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Abstract – By basing on the neutral (Schwarzschild and non-Schwarzschild) black holes in
Einstein-Weyl gravity, here we construct asymptotically flat black holes of Einstein-Weyl action
coupled to a Born-Infeld (BI) gauge field by holding the same horizon radius. Later, we discuss
the thermodynamic properties of these black holes in detail, and show that these obey the first
law of thermodynamics of black hole.
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Introduction. – Though the general relativity (GR)
has been extensively tested at the highest achievable
experimental precision up to date, gravity is not a renor-
malizable quantum field theory from the theoretical view-
point. A possible attempt to solve the problem of the
non-renormalizability of general relativity is to include
higher-order corrections that become important at higher
energy [1]. In four-dimensional spacetime, the most gen-
eral theory up to the second order in curvature takes the
following form [2,3]:

I =
∫

d4x
√−g[γR − αCμνρσCμνρσ + ηR2] (1)

without any matter field. Here α, η and γ are constants,
and Cμνρσ is the Weyl tensor. In a theory of gravity,
black holes can be viewed as the most fundamental ob-
jects, and provide powerful probes for studying some of
the more subtle global aspects of the theory. In pure
gravity or with traceless matter stress tensor, the no-go
theorem discussed in refs. [2,3] demonstrated that R must
vanish for a black hole, and hence the ηR2 term has no
contribution to the equations of motion. With this setting,
the non-Schwarzschild black hole (NSBH) solutions with
η = 0 were obtained in four [2–4] and higher [5] dimen-
sional Einstein-Weyl gravity, even the generalizations of
AdS [6,7] and charged solutions [8,9] in four-dimensional
Einstein-Weyl gravity. The Hawking radiation in the
vicinity of non-Schwarzschild black hole was discussed in
ref. [10]. The quasinormal modes of this NSBH have
been also investigated under the test scalar field pertur-
bation [11,12].

Besides the curvature terms, one would also expect
higher derivative gauge field contributions to the action.
Its Lagrangian L(F) is

L(F) = 4β2
(

1 −
√

1 +
FμνFμν

2β2

)
, (2)

where the constant β is the Born-Infeld (BI) parameter,
Fμν = ∂μAν − ∂νAμ is electromagnetic tensor field and
Aμ is the vector potential. The BI theory was originally
introduced to get a classical theory of charged particles
with finite self-energy [13]. Hoffmann [14] was the first
one in relating general relativity and the BI electromag-
netic field, and derived a solution of the Einstein equations
for a point-like BI charge, which is devoid of the diver-
gence of the metric at the origin that characterizes the
Reissner-Nordström (RN) solution [15]. In the Einstein
gravity coupled to a BI electromagnetic field, asymptoti-
cally flat BI black holes have been presented in three- [16]
and four-dimensional [17,18] spacetime. Later, the dy-
namical stability and thermodynamical properties of BI
black holes have been discussed in refs. [19–21]. Notice
that when the BI term is added, its stress tensor is not
traceless, and hence R will not be zero. In this case the
ηR2 term will have non-trivial effect on the solution. In
this paper, we construct BI black holes based on the two
“seed” solutions (Schwarzschild black hole (SBH) and non-
Schwarzschild black hole (NSBH)) in the Einstein-Born-
Infeld-Weyl gravity. Hence, we still choose η = 0 so that
this new action can uncover the neutral black holes (SBH
and NSBH) when the BI term vanishes. We will further
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2h

r2

[
1 +

1
f

(
1 + 4r2β2 − rf ′ − 2β(Q2 + 2r4β2)√

Q2 + r4β2

)]
− h′2

2h
+

(4f + rf ′)h′

2rf
+ h′′ = 0,

(2h − rh′)f ′′ − 3hf ′2

2f
− f ′

(
−h′ − rh′2

2h
+

h

rf

(
2 + 8r2β2 − 2f − 4β(Q2 + 2r4β2)√

Q2 + r4β2

))

+
fh′2(rh′ − 3h)

2h2 + h

(
12 + 16r2β2

3r2 − 3 + 16αβ2 + r2(6 + 64αβ2)β2

3αf
− 4f

r2 +
1
α

)

− 8r6β5

3(Q2 + r4β2)3/2 +
2βh

3r2f

(
4(r4β2 + 4r6β4 − 3Q2f)√

Q2 + r4β2
+

√
Q2 + r4β2(4α + r2(3 + 16αβ2))

α

)
= 0,

A′
t +

Q√
Q2/β2 + r4

√
h(r)
f(r)

= 0, (8)

discuss the thermodynamic properties of these BI black
holes, and verify the first law of thermodynamics of black
holes.

