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Abstract – A simple model of an active colloid consisting of dumbbell-shaped particles that cycli-
cally change their length without propelling themselves is proposed and analyzed. At nanoscales,
it represents an idealization for bacterial cytoplasm or for a biomembrane with active protein
inclusions. Our numerical simulations demonstrate that non-equilibrium conformational activity
of particles can strongly affect diffusion and structural relaxation: while a passive colloid behaves
as a glass, it gets progressively fluidized when the activity is turned on. Qualitatively, this agrees
with experimental results on optical tracking of probe particles in bacterial and yeast cells where
metabolism-induced fluidization of cytoplasm was observed.
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Introduction. – Typical examples of active colloids
are provided by populations of microscopic particles or bi-
ological organisms that are able to propel themselves [1].
It has been experimentally demonstrated that diffusion
in the colonies of swimming bacteria can be strongly en-
hanced [2] and the theory for this effect is available too
(see, e.g., [3]). Active colloids can however be also formed
at nanoscales by macromolecules that cyclically change
their shapes under energy supply. Specifically, the cyto-
plasm of bacterial cells is known to represent a solution
of conformationally active proteins, such as enzymes, mo-
tors and molecular machines [4]. This solution can be so
crowded that the macromolecules almost touch one an-
other within it. Moreover, biological membranes in a liv-
ing cell typically include active protein inclusions that can
make up about 40% of the membrane mass [5].

The estimates reveal that, in contrast to biological mi-
croorganisms, single active proteins cannot typically pro-
pel themselves1: the conformational motions within their

1Self-propulsion might however take place for some exceptionally
rapid enzymes [6].

turnover cycles are only weakly non-reciprocal and the re-
sulting propulsion forces are too small [7,8]. Therefore,
such systems constitute a special class of active colloids,
where individual particles are repeatedly changing their
shapes, but do not swim.

Even in absence of self-propulsion, persistent energy-
driven conformational changes in macromolecules cre-
ate non-thermal fluctuating hydrodynamical flows around
them. Because passive tracer particles are advected by
such fluctuating flows, their diffusion can become en-
hanced [9–11]. However, the analysis has so far been lim-
ited to dilute systems and therefore its results are not
directly applicable to crowded colloids.

At sufficiently large volume ratios, passive colloids are
known to have glass-like properties, manifested by slow
relaxation, subdiffusion, and non-ergodicity (see, e.g., re-
view [12]). In vivo experiments [13] on optical tracking
of particles inside bacterial or yeast cells have been per-
formed —with a surprising result that, at least for the
probe particles with relatively large sizes, such glass be-
havior is only characteristic under starvation conditions
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or in absence of the chemical fuel, such as ATP. The
metabolism fluidizes the cytoplasm, leading to the recov-
ery of classical transport properties within it.

In this letter, we propose an idealized model of oscilla-
tory active colloids where the activity level and the rate of
energy supply can be gradually controlled. The individual
particles forming the considered colloid are active dimers,
or dumbbells [9,14]. It is known that such active dimers
reproduce, in an approximate way, the mechanochemical
activity in real enzymes and protein machines [15]. More-
over, they have been already employed [16] in large-scale
hydrodynamic simulations of the colloids (but still under
less crowded conditions where glass effects are not yet
seen). In contrast to the previous publications [9,11,15,16],
our dumbbells are however further simplified: we assume
that the natural length of the elastic spring that connects
two beads in a dumbbell is periodically varied with time.
The dumbbells interact via a soft parabolic repulsive po-
tential and stochastic Langevin dynamics is assumed. In
the present version, hydrodynamic interactions between
the particles are dropped.

By running numerical simulations for relatively small
2D systems, we demonstrate that diffusion of dumbbells
gets strongly enhanced when shape oscillations of its con-
stituting particles are turned on. Further statistical inves-
tigations reveal that, while the passive colloid behaves as
a glass, classical diffusion properties become recovered as
conformational activity is increased.

The model. – Enzymes are single-protein catalysts
that convert substrate(s) into product(s) in each turnover
cycle. In most enzymes, the cycles are accompanied by in-
ternal mechanochemical motions, i.e., by repeated changes
in the conformation of a protein. Biological molecular
motors and machines are also enzymes, with the only dif-
ference that mechanochemical motions are employed by
them to manipulate other macromolecules or to produce
mechanical work. To do this, chemical energy supplied
with the substrate (often, ATP) is used. The bacterial cy-
toplasm or a cellular biomembrane are essentially densely
packed colloids of active proteins that repeatedly change
their shapes.

