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Abstract – We analyse a proposition which considers quantum theory as a mere tool for calculat-
ing probabilities for sequences of outcomes of observations made by an Observer, who him/herself
remains outside the scope of the theory. Predictions are possible, provided a sequence includes at
least two such observations. Complex valued probability amplitudes, each defined for an entire
sequence of outcomes, are attributed to Observer’s reasoning, and the problem of wave function’s
collapse is dismissed as a purely semantic one. Our examples include quantum “weak values”,
and a simplified version of the “delayed quantum eraser”.
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. . .there must be a certain conformity
between nature and our thought.

H. Hertz

Unlike classical mechanics, which has its conceptual is-
sues largely settled by the end of the 19th century [1],
quantum theory appears to need an interpretation, which
would go beyond mere statement of its mathematical ap-
paratus. One of the reasons for this is the peculiar use of
complex valued wave functions or, more generally, ampli-
tudes, needed whenever one wishes to evaluate frequencies
(probabilities) with which the observed events would occur
under identical circumstances. Present suggestions range
from the pragmatic Copenhagen interpretation (see [2]
and references therein) to the highly subjective QBism
(see [3] and references therein), and include the Bohmian
mechanics (see [4] and references therein), Everett’s many
worlds theory (see [5] and references therein), and the con-
sistent histories approach (see [6] and references therein),
to name but a few. Among the issues at stake is the role
and place of a conscious Observer, famously brought into
the discussion as “Wigner’s friend” [7]. Another one is
the “collapse” of the wave function (see [8] and references
therein), i.e., a sudden change in the observed system’s

state, apparently not described by the Schroedinger equa-
tion. While many of the mentioned interpretations [2–6],
each in its own way, aim at a global description of physical
world, our objective is somewhat more modest.

The purpose of this paper is to look for the most basic
framework, which could unite basic principles of the ele-
mentary quantum mechanics, to be tested on a larger scale
later. Inevitably, certain general questions need to be ad-
dressed first. We start, therefore, by asking what one may
expect from quantum theory. A possible answer can be
found in Feynman’s Lectures [9], and we reproduce it here
in full: “So at the present time we must limit ourselves to
computing probabilities. We say “at the present time”, but
we suspect very strongly that it is something that will be
with us forever – that it is impossible to beat this puzzle –
that it is the way nature really is”.

In the above quote “we” clearly refers to conscious Ob-
servers. The probabilities, on the other hand, tend to
be mentioned in the literature in at least three different
contexts. Objective probabilities are related to frequen-
cies, with which events occur [10], subjective probabilities
describe the degree of one’s belief [11], and abstract prob-
abilities, satisfying Kolmogorov’s axioms [12], are a math-
ematical concept. In what follows, we will choose the first
option, i.e., assume that the purpose of the theory is to
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predict relative frequencies of events, or of series of events,
should the same experiment(s) be repeated a large number
of times under the same conditions.

What kind of events should then be considered? Physics
is an empirical science, so the “events” must refer to
objective experiences, i.e., accessible in principle to any
number, or to all, conscious Observers. (Such is, for ex-
ample, observation of the moon in the night sky, whereas
one’s dream about the moon must fall outside the remit
of physical sciences.)

At this point one faces a further choice to be made.
Either quantum theory is so universal as to describe the
nature of human consciousness, and of life in general, or
it is a tool, specifically tailored to and constrained by the
limitations of the Observer’s perception. The Observer is
either a subject of the theory, or its user, whose place is
outside the theory’s scope.

For an imperfect analogy, consider a community of mo-
bile phone users whose ability, for reasons unknown, is
limited to enacting applications on a set’s screen. After
some trying, the users will be able to compile a rule book,
similar to a basic operation manual. But, unable to look
inside the set, they will ultimately arrive at the level be-
yond which no further understanding of telephony’s princi-
ples is possible. Conversely, although these basic rules will
say something about how the users communicate, they will
provide little insight into the origin of human conscious-
ness. The analogy is imperfect since, unlike the physi-
cal world, a smartphone was made by user’s peers, and
more detailed descriptions of the set’s design, Maxwell’s
theory, and the network’s infrastructure are, in principle,
available.

