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Abstract – We propose a two-stage heat cycle for an optimized linear irreversible heat engine.
In the first stage, the heat engine works between the hot reservoir and a finite-sized sink. In the
second stage, it works between the finite-sized heat source and cold reservoir. Under the tight-
coupling condition, the engine shows the low-dissipation behavior in each stage, i.e., the entropy
generated depends inversely on the duration of the process. The phenomenological dissipation
constants are determined within the theory itself in terms of the heat transfer coefficients and the
heat capacity of the auxiliary system. We study the efficiency at maximum power and highlight
a class of efficiencies in the symmetric case that show universality up to second order in Carnot
efficiency, while the Curzon-Ahlborn efficiency is obtained as the lower bound for this class.

editor’s  choice Copyright c© EPLA, 2020

Introduction. – The central result in thermodynamics
is that a reversible heat cycle between a hot and a cold
reservoir achieves the Carnot efficiency [1]

ηC = 1 − Tc

Th
, (1)

where the temperatures of the reservoirs satisfy Tc < Th.
This result is outstanding for its independence from the
nature of the working medium and the exact type of re-
versible cycle. Real-world machines mostly operate in ir-
reversible regimes with efficiencies that are system and/or
mechanism dependent [2–14]. Thus, it is remarkable to
find universal features for efficiency in different models of
irreversible machines [15–34].

Various models have been proposed in the literature,
such as the endoreversible [2], stochastic [16,33] and the
low-dissipation (LD) [19] ones, which work with a finite
cycle time. Steady-state thermal machines have been
studied using a linear irreversible framework [15] and be-
yond [21]. Although the formula rediscovered by Curzon
and Ahlborn [2,25], ηCA = 1−

√
1 − ηC, was initially sus-

pected to be a generic result for efficiency at maximum
power (EMP), it actually applies to small temperature
gradients (small values of ηC), whereby ηCA ≈ ηC/2 +
η2
C/8 + O[η3

C]. The universal nature of the first- and the
second-order terms has been subsequently elaborated in
various models [16–18]. Apart from finite-rate mecha-
nisms, models with finite-sized reservoir(s) have also been
studied [35–40].

In this letter, we propose a two-stage linear irreversible
heat engine which runs in a cycle. In the first stage, the
heat engine works between the hot reservoir and a finite-
sized sink (see fig. 1). In the second stage, it works be-
tween the finite-sized heat source and the cold reservoir.
Our first main result shows that a linear irreversible en-
gine with a finite-sized sink or source, and optimized for
its performance in a given time, shows the LD behavior
such that the total entropy generated in the process is in-
versely proportional to the duration of the process [19].
More precisely, the LD behaviour is obtained as a reason-
able approximation to our model in the strong-coupling
limit. The second main result is that, under a condition
of symmetry, we obtain a class of efficiencies showing uni-
versality up to the second order in the Carnot value. In-
terestingly, CA-efficiency emerges as the lower bound of
this class (see eq. (30)).

Let us first consider the work extraction by reversible
means. We denote the energy and entropy of the system
by (Uh, Sh) and (Uc, Sc), at temperature Th and Tc, re-
spectively. Also, we denote the heat capacity at constant
volume of the finite-sized heat sink/source as CV (T ) and
it is a function of temperature T . For simplicity, we take
the volume of the finite-sized heat source or sink to be con-
stant during the cycle. In the first stage, the finite-sized
heat sink is initially at temperature Tc, and it is coupled
with the hot reservoir through a heat engine. The en-
gine extracts work reversibly via infinitesimal heat cycles.
The heat ejected towards the finite-sized sink successively
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Fig. 1: The schematic diagram of a two-stage heat engine. In
the first stage, the hot reservoir (Th) is coupled with a finite-
sized sink (blue box initially at temperature Tc) via a linear
irreversible heat engine. After time τh, the temperature of
the sink reaches Th. In the second stage, the finite-sized heat
source (red box initially at temperature Th) is coupled with the
cold reservoir (Tc) via a linear irreversible heat engine. After
time τc, the finite-sized heat source comes back to its initial
state of the first stage, thus completing a cycle.

increases its temperature until it attains thermal equilib-
rium with the hot reservoir. The maximum extracted
work, also called exergy [41], in the first stage, is then
W1 = ThΔS − ΔU . Here, ΔX = Xh − Xc. In the second
stage, the system is detached from the previous set-up and
coupled to the cold reservoir via a reversible heat engine.
Again, work can be obtained till thermal equilibrium is
achieved with the cold reservoir, completing one cycle for
the auxiliary system. So, the energy in the second stage
is W2 = ΔU − TcΔS. The total work extracted in one
cycle is W0 ≡ W1 + W2 = ΔTΔS. The input heat ex-
tracted from the hot reservoir is Qh = ThΔS. So, the
efficiency η = W0/Qh, as expected, is equal to the Carnot
value. Note that, since the auxiliary system interpolates
between two given initial and final equilibrium states, ΔU
and ΔS are given parameters of the cycle.