Typically, mechanochemically active enzymes have a do-
main structure and their ligand-induced internal motions
consist of the changes in distances between the domains
and in the mutual orientation of them. Principal proper-
ties can be already reproduced in a simple active dimer
model of an enzyme (see review [15]).

In the model, an enzyme protein is viewed as consisting
of two beads (domains) connected by an elastic spring.
The natural length of this spring depends on the ligand
state of the enzyme: it is longer in absence of a ligand,
but gets shorter after the substrate-enzyme and product-
enzyme complexes are formed, returning to the original
longer length after the product release. Thus, an enzyme
behaves as a mechanochemical oscillator that undergoes
an elongation and a contraction in each turnover cycle [15].

This model has been successfully used to investigate col-
lective hydrodynamic effects in numerical simulations for
large populations of catalytically active enzymes [16]. In
our study, it will be however further simplified: we will not
explicitly consider the ligand states and chemical transi-
tions between them. Instead, it shall be just assumed
that the natural length of the spring connecting two beads
in a dimer is periodically (with some additional random
drift) changing with time. Physically, the modulation pe-
riod should be considered as corresponding to the turnover
time of an enzyme.

Explicitly, we assume that the natural length �i of
dumbbell i oscillates with time as

�i(t) = �0 + �1 sin ψi(t), (1)

where the oscillation phase satisfies the equation

dψi

dt
= ωi + ζi(t). (2)

Here, ωi is the mean oscillation frequency and ζi(t) is the
internal noise that takes into account stochastic variations
in cycle times. This Gaussian noise is delta-correlated in
time and independent for different dumbbells,

〈ζi(t)ζj(s)〉 = 2ηδijδ(t − s). (3)

The parameter η controls the characteristic coherence time
for oscillations of the shape. In our numerical simulations,
we assume that all dumbbells are identical and have the
same oscillation frequency ω. The model can however be
readily extended to allow for random variation of these
parameters.

Thus, the time-dependent elastic energy of dumbbell i is

Ei(t) =
1
2
k(r(i)

12 − �i(t))2, (4)

where k is the stiffness of the internal spring and r
(i)
12 =

|r(1)
i −r

(2)
i | is the distance between the first and the second

beads in the dumbbell i.
The considered colloid consists of N dumbbells located

within a volume of linear length L (periodic boundary con-
ditions are used). Beads belonging to different dumbbells
interact via a soft repulsive potential

u(r) =
{

4u0(R − r)2, r ≤ R,
0, r > R,

(5)

where r is the half-distance between the beads. The pa-
rameter u0 specifies the repulsion strength and 2R is the
distance between the particles below which the repulsion
starts. Note that there is no repulsion between the beads
in the same dumbbell.

In molecular dynamics (MD) simulations of colloids, ei-
ther full Newton dynamics or reduced stochastic dynamics
can be used. However, at long times, both descriptions be-
come equivalent [17]. Below, stochastic Langevin dynam-
ics will be employed. Furthermore, in the present version,
possible hydrodynamic interactions between the particles
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are dropped, so that the effects of direct collisions are more
clearly seen. They can however be introduced in the fu-
ture into the model either by explicitly including the water
molecules or in the framework of the multiparticle collision
dynamics approximation (see, e.g., [16]).

Under the stochastic Langevin dynamics, the velocity
of the bead n = 1, 2 in dumbbell i is

dr
(n)
i

dt
= −μ

∂Ei

∂r
(n)
i

− μ
∂Ui

∂r
(n)
i

+ ξ
(n)
i (t). (6)

Here μ is the mobility of the beads and

Ui(r
(n)
i ) =

∑
j �=i

∑
m=1,2

u(|r(m)
j − r

(n)
i |/2) (7)

represents the potential experienced at position r
(n)
i by a

bead n of the dumbbell i, resulting from repulsive inter-
actions with the beads of all other dumbbells.