Thus, a choice needs to be made, and in the following,
we will opt for the second proposition. An assumption
that the make up of the world can be known in its en-
tirety is a strong, and a relatively recent one. Arguably,
the fact that a theory inevitably arrives at the level where
no further explanation is possible, and the nature simply
is as it is, may point towards the existence of phenomena,
inaccessible to the Observer’s experience (cf. the awkward
analogy of the previous paragraph). There is little doubt
that human observers have only limited perceptive pow-
ers, e.g., an ability of directly observing (leave other four
senses aside) only surfaces of objects in three-dimensional
coordinate space. (Hence the need to equip a measuring
device with a pointer, whose spatial displacement encodes
the value of the measured variable.)

Another reason for excluding the Observer from the re-
mit of the theory is that no one has so far observed a
state of human consciousness, while little is known even
about consciousness of ants or trees [9]. (This is not to
be confused with observation of physical or biochemical
precesses in a live organism, accessible to direct or indi-
rect measurements [13].) Even if the required observa-
tional technique could, at some stage, be found, the state
of one’s consciousness will be accessible to all except the
conscious person, caught in a bad progression of being

aware of being aware . . . of being aware of his/hers own
state. This, in turn, contradicts the earlier requirement
that physics should deal only with phenomena, accessi-
ble to all in equal measure. The old view that “inner
life of an individual is . . . extra-observational by its very
nature” [13], and quantum mechanics should not try to
describe the Observer entirely, is currently regaining its
popularity. One example can be found in a recent paper
by Frauchieger and Renner [14], although valid critique of
the analysis was later given in [15].

Having adopted a view by which quantum theory is for,
rather than about conscious Observers, we can move on to
more practical issues. We will do so by analysing the case
where the events, perceived by an Observer, are the results
of observations, made on a elementary quantum system,
with which the theory associates a Hamiltonian operator
Ĥ, and a Hilbert space of a finite dimension N . An Ob-
server may want to measure a variable C, represented by a
Hermitian operator Ĉ, with eigenstates |cn〉, and eigenval-
ues Ci, some of which can be degenerate. Quantum the-
ory postulates that an accurate measurement of C must
yield one of the discrete values Ci. The outcome of a
measurement cannot be predicted with certainty, but the
probability of obtaining a Ci is given by

P (Ci) = 〈ψ(t)|π̂(Ci)|ψ(t)〉, (1)

where |ψ(t)〉 is the state in which the system is at the time
of measurement, π̂(Ci) =

∑N
n=1 |cn〉Δ(Ci −〈cn|Ĉ|cn〉)〈cn|

is the projector onto the state, or a subspace, correspond-
ing to the value Ci. (Above we have introduced Δ(X−Y ),
which equals 1 if X = Y , and 0 otherwise.)

A closer look at eq. (1), which aims to describe a sin-
gle measurement of C, shows that, in fact, it establishes a
correlation between two Observer’s experiences. An Ob-
server must first determine that the system is indeed in
|ψ(t)〉 prior to the measurement, and only then evaluate
the odds on having the outcome Ci. The first step can be
made by preparing the system with the help of an appara-
tus, controlled by the Observer, or by measuring, at some
t0 < t, another variable, B with non-degenerate eigenval-
ues Bi, so that obtaining a Bj also helps establish that
|ψ(t0)〉 = |bj〉. Either way, with |ψ(t)〉 = Û(t, t0)|ψ(t0)〉,
where Û(t, t0) = exp(−i

∫ t

t0
Ĥ(t′)dt′) (see footnote 1),

eq. (1) now yields a conditional probability for obtaining
first Bj and later Ci,

P (Ci)=P (Ci ← Bj)≡
N∑

n=1

Δ(Ci − Cn)|A(cn ← bj)|2. (2)

A complex valued quantity

A(cn ← bj) ≡ 〈cn|Û(t, t0)|bj〉, (3)

is a Feynman’s transition amplitude [16] for a system
which starts in |bj〉 at t0 and ends up in |cn〉 at t.

