Hz for random
forcing. The exponents of these power-law spectra are
in agreement with the prediction of capillary waves weak
turbulence theory. This observation confirms the previous
investigation of capillary wave turbulence in microgravity
using parabolic flights [15], which reported a power-law
spectrum of wave elevation in f−3 close to the theoretical
prediction in the frequency range [4, 400]Hz both for sinu-
soidal and random forcing. In these previous experiments,
the wetting of ethanol on the glass cylindrical container in-
sured indeed a better quality of the free surface and the
signal-to-noise ratio of the sensors was better. Neverthe-
less, the longer duration of the experiments in the ISS and
the systematic investigation of forcing parameters insure
that the power-law spectrum is not caused by a transient
behavior and can be attributed to capillary wave turbu-
lence. Moreover, in the parabolic flight experiments [15],
the calibration of the capacitive probe was not provided
and thus the amplitude of the waves in turbulent regimes
was unknown. Here, we show that the corresponding runs
are obtained in fact for relatively high values of the wave
steepness s ∈ [0.4, 0.7], demonstrating that the capillary
wave cascade can be observed outside the weakly nonlinear
regime as stated in recent experiments [8,9]. For a steep-
ness level of order 0.1, due to the nonlinear broadening
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of the dispersion relation, the effects of nonresonant in-
teractions are not negligible [32]. Moreover, the analytic
derivation of the capillary wave turbulence spectra and
of associated Kolmogorov-Zakharov constants [28,29] may
become invalid, as the theory requires a time scale separa-
tion between the nonlinear interaction time and the linear
time. Here, the value of the exponent of this strongly
nonlinear wave turbulent cascade, close to αtheo = 17/6,
might be explained by dimensional analysis arguments [30]
in combination with the dispersion relation once we have
supposed that the quadratic nonlinearity and thus three-
wave processes dominate the wave dynamics [9]. Under
strong agitation, the air-water interface in microgravity
therefore presents a turbulent behavior, whose under-
standing remains incomplete and outside the validity do-
main of existing theories. Further experiments performed
in microgravity may be useful to better characterize the
strong capillary wave turbulence evidenced in this work.
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