Moreover, ξ
(n)
i (t) is the Gaussian thermal noise acting

on the bead n in the dumbbell i. Its correlation func-
tions are

〈ξ(m)
i,α (t)ξ(n)

j,β (s)〉 = 2μkBTδmnδijδαβδ(t − s), (8)

where T is the temperature, kB is the Boltzmann constant,
and α, β = (x, y, z) in 3D or α, β = (x, y) in 2D.

It is convenient to measure all lengths in units of the
repulsion interaction radius R and the time in units of
the relaxation time τ = (μk)−1 of the dumbbell. On the
considered molecular scales, a convenient unit of energy is
the thermal energy kBT .

After rescaling, the model is characterized by a set of
dimensionless parameters:

a0 =
�0
R

, a1 =
�1
R

, Ω = ωτ,

Y = ητ, κ =
kR2

kBT
, ν =

u0R
2

kBT
. (9)

Through periodic modulation of the natural length of
the spring connecting two beads, energy is persistently
supplied to a dumbbell. To estimate its mean supply rate,
we can notice that, in the steady state, it should be equal
to the mean rate at which energy is dissipated by the
dumbbell. A simple calculation yields that the energy ΔE
supplied to an active dumbbell per one oscillation period is

ΔE

kBT
=

πa2
1κΩ

1 + Ω2
. (10)

Additionally, an important parameter of the model
is the fraction φ of the total volume occupied by the
dumbbells.

Figure 1 shows an example of the simulated active col-
loids. Three supplementary videos of active colloids, based
on the simulations, are available in (see S1.mpg, S2.mpg
and S3.mpg).

The choice of parameters. – Depending on the
parameter values, our model of an oscillatory colloid
can describe various systems, including, for example,

Fig. 1: The crowded colloid of oscillating dumbbells. A snap-
shot from a simulation with a1 = 1. The cyan circles,
representing the beads, have radius σ = 0.68R. Yellow lines
symbolically show elastic strings connecting the beads in a
dumbbell.

populations of biological microorganisms that cyclically
change their shapes. The focus in the present study is
however on the nanoscale phenomena within single living
cells. Therefore, the parameter values typical for active
proteins in biological cells shall be used.

Protein domains, corresponding to dumbbell beads in
our model, typically have the size of about 10–20 nm.
They are so stiff that one domain cannot deform another
and penetrate inside it. Therefore, a repulsive hard-core
potential could have been a good candidate to describe
repulsive interactions between them. There are however
also soft electrostatic interactions between proteins that
extend over a few nanometers. Additionally, a protein is
surrounded by a layer of hydrated water that is soft [18].
Recently, non-contact effective interactions between pro-
teins in water were analyzed by direct molecular dynamics
simulations [19]. Therefore, the hard repulsion core is ef-
fectively surrounded by a soft interaction shell.

In our simple model, a single interaction potential (5)
is used. Nonetheless, one can approximately interpret
this potential as having a hard core and a soft outside
shell. The boundary between them can be set at a ra-
dius σ at which the repulsion potential becomes much
larger than the thermal energy kBT . Below, we take u0 =
100 kBT/R2 in eq. (5) and define the bead “hard-core”
radius by the condition that u(r = σ) = 40kBT , which
yields approximately σ = 0.68R (see fig. 2). Note however
that such radius σ is sensitive to the choice of the thresh-
old potential value. It should be stressed that the model
does not have a true hard-core repulsion potential and the
beads can penetrate one into another to some extent.

If particles of linear size σ are randomly distributed at
the mean distance of d between them, their volume frac-
tion is about φ3D = (σ/d)3 or the area fraction about
φ2D = (σ/d)2 in the 2D case, where the numerical prefac-
tors that depend on particle shapes are dropped.

In bacteria, about 30 percent of cytosol is typically occu-
pied by proteins [20]. Assuming that all proteins have the
same size σ and using the above estimate, this yields the
relative distance of about d/σ = 0.3−1/3 � 1.5 between
them. If, for example, σ = 0.68R, this corresponds to
d � R ≈ 1.47σ, so that the neighbours of a protein would
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Fig. 2: Parabolic repulsive interaction potential u as a func-
tion of the half-distance r between the beads from different
dumbbells. For convenience, the length σ = 0.68R at which
u = 40 kBT is chosen to define the “hard-core” radius of a bead.

typically be located within a soft interaction shell from it.
A similar situation is characteristic for lipid membranes
in biological cells. Typically, protein inclusions make up
about 40 percent of the membrane mass and most of such
inclusions (like, e.g., ion pumps) are active and cyclically
change their shapes. Note that, in contrast to cytosol, the
biomembrane represents a 2D colloid.