1Understood as a time-ordered product, if H(t′) do not commute
at different t′’s.
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Importantly, the sequence Ci ← Bj cannot be reduced
further, e.g., to predicting the statistics of measuring Bi

on its own. There are two compelling reasons why the
concept of the state of a system, previously not a sub-
ject to an Observer’s experience, can have little physical
meaning. Suppose, Alice receives a spin-1/2 from a com-
pletely unknown source. One way to determine the state
it is in would be to produce a large number of its iden-
tical copies, and perform measurements on the ensemble,
created in this manner. But this is forbidden by the no-
cloning theorem [17], since the task cannot be performed
by means of a unitary evolution, the only kind of evo-
lution allowed by quantum theory. Alternatively, Alice
could make a single measurement, but the result will de-
pend on the choice of the measured operator, and cannot,
therefore, reveal the true state of the system before Alice’s
intervention. (See also [18], for a proof that a measured
value cannot pre-exist its measurement, and must be pro-
duced in the course of it.) We are, therefore, encouraged
to shift the focus of attention away from the wave function
|ψ(t)〉 in eq. (1) to the transition amplitude A(cn ← bj)
in eq. (3), related to the correlations between at least two
events, experienced by the Observer.

Furthermore, the two-measurements case (2), (3) is not
fully representative of the problem at hand, and we will
turn to sequences in which three or more quantities Q�,
� = 1, 2, . . . , L, are measured times t�, t�+1 < t�, with
the possible outcomes Q1

i1
, Q2

i2
, . . . , QL

iL
(we apologise for

the cumbersome notations). To predict the probability of
a given series of outcomes, P (QL

iL
. . . ← Q1

i1
), one must

construct complex valued probability amplitudes for all
possible scenarios, add them as appropriate, and take the
absolute square of the results [9]. This procedure needs
to take into account the degeneracies of eigenvalues Q�

i�
of

the operators Q̂�, representing the quantities Q�, and can
be summarised as follows.

I) Virtual (Feynman) paths. First, one needs to in-
troduce L complete basis sets {|q�

n�
〉}, n� = 1, 2, . . . , N ,

in which the operators Q̂� are diagonal. Connecting
the states at different times t�, yields NL virtual paths
{qL

nL
. . . ← q2

n2
← q1

n1
}, each endowed with its own prob-

ability amplitude,

A(qL
nL

. . . ← q2
n2

← q1
n1

) = 〈qL
nL

|Û(tL, tL−1)|qL−1
nL−1

〉
× . . . 〈q3

n3
|Û(t3, t2)|q2

n2
〉〈q2

n2
|Û(t2, t1)|q1

n1
〉. (4)

These paths are the elementary building blocks,
from which the observable probabilities will later be
constructed.

II) Superposition principle. We will start with the
case where the first measured eigenvalue, Q1

i1
, is non-

degenerate, thus allowing for one-to-one correspondence
Q1

i1
↔ |q1

i1
〉, and return to a more general case in IV) be-

low. Other eigenvalues may, or may not, be degenerate,
but different rules apply to the “present”, at the last time
t = tL, and the “past” at t = t�, 1 < � < L. If several
eigenstates correspond to a “past” value Q̂�

i�
, one must

allow for the interference between the paths, not distin-
guished by the measurement. In this case, the amplitude
for obtaining such a value, and ending up in a state |qL

nL
〉,

is given by

A(qL
nL

. . . ← Q�
i�

. . . ← Q1
i1) =

n∑
n2,n3,...,nL−1=1

L−1∏
�=2

Δ(Q�
i�
− 〈q�

n�
|Q̂�|q�

n�
〉)A(qL

nL
← qL−1

nL−1
. . . ← q1

i1). (5)

However, no interference is allowed for the paths, lead-
ing to different final states, even if the last observed
(“present”) value QL

iL
is degenerate. In this case we have

P (QL
iL

← QL−1
iL−1

. . . ← q1
i1) =

N∑
nL=1

Δ(QL
iL

− 〈qL
nL

|Q̂L|qL
nL

〉)

|A(qL
nL

← QL−1
iL−1

. . . ← Q1
i1)|

2, (6)

which reduces to a simple Born rule for a non-
degenerate QL

iL
,

P (QL
iL

. . . ← Q1
i1) = |A(qL

iL
. . . ← Q1

i1)|
2. (7)