This paper is organized as follows. In the next section,
we introduce the BI field into the action of Einstein gravity
with additional quadratic curvature terms and derive an
asymptotically flat black hole solution in Einstein-Born-
Infeld-Weyl gravity. Then, some related thermodynamic
properties of these BI black holes will be explored in the
third section. We end the paper with concluding remarks
in the fourth section.

Solutions in Einstein-Born-Infeld-Weyl gravity.
– The action of Einstein-Weyl gravity in the presence of
a nonlinear BI electromagnetic field can be written as

I =
∫

d4x
√−g[R − αCμνρσCμνρσ + κL(F)]. (3)

In the limit β → ∞, L(F) (2) reduces to the standard
Maxwell form

L(F) = −FμνFμν + O(F 4). (4)

By varying the action (3) with regard to the gauge field Aμ

and metric gμν , these corresponding equations of motion
can be written as

Rμν − 1
2
gμνR − 4αBμν − 2κTμν = 0,

∂μ

⎛
⎝ √−gFμν√

1 + F 2

2β2

⎞
⎠ = 0, (5)

where the trace-free Bach tensor Bμν and the energy-
momentum tensor of the BI field Tμν are defined as

Bμν =
(

∇ρ∇σ +
1
2
Rρσ

)
Cμνρσ ,

Tμν =
FμλF λ

ν√
1 + FμλF λ

ν

2β2

+
1
4
gμνL(F). (6)

We assume a static and spherically symmetric metric
ansatz

ds2 = −h(r)dt2 +
1

f(r)
dr2 + r2 (dθ2 + sin2 θdϕ2) , (7)

and substitute this ansatz into the field equations (5)

see eq. (8) above

where we set κ = 1, the prime (′) denotes differentiation
with respect to r, and Q denotes electric charge.

If Q → 0, the equations of motion (8) reduce to
those found in refs. [2,3], and recover the same solu-
tions: the Schwarzschild black holes (SBH) and the non-
Schwarzschild black holes (NSBH). It is interesting to note
that a BI black hole in the general relativity (GR) usually
possesses more than one horizon because of the electric
charge in the metric. However, this BI metric was not a
solution in this Einstein-Born-Infeld-Weyl gravity (α �= 0).
In addition, that the spacetime has only one horizon will
make the numerical calculation easier. Therefore, we re-
gard the neutral black holes (SBH and NSBH), rather than
the BI metric in the GR as the background solutions to
construct BI black holes in the Einstein-Born-Infeld-Weyl
gravity. From now on we shall take α = 1/2 without loss
of generality.

Moreover, those numerical BI black holes in the
Einstein-Born-Infeld-Weyl gravity can be divided into two
groups: Group I is a charged generalization of the higher
derivative curvature for SBH; Group II is a higher deriva-
tive curvature charged generalization of NSBH. The NSBH
has been constructed in the Einstein-Weyl gravity [2,3,9],
where there exist a bound of 0.363 < r0 < 1.143 for a hori-
zon radius r0 of NSBH when taking α = 1/2. Here 0.363
and 1.143 correspond to the disappearance of temperature
T and mass M of NSBH, respectively.

We assume h(r) = f(r)e−2δ(r) and f(r) = 1 −
2m(r)

r , and take the expansions of m(r), δ(r) and At(r)
around the event horizon r0 of the corresponding neutral
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m2 =
3r0(β

√
Q2 + r4

0β
2 − m1 − r2

0β
2)

8α(2m1 − 1)
− β

(
4r4

0β
2(2r2

0β
2 + 3m1 − 1) + Q2(4r2

0β
2 + 4m1 − 1)

)
2r0(2m1 − 1)

√
Q2 + r4

0β
2

+
Q2r3

0β
3

2(Q2 + r4
0β

2)3/2 +
m1(6r0β

2 − 1 + 2m1) + 4r4
0β

4

r0(2m1 − 1)
− Q2(Q2 − 4r2

0)β
2

2r0(2m1 − 1)(Q2 + r4
0β

2)
,

δ1 =
r0(β

√
Q2 + r4

0β
2 − m1 − r2

0β
2)

2α(2m1 − 1)2
− 8β2r0(m1 + 2r2

0β
2)

3(2m1 − 1)2
− 2Q4β2

3r0(2m1 − 1)2(Q2 + r4
0β

2)

+
8r0β

3(Q2 + m1r
2
0 + 2r4

0β
2)

3(2m1 − 1)2
√

Q2 + r4
0β

2
+

2Q2β(Q2 + 2m1r
4
0β

2)
3(2m1 − 1)2(Q2 + r4

0β
2)3/2 ,

At1 =
e−δ0Qβ√
Q2 + r4

0β
2
. (10)

Atδ

Fig. 1: Numerical solutions of Group I for m(r), δ(r) and At(r) with Q = 0.16 and r0 = 0.5. The values of expansion coefficients
(δ0, m1) are (−0.027, −0.010), (−0.022, −0.015) and (−0.019, −0.018) for β = 1/2, 1 and 10, respectively. Moreover, the mass
function m(r0) equals r0

2 = 0.25.