In this letter, simulations for a two-dimensional system
are performed. We shall have 246 dumbbells within the
area with the linear size of L = 40R. Assuming that the
radius of a bead is σ = 0.68R, this yields the area fraction
of φ2D = 0.45.

The relaxation time τ of the dumbbell should be about
the characteristic slow conformational relaxation time in a
protein, which is of the order of milliseconds. On the other
hand, the turnover cycle time of an enzyme, corresponding
in our model to the modulation period 2π/ω, typically
takes tens of milliseconds. Therefore, we can choose Ω =
0.1. The initial oscillation phases will be randomly chosen
for different dumbbells and noise with Y = 10−1 will be
moreover included into the phase evolution equation (2).

When choosing the parameters a0 and a1, it is impor-
tant that, even at the maximal length of a dumbbell,
an additional bead cannot enter into the space between
the beads within it, i.e., that the condition (a0 + a1) <
4(σ/R) = 2.72 is satisfied. Below, we choose a0 = 1.5 and
vary a1 between 0 and 1, so that this condition holds even
at the largest oscillation amplitude.

The dimensionless stiffness of the spring connecting the
beads is κ = 100. The energy supplied to our model en-
zyme per single cycle is ΔE = 7.8 kBT at a1 = 0.5 and
ΔE = 31.1 kBT at a1 = 1. For comparison, the chemical
energy supplied in the reaction of ATP hydrolysis, often
powering protein machines, is about 20 kBT .

Numerical simulations. – In our two-dimensional
simulations, periodic boundary conditions have been used.
To prepare the initial configuration, the following proce-
dure was employed:

We started with a system where all dumbbells had
a zero natural length, �0 = 0, and they were regularly
distributed forming a two-dimensional grid. Then, a short
numerical simulation of this system over the time interval

of 100τ was performed. During this simulation, the
system’s temperature was raised 5-fold and, moreover,
the natural length of dumbbell springs �0, together with
the modulation amplitude �1, was gradually increased
from zero to �0 = 1.5R and �1 = a1R. The equations
were then integrated over further 100τ . Configurations
of particles established at the end of such preparatory
simulations were used as initial conditions for the actual
simulations with the duration of 50000τ .

To explore the diffusion phenomena, we traced motion
of the centers of mass, ρi = (r(1)

i + r
(2)
i )/2, for all dumb-

bells i. Thus, trajectories were obtained that could be
further analyzed. Averaging was always performed over
all 246 different dumbbells in one simulation.

Note that at very short times, corresponding to dis-
placements of mass centers much less than the mean
distance between the particles, interactions between the
dumbbells do not play a role. In this short-time regime,
free Brownian motion of an isolated dumbbell, described
by the Langevin equation (6) without the interaction
terms, should be observed. For the considered system, the
diffusion coefficient for an isolated dumbbell is D0 =0.005
R2/τ . At such very short times, the mean-square dis-
placement (MSD) of a dumbbell from its initial position
should be

〈Δρ2(t)〉 = 4D0t. (11)

The mean-square displacements of dumbbells, deter-
mined in our simulations, are shown as functions of time
for different activity levels in fig. 3.

It can be noticed that the dependences in this figure
have the form characteristic for colloidal glasses [12,21].
As is usually done, they can be analyzed by fitting to
power laws tβ . As is seen in fig. 3, one gets different
exponents β− and β+ in the intermediate- and long-time
regimes. The crossover between the regimes occurs at
times tcross.

Both at short and at long times, classical diffusion is ob-
served (exponents β+ vary between 0.97 at a1 = 0 and 0.99
at a1 = 1). In the intermediate regime, subdiffusion with
the exponents β− ranging between 0.55 and 0.75 takes
place. The dependences of the subdiffusion exponent β−
and the crossover time tcross on the activity level a1 are
shown in figs. S1 and S2 in the Supplementary Material
Supplementarymaterial.pdf (SM).

While classical diffusion is again recovered at long times,
the diffusion coefficient D at such times is however smaller
than D0, indicating that diffusion in the colloid becomes
suppressed.