The rule demonstrates, for example, that at present a par-
ticle cannot be at two different locations in space. Suppose
that (we moved from finite-dimensional systems to point
particles in one dimension), at t = tL, one measures a pro-
jector onto an interval [a, b], π̂[a,b] =

∫ b

a
|x〉〈x|dx. There is

no amplitude for being inside [a, b], whose absolute square
gives the probability to obtain an eigenvalue 1. Rather,
there are probabilities for being at each location inside
the interval, whose sum yields the odds on obtaining this
eigenvalue. Not so, if π̂[a,b] is measured in the past, at some
t� < tL, where one has to define an amplitude for passing
through the entire interval according to eq. (5), and take
its absolute square, as prescribed by eq. (6). This is true
in every representation, determined by the observations
one wishes to make.

We will return to the need for a distinction between the
past and the present in the next paragraph, after noting
that if Alice wishes to test the theory, she can prepare
a statistical ensemble by measuring a Q̂1, selecting those
systems, for which the outcome is a non-degenerate eigen-
value Q1

i1
, and proceeding to measure the values of the re-

maining Q�. The gathered statistics will then agree with
eq. (6).

III) Causality and consistency. Causality ensures that
the observations made in the future do not affect the re-
sults already experienced. Indeed, it is easy to check that
ignoring the outcomes, obtained at t = tL, restores the
probabilities (6), for a shorter sequence {QL−1

iL−1
. . . ← Q1

i1
},

P (QL−1
iL−1

. . . ← Q1
i1)=

∑
iL

P (QL
iL

← QL−1
iL−1

. . . ← Q1
i1). (8)

The rule is also consistent, in the sense that to add one
more measurement of Q̂L+1 at tL+1 > tL, one should
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simply relegate the moment tL to the past, and con-
sider Feynman paths {qL+1

nL+1
← qL

nL
. . . ← q1

n1
} with the

amplitudes

A(qL+1
nL+1

← qL
nL

. . . ← q1
n1

) = 〈qL+1
nL+1

|Û(tL+1, tL)|qL
nL

〉
×A(qL

nL
. . . ← q1

n1
). (9)

Equation (9) helps provide some insight into the mean-
ing of eq. (6). Suppose, at tL one measures an oper-
ator Q̂L, whose eigenvalues are degenerate. It is then
possible, without altering the probability of the previous
sequence of outcomes, to measure an operator Q̂L+1, di-
agonal in one of the bases, in which Q̂L is also diagonal.
If the eigenvalues of Q̂L+1 are all distinct, and the mea-
surement is made immediately after tL, tL+1 → tL, the
first factor in the r.h.s. of eq. (9) is a Kronecker delta,
〈qL+1

nL+1
|Û(tL+1, tL)|qL

nL
〉 → 〈qL

nL+1
|qL

nL
〉 = δnL+1nL

. Insert-
ing (9) into eq. (5) (with L replaced by L+1), applying the
Born rule (7), and using (8), yields eq. (6) for the proba-
bility of observing a sequence {QL

iL
← QL−1

iL−1
. . . ← Q1

i1
}.

This illustrates Feynman’s assertion [9] that scenarios,
which can be distinguished in principle (in this case, by
a future more detailed measurement), are always exclu-
sive. In particular, there can be no interference between
the paths leading to orthogonal final states.

IV) Inconclusive preparation and consistency. Suppose
next that the first measurement yields an M -degenerate
value Q1

i1
, with which one associates an M -dimensional

sub-space of the system’s Hilbert space, spanned by a ba-
sis set |um(Q1

i1
)〉, m = 1, 2, . . . ,M . This information is

not sufficient for assigning to the system a particular ini-
tial state and Alice, who still wishes to create a statisti-
cal ensemble, must make an additional assumption about
what the state might be. Consistent with the result Q1

i1
,

the system is prepared in any of the states |um(Q1
i1

)〉. As-
suming that the m-th choice is made with a probability
ωm ≥ 0,

∑M
m=1 ωm = 1, Alice obtains

P (QL
iL

. . . ← Q�
i�

. . . ← Q1
i1) =

M∑
m=1

ωmP (QL
iL

. . . ← Q�
i�

. . . ← um), (10)

where P (QL
iL

← QL−1
iL−1

. . . ← um) is the probability (6)
for the system, which was prepared in a state |um〉. With
all possible choices of ωm, and of orthonormal bases span-
ning the M -dimensional subspace, Alice has many options.
One does, however, stand out. With no other informa-
tion available, she can decide to give all |um(Q1

i1
)〉 equal

weights, thus choosing

ωm = 1/M. (11)