Linear irreversible heat engine. – Such an engine
is in simultaneous contact with both the heat source and
sink (see fig. 1), and it can be analyzed within the linear
irreversible framework [42,43]. In the first stage, the heat
flux Q̇h enters the engine from the hot reservoir, power P
is generated, and a heat flux Q̇c goes into the finite sink
whose instantaneous temperature T satisfies Tc ≤ T ≤ Th.

Let, at some instant, dW be the infinitesimal work per-
formed by the engine on the environment against a uni-
form external force F . Then, dW = −Fdx, where x is
the conjugate thermodynamic variable of F . The power
output is P = −F ẋ = Q̇h − Q̇c. The instantaneous total
entropy production rate in the reservoirs [15,35] is

Ṡ =
Q̇c

T
− Q̇h

Th
, (2)

=
F ẋ

T
+ Q̇h

(
1
T

− 1
Th

)
. (3)

Here, we can identify two thermodynamic force-flux pairs:
X1 ≡ F/T , J1 ≡ ẋ, X2 ≡ 1/T − 1/Th, J2 ≡ Q̇h [15].

Then, we can write Ṡ = J1X1 + J2X2, and P = −TJ1X1.
If the thermodynamic forces are small, then the fluxes can
be expressed in the following form [42,43]:

J1 = L11X1 + L12X2, (4)
J2 = L21X1 + L22X2, (5)

where Lij(i, j = 1, 2) are the Onsager coefficients satis-
fying the reciprocity relation L12 = L21, and L12L21 ≤
L11L22. Using eq. (4), the power output can be expressed
in terms of J1 as

P =
L12

L11
TX2J1 −

T

L11
J2

1 . (6)

The input heat flux becomes

J2 =
L12

L11
J1 + L22(1 − q2)X2, (7)

where the coupling parameter, q2 ≡ L2
12/(L11L22), satis-

fies 0 ≤ q2 ≤ 1 [44]. Using eqs. (6) and (7), we can write
Q̇c ≡ J3 = J2 − P as

J3 =
L12T

L11Th
J1 + L22(1 − q2)X2 +

T

L11
J2

1 . (8)

Now, the rate of change of the sink temperature is given
by CV Ṫ = J3, where Ṫ > 0. Solving for J1 from eq. (8)
and substituting in eq. (7), we get the input heat flux as
a function of the form J2(T, Ṫ ). Here, we discuss only
the tight-coupling condition, q2 = 1, which is analytically
amenable. Finally, we obtain

J2 =
L22

2Th

⎛
⎝

√
1 +

4T 2
hCV Ṫ

L22T
− 1

⎞
⎠. (9)

We assume that the finite-sized sink takes a time τh to
reach thermal equilibrium with the hot reservoir. The
work output in the first stage is given by

W =
∫ τh

0

J2dt −
∫ τh

0

J3dt =
∫ τh

0

J2dt − ΔU, (10)

where ΔU =
∫ Th

Tc

CV Ṫdt.

Optimization. – In order to maximize W , the input
heat Qh ≡

∫ τh

0
J2dt needs to be maximized. The corre-

sponding Euler-Lagrange (EL) equation for the flux J2 is
given by

d
dt

(
∂J2

∂Ṫ

)
− ∂J2

∂T
= 0. (11)

Now, the Onsager coefficient L22 and heat capacity CV

may depend on the temperature. Even the above EL
equation seems difficult to solve. To simplify, we assume
4T 2

hCV Ṫ
L22T � 1 (see appendix A for the justification of this
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approximation). Then, the input heat flux is approxi-
mated up to second order as

J2 ≈ CV Th
Ṫ

T
− C2

V T 3
h

L22

(
Ṫ

T

)2

. (12)

The EL equation yields

2C2
V

L22

T̈

T 2
+

∂

∂T

(
C2

V

L22T 2

)
Ṫ 2 = 0. (13)

Multiplying eq. (13) by Ṫ and simplifying, we can get

d
dt

(
C2

V Ṫ 2

L22T 2

)
= 0. (14)

Integrating the above equation w.r.t. time, we get

CV Ṫ√
L22T

= A, (15)

where A > 0 is a constant of integration. Then, integrat-
ing eq. (15) with respect to time, we get A = B/τh, where
B =

∫ Th

Tc

CV√
L22T

dT > 0. The input heat becomes

Qh = Th

∫ Th

Tc

CV dT

T
− T 3

hA2

∫ τh

0

dt, (16)

= ThΔS − T 3
hB2

τh
, (17)

where
∫ Th

Tc

CV

T dT = ΔS > 0 is the entropy injected into
the system in the first stage. Then, eq. (10) is evaluated
to be

W = ThΔS − T 3
hB2

τh
− ΔU, (18)

≡ W1 −
T 3

hB2

τh
. (19)

Clearly, as the time duration of the first stage diverges,
the work output approaches its maximal value W1. Upon
rewriting eq. (17) as

ΔS − Qh

Th
=

T 2
hB2

τh
> 0, (20)

we note that the left-hand side of the above equation is
the sum of the entropy changes in the sink and the hot
reservoir, and so, it is equal to the total entropy generated
due to the engine. In fact, the inverse proportionality of
this quantity on the duration of the process is the basic
assumption of the low-dissipation model [19].