Both the suppression of diffusion at long times and the
observed subdiffusion at intermediate times are typical
glass effects. They suggest that caging of particles takes
place [12]. The free diffusive motion of a particle is blocked
by other particles surrounding it and forming a cage. Dis-
placements over large distances are only possible if, by a
rare fluctuation, the particle was able to escape from its
cage.
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Fig. 3: Dependences of the mean-square displacement (MSD)
of dumbbells (in units of R2) on dimensionless time t/τ for
systems with passive (a1 = 0, blue) and active (a1 = 0.5, green,
and a1 = 1.0, red) dumbbells. Solid and dashed lines show
power law fits with the exponents β− and β+. The crossover
times tcross correspond to intersections of these lines.

The dependence of the long-time diffusion coefficient of
particles on the activity level a1 is shown in fig. 4. We
see that diffusion becomes enhanced when non-equilibrium
conformational activity of dumbbells is introduced and
gradually increased. Alternatively, it can be said that
suppression of diffusion with respect to that for free par-
ticles becomes then less strong. Furthermore, as is seen in
figs. S1 and S2 in the SM, the subdiffusion exponent β−
gets larger at higher activity levels and the classical diffu-
sion regime sets on earlier (i.e., at the shorter cross-over
times tcross) with an increase in the parameter a1.

Similar behavior is observed in equilibrium colloids
when the volume or area fractions of particles are de-
creased; it corresponds to a transition from the glass to
the fluid phase [12,21]. The above results suggest that ef-
fective fluidization of a colloid can also take place because
of the non-equilibrium conformational activity of the par-
ticles forming it.

To further explore this conjecture, structural relaxation
in the model has been numerically analyzed. To do this,
we have determined the scattering function

F2(k, t) =
1
N

〈∑
i

eik·(ρi(t)−ρi(0))
〉
. (12)

Because of the isotropy of the system, this function de-
pends only on k = |k|.

The determined functions F2(kmax, t) are shown for
three different activity levels in fig. 5(a). Here, kmax =
2π/b, where b = L/N1/2 is the mean distance between
the dumbbells. The structural relaxation time τα is de-
fined [12] by the equation

F2(kmax, τα) =
1
e
. (13)

The dependence of τα on the activity level a1 is displayed
in fig. 5(b).

As we can see, structural relaxation gets much faster
when non-equilibrium conformational activity in the
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Fig. 4: Dependence of the long-time diffusion coefficient D of
dumbbells on their activity level a1.
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Fig. 5: (a) Scattering functions F2(kmax, t) at a1 = 0 (blue),
0.5 (green), and 1.0 (red). (b) Structural relaxation times τα

at various activity levels a1.

particles takes place. The structural relaxation time de-
creases by an order of magnitude in comparison to the
passive colloid (a1 = 0) when a1 = 1; it becomes then
close to the oscillation period T = 2π/Ω = 62.8 of active
dumbbells.

To further explore statistical properties of trajectories,
we determined statistical distributions of displacements
|Δρ| within a given time Δt. For classical diffusion, such
distributions should be

p(|Δρ|) ∝ |Δρ| exp
(
−|Δρ|2

2Dt

)
. (14)
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Fig. 6: (a) Normalized distributions of displacements (see the
text) within the time interval Δt = 1000τ for passive (a1 = 0,
blue) and active (a1 = 0.5, green, and a1 = 1.0, red) dumbbells.
Solid curves are fits to the Gaussian form. (b) Non-Gaussianity
coefficients α2 at different activity levels a1 for Δt = 1000 τ .

Therefore, the ratio p(|Δρ|)/|Δρ| has then the Gaussian
form.

In fig. 6(a), we show the normalized histograms where
the frequencies of displacements at three activity levels
within time Δt = 1000τ are divided by |Δρ|. Addition-
ally, this figure shows the fits of such distributions to the
Gaussian form. It can be noticed that, for a passive col-
loid, the distribution deviates from the Gaussian depen-
dence for large displacements Δρ. When non-equilibrium
conformational activity is switched on, the deviations be-
come smaller and they practically disappear at a1 = 1.

To quantitatively characterize the deviations, the non-
Gaussianity coefficient

αd =
〈|Δρ|4〉

ζd〈|Δρ|2〉2 − 1 (15)

is introduced, where ζd = 1 + 2/d and d is the dimen-
sionality of the system. This coefficient vanishes in the
Gaussian case.