Now the probabilities (10) no longer depend on a particu-
lar choice of the basis |um(Q1

i1
)〉, since

∑M
m=1 |um〉〈um| =∑M

m=1 |u′
m〉〈u′

m| = π̂(Q1
i1

). (Note that Alice could as well
consider all states in the subspace to be equally probable.

A demonstration is straightforward for M = 2, where a
state can be parametrised by the polar and azimuthal an-
gles, and the integration of the corresponding projectors
over the entire Bloch sphere yields one half of the unity
operator, Î/2.)

With the choice (11) made, the rule is consistent in the
sense that if Q1 is a constant quantity, Q̂1 = λÎ, and
the first measurement yields no information whatsoever,
P (QL

iL
. . . ← Q�

i�
. . . ← um) reduces to the probability of

a shorter sequence,

P (QL
iL

. . . ← Q�
i�

. . . ← Q1
i1 = λ) =

P (QL
iL

. . . ← Q�
i�

. . . ← Q2
i2), (12)

as if the first measurement, whose outcome is certain, were
not made at all.

V) Composites and separability. With the help of the
above, one can treat observations, made on a system of
interest (labelled S, with a Hamiltonian ĤS), seen as
a part of a larger composite system+ environment (la-
belled E, with a Hamiltonian ĤE), whatever this envi-
ronment might be. The full Hamiltonian is now given
by Ĥ = ĤS + ĤE + Ĥint, where the last term describes
the interaction between the S and E. If, for example,
the environment is a system in a K-dimensional Hilbert
space, the eigenvalues Qi(S) of an operator Q̂(S), rep-
resenting a system’s variable Q(S), are at least K-fold
degenerate, and the probability of a series of outcomes
of observations made on the S alone are still given by
eqs. (4)–(6). It is easy to check that if the system is com-
pletely isolated from the environment, so that Ĥint = 0
and Û(t�+1, t�) = ÛS(t�+1, t�) ⊗ ÛE(t�+1, t�), after sum-
ming over the degeneracies one recovers eqs. (4)–(6) for
the system only, i.e., with Û(t�+1, t�) = ÛS(t�+1, t�). Note
that so far we have also assumed that at t = t1 the re-
sult of the first measurement corresponds to a compos-
ite’s product state |q1

i1
(S)〉 ⊗ |q1

j1
(E)〉. A measurement of

a more general collective quantity, Q̂(S + E), may yield a
Q1

i1
(S +E), which would leave the composite in an entan-

gled state |q1
i1

(S + E)〉 =
∑N

j1=1 βi1j1 |q1
j1

(S)〉 ⊗ |φj1(E)〉,
〈φ(E)j |φ(E)j〉 = 1. If no further interaction between S
and E is possible, application of eqs. (4)–(6) to each term
of the sum yields

P (QL
iL

(S) . . . ← Q̂�
i�

(S) . . . ← Q1
i1(S + E)) =

N∑
nL=1

Δ(QL
iL

(S) − 〈qL
nL

(S)|Q̂L(S)|qL
nL

(S)〉)

×
N∑

j,j′=1

β∗
i1j′βi1j〈φ(E)j′ |φ(E)j〉

×A∗(qL
nL

(S) . . . ← Q̂�
i�

(S) . . . ← q1
j′(S))

×A(qL
nL

(S) . . . ← Q̂�
i�

(S) . . . ← q1
j (S)), (13)
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which simplifies to