Atδ

Fig. 2: Numerical solutions of Group II for m(r), δ(r) and At(r) with Q = 0.16 and r0 = 0.5. The values of expansion coefficients
(δ0, m1) are (0.983, 0.399), (1.064, 0.410) and (1.086, 0.410) for β = 1/2, 1 and 10, respectively. Moreover, the mass function
m(r0) equals r0

2 = 0.25.

(Schwarzschild and non-Schwarzschild) black holes

m(r) =
r0

2
+ m1(r − r0) + m2(r − r0)2 + . . . ,

δ(r) = δ0 + δ1(r − r0) + δ2(r − r0) + . . . ,

At(r) = At1(r − r0) + At2(r − r0)2 + . . . , (9)

and substituting these expansions into (5), the coefficients
δi and Ati for i = 1, and mi for i = 2 can be solved in
terms of the three non-trivial free parameters r0, m1 and
δ0. For example, m2, At1 and δ1 can be obtained as

see eq. (10) above

At the radial infinity (r → ∞), the metric functions
and vector potential can be expanded in power series,

this time in terms of 1/r. Demanding that the metric
components reduces to those of the asymptotically flat
Minkowski spacetime

m(r) = M − Q2

2r
+ . . . , δ(r) =

2αQ2

r4 + . . . ,

At(r) = Φ − Q

r
+ . . . , (11)

where M and Q are associated with the mass and charge
of the black hole, and Φ is the electric potential.

Adopting the expansions (9) up to the (r − r0)6 order,
we assume the initial values of the parameters δ0, m1 at a
radius ri = r0 + 1

1000 just outside the horizon r0, and then
use numerical routines in Mathematica to integrate the
equations out to large radius, so that these interpolation
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(a) Group I (b) Group II

Fig. 3: M vs. T for BI and charged (β → ∞) black holes with the same horizon radius r0 = 0.5. Here the stating points (black
spots) in (a) and (b) correspond to T = 0.159, M = 0.25 (SBH) and T = 0.0136, M = 0.619 (NSBH) with r0 = 0.5, respectively.
The arrow indicates the increase of charge Q.

(a) Group I (b) Group II

SS

Fig. 4: S vs. M for BI and charged (β → ∞) black holes with the same horizon radius r0 = 0.5. Here the stating points (black
spots) in (a) and (b) correspond to M = 0.25, S = 0.785 (SBH) and M = 0.619, S = 5.71 (NSBH) with r0 = 0.5, respectively.
The arrow indicates the increase of charge Q.

functions of metric functions m(r) and δ(r) and vector po-
tential At(r) satisfy the boundary condition (11). Finally,
we can obtain the numerical solutions for m(r), δ(r) and
At(r) with proper initial values of δ0 and m1 for different
β. For example, we set α = 1/2, Q = 0.16 and r0 = 0.5
to derive numerical solutions of metric functions m(r) and
δ(r), and vector potential At(r) for different values of β
in the Groups I and II as shown in figs. 1 and 2.

Thermodynamic properties of Born-Infeld black
holes. – Having established the existence of the BI black
holes, it is instructive to investigate the thermodynamic
properties of BI black holes in the Einstein-Born-Infeld-
Weyl gravity.

Starting from SBH and NSBH with fixed horizon ra-
dius r0 = 0.5, we can separately construct a sequence of
BI black hole solutions for β = ∞, 10, 1 and 1/2 with
increasing Q, and then collect the numerical results for
these BI black holes in Groups I and II. The relationships
between the masses M and temperatures T of these black
holes are shown in fig. 3, where the stating points (black

spots) correspond to the values of thermodynamical quan-
tities like mass M , temperature T and entropy S of SBH
and NSBH with horizon radius r0 = 0.5 [2,3,9], which
take the following values T = 0.159, M = 0.25, S = 0.785
(SBH) and T = 0.0136, M = 0.619, S = 5.71 (NSBH), re-
spectively. From fig. 3, we can find that the M ∼ T curve
of the BI black hole with larger values of β approaches
that of the charged black hole (β → ∞).

Since we are dealing with a higher-derivative theory, the
entropy is not simply given by one quarter of the area of
the event horizon, and equals S = πr2

0 + 8παm1. We
then find the entropy S of these BI black holes starting
from Schwarzschild and non-Schwarzschild black holes, as
a function of mass M with the increase of charge Q for
the Groups I and II as shown in figs. 4 and 5.