The computed non-Gaussianity coefficients at different
activity levels are shown in fig. 6(b). One can see that such
coefficients decrease at higher activity levels, thus further
supporting our conclusion that fluidization of the system
takes place.

To check for possible finite-size effects, some simulations
have been repeated for a system of the double linear size.
Figure S3 in the SM demonstrates that the computed time
dependences of MSD for the single- and double-size sys-
tems practically coincide.

In another test, we have taken as an initial condition
a snapshot from the oscillatory system with a1 = 1.
Then, the simulation was continued, but with the natural
lengths �i of dumbbells frozen at their values in such initial
snapshot. Thus, an equilibrium system was constructed
with exactly the same, but static, size distribution of
dumbbells as in the oscillatory case (see supplementary
video S3.mpg).

The dependence of MSD on time in the frozen sys-
tem is shown in fig. S4 in the SM. From this depen-
dence, we could find that the long-time diffusion constant
is Dfrozen/D0 = 0.072. This value is closer to the diffu-
sion constant D/D0 = 0.045 in the passive colloid and
much less than the diffusion constant D/D0 = 0.45 in
the respective oscillatory case. Hence, we have demon-
strated that active oscillations, not the dispersion of sizes
or possible overlaps, are responsible for the observed dif-
fusion enhancement and for the fluidization of a colloidal
glass.

Discussion. – In this letter, we have proposed a sim-
ple model of a non-equilibrium colloid of active particles
reciprocally changing their shapes. The parameters of the
model could be chosen in such a way that the conditions
typical for metabolically active bacterial cytoplasm and
for cellular membranes with active protein inclusions were
roughly reproduced.

Colloids of circular particles, whose radii periodically
changed, were previously considered [22] as a model for
epithelial cellular tissue. This model is not applicable to
protein colloids since, due to incompressibility of water
and lipid bilayers, the volume of a particle should be con-
served. Instead of the glass behavior, an analog of the
yielding transition in amorphous solids was observed [22].

In contrast, our simulations have demonstrated that
passive colloids of dumbbells behave as glasses, but the
glass properties fade away when conformational oscilla-
tions are introduced. They were performed for 2D sys-
tems, but, as typical for crowded colloids [12,21], similar
behavior can be expected in the 3D case too. Thus, we
conclude that, under sufficiently strong conformational ac-
tivity of the particles, effective fluidization of a glass-like
colloid may take place. The fluidization becomes possible
at the rate of energy supply of about 10 kBT per a particle
and a turnover cycle.

Previously, a similar conclusion has been drawn in the
study [13] where positions of fluorescent genetically en-
gineered particles with the sizes varying from 50 nm to
150 nm were optically tracked in E. coli and in yeast
cells. Classical diffusion was characteristic in presence
of metabolism. However, the diffusion was much slowed
down and pronounced glass properties were observed

40003-p6

http://stacks.iop.org/0295-5075/128/40003/mmedia


Diffusion in crowded colloids of particles cyclically changing their shapes

under starvation conditions or when ATP, i.e., the chem-
ical fuel, was depleted in the cells.

The experimental effects depended however strongly on
the size of the probe particles, getting less pronounced
for the tracers of a smaller size [13]. In our study, ad-
ditional probe particles were not introduced and only
trajectories of small dumbbells themselves were tracked.
Therefore, our results cannot be directly compared with
them. Nonetheless, some comments can be made.

According to ref. [23], cages in colloidal glasses are char-
acterized by a hierarchical onion-like structure, with the
smaller ones enclosed within the larger ones. If a smaller
cage is destroyed and a particle escapes from it, it may still
stay confined within a larger cage. Moreover, characteris-
tic times of diffusion processes get progressively increased
with the cage size, following a self-similarity law [23]. It
seems natural to assume that a large probe particle can
be only confined within the cages of the respective large
size. Moreover, one might also expect that diffusion for
probe particles would be qualitatively the same as for the
smaller particles, though scaled up in time. The cross-
over from subdiffusion to classical diffusion would occur
at MCD about the probe particle size. In the exper-
iments [13], only displacements at relatively long times
could be resolved. For the smallest probe particles, the
observation times could have been shorter than tcross, so
that the glass-like effects indeed remained weak.