P (QL
iL

(S) . . . ← Q1
i1(S + E)) =

N∑
j=1

|βi1j |2P (QL
iL

(S) . . . ← q1
j (S)), (14)

in a special case where |φj(E)〉 are orthogonal,
〈φ(E)j′ |φ(E)j〉 = δjj′ , and the system (S) can be said
to start in a state |q1

j (S)〉 with a probability |βi1j |2.
Equations (4)–(6) and (10) can be rewritten in a com-

pact and, perhaps, more familiar form (tr stands for trace):

P (QL
iL

. . . ← Q̂�
i�

. . . ← Q1
i1) =

tr{π̂(Q2
i2 , t2) . . . π̂(QL

iL
, tL) . . . × π̂(Q2

i2 , t2)ρ̂(Q1
i1)}, (15)

where, in the Heisenberg representation, π̂(Q�
i�

, t�) ≡
Û−1(t�, i1)π̂(Q�

i�
)Û(t�, i1) is the projector onto the eigen-

subspace, associated with an outcome Q�
i�

and ρ(Q1
i1

) =∑M
m=1 |um〉ωm〈um| is the system’s density operator [13].

Similar strings of projectors appear, for example, in the
consistent histories approach (CHA) [6], but there are im-
portant differences. Firstly, while the CHA aims to be a
general theory, which includes observers, we place an Ob-
server outside the theory’s scope. Secondly, for us eq. (15)
is a derived result, and the primary and most basic quan-
tities are the transition amplitudes (4) and (5).

As an example where this difference is important, con-
sider the case where the system is “pre- and post-selected”
in the states |q1

i1
〉 and |q3

i3
〉 at t1 and t3, and in eq. (13)

the role of environment is played by a von Neumann
pointer [13], employed to measure some Q̂2 at t1 < t2 < t3.
The accuracy of the measurement may vary, yet in every
case the information about the system, obtained from the
pointer’s final position, will have to be expressed in terms
of an amplitude A(q3

i3
← Q2

i2
← q1

i1
) in eq. (5) [19]. If

Q̂2 = |q2
m〉〈q2

m| is a projector onto a state |q2
m〉, and the

coupling to the pointer is small (the accuracy of the mea-
surement is poor), the average shift of the pointer, f , turns
out to be given by

〈f〉 ≈ Re

[
A(q3

i3
← q2

m ← q1
i1

)∑N
n=1 A(q3

i3
← q2

n ← q1
i1

)

]
=

Re

[
〈q3

i3
(t2)|Q̂2|q3

i1
(t2)〉

〈q3
i3

(t2)|q1
i1

(t2)〉

]
, (16)

where |q3
i3

(t2)〉 ≡ Û−1(t3, t2)|q3
i3
〉 and |q1

i1
(t2)〉 ≡

Û(t3, t2)|q1
i1
〉. The last expression in eq. (16) was first

obtained in [20], where the complex valued fraction in
brackets was called “the weak value (WV) of the oper-
ator Q̂2.” Written in this way, a WV looks like a physical
variable of a new kind [21], whose physical significance is
still discussed in the literature (see, for example [22,23]).
However the first expression in the r.h.s. of eq. (16) iden-
tifies it with a previously known renormalised Feynman
amplitude (or a weighted sum of such amplitudes if a more

general Q̂2 is inaccurately measured) [24–29]. The prob-
lem is, little is known about the probability amplitudes,
apart from their relation to the observable frequencies, dis-
cussed above. Until, or, unless a deeper insight into the
physical meaning of quantum amplitudes is gained, such
an inaccurate “weak” measurement will remain merely an
exercise in recovering the values of transition amplitudes
from a response of a system to a small perturbation [19].

As a further illustration we revisit, in its simplest ver-
sion, the “delayed choice quantum eraser experiment” [30].
Figure 1(a) sketches a primitive double-slit experiment, in
which a two-level system (S) (a spin-1/2), which an ob-
served outcome B1 has prepared in a state |b1〉, is sub-
jected to a later measurement of an operator Ĉ(S) =
C1|c1〉〈c1| + C2|c2〉〈c2| at some t = t2. The final state
|c1〉 plays the role of a point on the screen, which can be
reached by passing, at t1 < t2, through a pair of orthog-
onal states | ↑〉 and | ↓〉, representing the two slits. A
pair of virtual paths in the two-dimensional Hilbert space
(fig. 1(a), solid line) interfere, and the probability to have
C1(S) is given by (spin has no own dynamics)

P (C1 ← B1) = |A1 + A2|2, (17)
A1 = 〈c1| ↑〉〈↑ |b1〉, A2 = 〈c1| ↓〉〈↓ |b1〉.