Now we discuss the first law of thermodynamics of BI
black holes. In order to evaluate this law, the discrete
values of thermodynamical quantities of mass M , temper-
ature T , entropy S and and potential Φ in the two groups
of BI black holes with different charge Q are shown in
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(a) Group I (b) Group II

Fig. 5: Q vs. M for BI and charged (β → ∞) black holes with the same horizon radius r0 = 0.5. Here the stating points (black
spots) in (a) and (b) correspond to M = 0.25 (SBH) and M = 0.619 (NSBH) with r0 = 0.5, respectively. The arrow indicates
the increase of charge Q.

Table 1: The discrete values of thermodynamical quantities M , T , S and Φ for BI black holes with r0 = 0.5 and β = 10 in
Group I (left) and Group II (right).

No. Q M S T Φ
1 1/100 0.24994 0.78440 0.15919 0.01992
2 3/100 0.24947 0.77644 0.15949 0.05978
3 5/100 0.24854 0.76060 0.16008 0.09968
4 7/100 0.24716 0.73703 0.16097 0.13966
5 10/100 0.24427 0.68767 0.16283 0.19982
6 13/100 0.24047 0.62241 0.16530 0.26031
7 16/100 0.23584 0.54241 0.16835 0.32118
8 20/100 0.22853 0.41514 0.17324 0.40308
9 24/100 0.22015 0.26731 0.17898 0.48590

No. Q M S T Φ
1 1/100 0.61953 5.71125 0.013461 0.015488
2 3/100 0.620252 5.71834 0.01333 0.046434
3 5/100 0.62167 5.73247 0.013079 0.07729
4 7/100 0.62380 5.75345 0.01270 0.10799
5 10/100 0.62827 5.79728 0.01193 0.15364
6 13/100 0.63423 5.85501 0.01095 0.19863
7 16/100 0.64159 5.92537 0.00978 0.24277
8 20/100 0.65345 6.03633 0.00804 0.30000
9 24/100 0.66748 6.16348 0.00621 0.35499

table 1. On the left (BI black hole in Group I), forward
differences of mass M entropy S and charge Q can be
written as

ΔM ≡ M [i + 2] − M [i]
2

,

= {−0.000699, −0.001157, −0.002135, −0.003344,

−0.004215, −0.005968, −0.007843},

ΔS ≡ S[i + 2] − S[i]
2

,

= {−0.011899, −0.019705, −0.036463, −0.057312,

−0.072630, −0.103632, −0.137553},

ΔQ ≡ Q[i + 2] − Q[i]
2

= {0.02, 0.02, 0.025, 0.03, 0.03,

0.035, 0.04}, i = 1, . . . , 7. (12)

Then the expression dM − (TdS + ΦdQ) in the form of
discrete points is given by

ΔM [i] − (T [i + 1] · ΔS[i] + Φ[i + 1] · ΔQ[i])
= {−2.6 ∗ 10−6, −3.82 ∗ 10−6, −0.00024,

6.8 ∗ 10−6, 0.000019, −0.00023, 0.00013}, i = 1, . . . , 7.

(13)

Similarly, we can also calculate dM − (TdS + ΦdQ) by
using the finite difference method

ΔM [i] − (T [i + 1] · ΔS[i] + Φ[i + 1] · ΔQ[i])
= {2.57 ∗ 10−7, 1.27 ∗ 10−6, 0.0001888, −1.71 ∗ 10−6,

−2.0 ∗ 10−6, 0.000228, −0.0000146}, i = 1, . . . , 7,

(14)

from table 1, right (BI black hole in Group II). Thus the
thermodynamical quantities of BI black holes are seen to
obey the first law dM = TdS + ΦdQ to quite a high
precision.

Concluding remarks. – In this paper, we have ob-
tained asymptotically flat Born-Infeld black hole solutions
for different values of β = ∞, 10, 1 and 1/2 in Einstein-
Born-Infeld-Weyl gravity. Here β → ∞ corresponds to
the charged black hole in Einstein-Maxwell-Weyl grav-
ity. Moreover, all BI black holes hold the same horizon
radius r0 = 0.5 and have been separately constructed
starting from Schwarzschild and non-Schwarzschild black
holes with increasing of Q. We also discussed thermody-
namic proprieties of these BI black holes, and collected
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the related values for the thermodynamic quantities M ,
S, Q, T and Φ, so that we found the BI black holes obey
the first law of thermodynamics of black holes by using
the finite difference method.

Recently, the stability of non-Schwarzschild black holes
has been discussed in refs. [11,12]. It is interest-
ing to explore the stability of BI black holes in the
Einstein-Born-Infeld-Weyl theory. In addition, (Anti-) de
Sitter (AdS/dS) charged black hole solutions in Einstein-
Maxwell-Weyl gravity have been also constructed in
ref. [22]. We will also extend to recover the AdS/dS
BI black hole solutions in the Einstein-Born-Infeld-Weyl
theory.
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