For glass-like colloids, it is known that their statistical
single-particle properties can be already reproduced using
small systems, whereas many-particle correlations should
have strong size effects [21] (see also [12,23]). Thus, we
could reliably investigate diffusion of individual particles
in the present study with a small system, but further inves-
tigations aimed, e.g., at exploring dynamic heterogeneity
effects, shall require working with the systems of a larger
size. In the future, simulations accounting for hydrody-
namic interactions can also be performed.

Based on our results, strong diffusion enhancement can
be expected not only in bacterial cytoplasm, but also for
biological membranes with protein inclusions, provided
that chemical energy needed to maintain shape oscilla-
tions in membrane proteins is persistently supplied. It
would be interesting to experimentally check this.

The observed fluidization of a colloidal glass can be in-
terpreted as an effect of an additional non-thermal noise
caused by active conformational changes in the particles
constituting it. Hence, our study supports the conjec-
ture [24] (see also [25]) that, in presence of metabolism,
active intracellular noise might prevail over thermal noise
and determine transport phenomena in the cells.

At the end, we want to stress that, although the discus-
sion in this letter was centered on the nanoscale processes
within biological cells, the proposed model is universal;
it can be applied to other, natural or artificial, systems
at different length and time scales as well. Indeed, artifi-
cial non-equilibrium colloids of small oscillating dumbbell-
shaped particles can be readily designed.
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[5] Höfling F. and Franosch T., Rep. Prog. Phys., 76

(2013) 046602.
[6] Jee A.-Y., Dutta S., Cho Y.-K., Tlusty T.

and Granick S., Proc. Natl. Acad. Sci. U.S.A., 115
(2018) 14.

[7] Sakaue T., Kapral R. and Mikhailov A. S., Eur.
Phys. J. B, 75 (2010) 381.

[8] Alonso S. and Mikhailov A. S., Phys. Rev. E, 79
(2009) 061906.

[9] Mikhailov A. S. and Kapral R., Proc. Natl. Acad. Sci.
USA, 112 (2015) E3639.

[10] Koyano Y., Kitahata H. and Mikhailov A. S., Phys.
Rev. E, 94 (2016) 022416.

[11] Mikhailov A. S., Koyano Y. and Kitahata H.,
J. Phys. Soc. Jpn., 86 (2017) 101013.

[12] Hunter G. L. and Weeks E. R., Rep. Prog. Phys., 75
(2012) 066501.

[13] Parry B. R., Surovtsev I. V., Cabeen M. T., O’Hern

C. S., Dufresne C. S. and Jacobs-Wagner C., Cell,
156 (2014) 183.

[14] Kogler F., Interactions of Artificial Molecular Ma-
chines, Diploma Thesis, Technical University, Berlin,
(2009).

[15] Flechsig H. and Mikhailov A. S., J. R. Soc. Interface,
16 (2019) 20190244.

[16] Dennison M., Kapral R. and Stark H., Soft Matter,
13 (2017) 3714.

[17] Gleim T., Kob W. and Binder K., Phys. Rev. Lett., 81
(1998) 4404.

[18] Chen X., Weber I. and Harrison R. W., J. Phys.
Chem. B, 112 (2008) 12073.

[19] Nawrocki G., Karaboga A., Sugita Y. and Feig M.,
Phys. Chem. Chem. Phys., 21 (2019) 876.

[20] Vendeville A., Lariviere D. and Fourmentin E.,
FEMS Microbiol. Rev., 35 (2010) 395.

[21] Doliwa B. and Heuer A., Phys. Rev. E, 61 (2000) 6898.
[22] Tjhung E. and Berthier L., Phys. Rev. E, 96 (2017)

050601.
[23] Ooshida T., Goto S., Matsumoto T and Otsuki M.,

Phys. Rev. E, 94 (2016) 022125.
[24] Guo M., Ehrlicher A. J., Jensen M. H., Renz M.,

Moore J. R., Goldman R. D., Lippincott-

Schwartz J., MacKintosh F. C. and Weitz D. A.,
Cell, 158 (2014) 822.

[25] Yasuda K., Okamoto R., Komura S. and Mikhailov

A. S., EPL, 117 (2017) 38001.

40003-p7