In a different setup, shown in fig. 1(c), initial measure-
ment of a collective variable B̂(S + E) entangles the
system with a two-level “environment” (E), whose orthog-
onal states are |+〉 and |−〉. As before, Ĉ(S) is mea-
sured at t2, and then environment’s variable D̂(E) =
D1|d1〉〈d1| + D2|d2〉〈d2| is measured at t3 > t2. Four rel-
evant virtual paths in the now four-dimensional Hilbert
space (solid lines in fig. 1(b)) are endowed with probabil-
ity amplitudes (E has no own dynamics either)

AI = 〈d1|+〉A1, AII = 〈d2|+〉A1,

AIII = 〈d1|−〉A2, AIV = 〈d2|−〉A2.
(18)

Using the rules I )–VI ), for the probabilities of the se-
quences of outcomes shown in fig. 1(c), we easily find

P (D1 ← C1 ← B1) = |AI + AII|2,
P (D2 ← C1 ← B1) = |AIII + AIV|2 (19)

and

P ′(C1 ← B1) ≡ P (D1 ← C1 ← B1)
+ P (D2 ← C1 ← B1) = |A1|2 + |A2|2. (20)

Much of the interest in the above scheme stems from the
fact that while there is no interference term ∼ A1A2 in
eq. (20), this term reappears in P (D1 ← C1 ← B1) =
|A1 +A2|2/2, e.g., if one chooses |d1〉 = [|+〉+ |−〉]/

√
2. It

is tempting to conclude that coherence between the paths
1 and 2, apparently lost after measuring Ĉ(S) at t2, is
somehow restored if the second system, (E), is found in
|d1〉. All the more surprising is that this seems to happen
after the outcome C1 has already been observed. However,
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b1〉 =α ↑〉+ β ↓〉

↑〉 ↓〉

c1〉 c2 〉 c1〉 +〉 c1〉 −〉

c1〉 d1〉 c1〉 d2 〉

b1〉 =α ↑〉 +〉 + β ↓〉 −〉11
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1

1

1 2

Fig. 1: (a) A primitive “double-slit problem”, with four virtual
paths connecting states in a two-dimensional Hilbert space of
a spin (S). No observation is made at t1, and the paths joined
by an arc are allowed to interfere. (b) A different “double-
slit problem”, with virtual paths (only 4 of the 16 are shown)
connecting states in a four-dimensional Hilbert space of the
composite (S+E). A measurement made on the spin at t2 does
not destroy interference between paths leading to the same final
outcomes. (c) The observed outcomes: what is measured at t3
cannot affect the net probability of obtaining C1 at t2 < t1.

fig. 1(b) shows that in making this conclusion we are not
comparing like with like. In fig. 1(b), the interference term
is controlled by the magnitudes of the amplitudes of two
virtual paths, I) and II), which connect states in a different
four-dimensional Hilbert space of the composite system,
and the argument cannot be reduced to a discussion of
the individual paths shown in fig. 1(a). Quantum theory
does its job of calculating probabilities for the outcomes in
fig. 1(c) in an explicitly causal manner, and, we suspect,
cannot be asked to do more than that. (For other recent
attempts at “demystifying” the delayed eraser experiment
we refer the reader to refs. [31,32].)

We can now sum up the “minimalist view”, advertised
in the title. Quantum theory is a tool, allowing a con-
scious Observer to predict statistical correlations between
the results of two or more of his/hers observations, first
of which is needed to “prepare” the system. With a par-
ticular series of results in mind, he/she may reason about
its likelihood by associating with each outcome a state,
or states, in a Hilbert space, including all systems which
interact with each other during the time interval consid-
ered. A probability amplitude for the entire series is then
constructed using the prescriptions I )–V ), and taking its
absolute square yields the required probability. Such at-
tributes of the theory as amplitudes, Hilbert spaces, oper-
ators, and Hamiltonians are essentially Hertz’s “symbols
of external objects, formed by ourselves”, “whose conse-
quences are always the necessary consequences in the na-
ture of the thing pictured” [1]. Observer’s main effort
then goes into identifying a system’s Hamiltonian Ĥ, and
the operators Q̂1, Q̂2, . . . , Q̂L, whose spectra contain the

possible observational outcomes. As a tool, tailored to Ob-
server’s limited abilities, the theory is unable to progress
beyond a certain explanatory level, where it must admit,
as in the opening quote, that nature simply is this way.
For the same reason, Observer’s conscience is not a valid
subject of quantum theory, which must lose its pretence
(if any) at explaining the world in its entirety, and give
way to other complementary endeavours.

Several other remarks may be in order. Firstly, the
symbolic status of probability amplitudes does not pre-
vent that their values can, under certain conditions, be
deduced from the measured probabilities [19]. Indeed, this
was done, for example, in the experiments reported in [33]
and [34].

Secondly, different sets of measurements, e.g., of the
quantities Q� and Q′�, made on the same system, may
produce essentially different statistical ensembles even if
the operators Q̂� and Q̂′� commmute [28,35]. For exam-
ple, less detailed probabilities (some of Q̂l’s eigenvalues
are degenerate) cannot be obtained by adding the most
detailed ones (obtained for a Q̂′l, whose eigenvalues are
all non-degenerate). This is, of course, only a more elab-
orate version of a double-slit experiment, where the price
of knowing the way a particle has taken is the loss of the
interference pattern on the screen.

Finally, so far no mention has been made of the col-
lapse of the wave function. The possibility of avoiding
this issue altogether is precisely the point we intend to
make here. An Observer, whose reasoning only requires
him/her to evaluate certain matrix elements in an abstract
space, may discard the “collapse problem” as a purely se-
mantic one. It is, of course, possible to argue that in
eq. (1) the evolution of the state |qL−1

nL−1
〉 is mysteriously

interrupted at t = tL, but it is equally possible not to en-
ter into this discussion at all. Conceptual economy from
not having to worry about the fate of the wave function
can be significant. One avoids dealing with a universe
which splits every time a measurement is made, as it hap-
pens, for example, in the Everett’s many worlds (MW)
picture [5]. Curiously, in 1995 Price [36] polled physicists
wishing to determine the level of support for the MW ap-
proach, and counted Feynman among its supporters. We
note that Feynman’s support must have been lukewarm
at best. In [35] one reads: “Somebody mumbled something
about a many-world picture, and that many-world picture
says that the wave function ψ is what’s real, and damn the
torpedoes if there are so many variables, NR. All these dif-
ferent worlds and every arrangement of configurations are
all there just like our arrangement of configurations, we
just happen to be sitting in this one. It’s possible, but I’m
not very happy about it”.

To conclude, we note that the proposed viewpoint
imposes strict limits and, if adopted, is likely to have
implications for such concepts as the “universal wave func-
tion” [37], for attempts to construct a quantum theory
where no special role is given to an Observer [4–6], or for
collapse-related theories of quantum mind (see [38] and
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references therein). None of these matters are trivial, and
cannot be dismissed out of hand. The format of this let-
ter does not allow for detailed comparisons, so our pur-
pose here was to articulate a maximally reduced view,
which can later be extended, modified, or abandoned. For
instance, it is possible that the simple model, used to il-
lustrate it, will fail when dealing with extremely large or
complex systems, or where the relativistic effects of vari-
ous kinds need to be taken into consideration. It is also
possible that, contrary to the Feynman’s quote at the be-
ginning of this article, the quantum method has not yet
arrived at its explanatory limit. If so, a more sophisti-
cated theory will have to provide a further insight into the
meaning of the transition probability amplitudes, which
so far have played the role of basic elements of a quantum
mechanical investigation. For now, we argue, a path anal-
ysis, similar to the one shown in fig. 1, is the best “expla-
nation” which quantum mechanics is able to offer in cases
like the “Hardy’s paradox” [39], the “quantum Cheshire
cat effect” [23], or indeed in other situations, involving
additional measurements made on pre- and post-selected
quantum systems [28].
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