After completing the first stage, the finite-sized system
(now to be used as a heat source) is instantaneously con-
nected with the cold reservoir via a linear irreversible heat
engine. The heat extracted from the hot source succes-
sively decreases its temperature and we assume that, in
a given time τc, the source reaches equilibrium with the

cold reservoir (see fig. 1). The rate of change of the source
temperature can be written as −CV Ṫ ′ = J ′

2, where Ṫ ′ < 0
denotes the rate of decrease of the source temperature.
Thus, the total heat absorbed by the heat engine from the
source (in the second stage) can be obtained as Q′

h = ΔU .
The optimized heat rejected to the cold reservoir (that
maximizes the work extraction) can be calculated along
similar lines [35]:

Q′
c = TcΔS +

TcB
′2

τc
, (21)

where B′ =
∫ Th

Tc

CV√
L′

22
dT ′. Thus, the maximum work out-

put in the second stage is given by [35]

W ′ = ΔU − TcΔS − TcB
′2

τc
, (22)

≡ W2 −
TcB

′2

τc
. (23)

From eq. (21), we note that Q′
c/Tc is the entropy added

reversibly to the cold reservoir, while ΔS is the change
(decrease) in the entropy of the finite source. Thus,
Q′

c/Tc − ΔS = B
′2/τc, is identified as the entropy gen-

erated in the second stage, which is also inversely pro-
portional to the time τc spent on the process. Thus, we
conclude that our model in which the individual stages are
optimized for maximum work extraction with given times,
yields the low-dissipation behavior [19]. This is our first
main result.

The total extracted work, Wtot = W + W ′, is given by

Wtot = ΔTΔS − T 3
hB2

τh
− TcB

′2

τc
. (24)

Now, the cycle lasts for a time τ = τh + τc. Therefore, the
power generated per cycle is P = Wtot/τ . Maximizing the
power with respect to τh and τc (for fixed values of Th, Tc,
and ΔS [19]), we obtain the optimal allocation of times as

τ�
h =

2T 3
hB2

ΔTΔS

(
1 + Γ

√
Tc

Th

)
, (25)

τ�
c =

2TcB
′2

ΔTΔS

(
1 +

1
Γ

√
Th

Tc

)
, (26)

where Γ = B′/(ThB). The efficiency at maximum power is

ηMP = ηC

(
2 − ηC

1 + Γ
√

1 − ηC

)−1

. (27)

We note that Γ is determined by two kinds of control pa-
rameters: the thermostatic property (heat capacity) of the
auxiliary system and thermal conductivities of the con-
tacts with reservoirs (through L22 and L′

22). To analyze
the dependence on these factors, we consider the following
case.
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Fig. 2: The bounds of ηMP as given in eq. (28) (shaded re-
gion) plotted as a function of L, for ηC = 0.5. The upper
(dashed) and the lower (dotted) horizontal lines are the bounds
in eq. (29), towards which ηMP tends as L → 0 and L → ∞
respectively. The vertical large-dashed line represents the sym-
metric case L = 1 (L22 = L′

22).

Special case. – In the near-equilibrium linear regime,
we may take L22 and L′

22 to be constant parameters (in-
dependent of temperature) [45]. Then, we denote L ≡√

L22/L′
22, and Tm = ΔU/ΔS, so that Γ = LTm/Th.

From the mathematical properties of the function U(S)
and the mean-value theorem [39], we know that Tm is
bounded as: Tc < Tm < Th. For a given L, as Tm → Tc

(Tm → Th), we obtain the upper (lower) bounds for ηMP,

ηC

2 − ηC
1+L

√
1−ηC

< ηMP <
ηC

2 − ηC
1+L(1−ηC)

√
1−ηC

. (28)

On the other hand, the parameter L can take values in the
range 0 < L < ∞. Further, ηMP decreases monotonically
as L increases. Due to these conditions, the global bounds
on EMP are as follows:

ηC

2
< ηMP <

ηC

2 − ηC
, (29)

where the lower (upper) bound is approached when L22 	
L′

22 or L → ∞ (L22 � L′
22 or L → 0). The bounds from

eqs. (28) and (29) are plotted in fig. 2.
In particular, we consider the symmetric situation where

L22(T ) and L′
22(T

′) have the same functional form. Then,
from the bounds on Γ (see appendix B), eq. (27) yields
the following upper and lower bounds of the EMP:

1 −
√

1 − ηC < η
(sym)
MP <

ηC

2 − ηC
1+(1−ηC)

√
1−ηC

, (30)

which is our second main result. The above bounds are
depicted in fig. 3 (shaded region). We note that, in the
symmetric case, we have a class of efficiencies which sat-
isfy the criterion of universality up to the second order,
i.e., η

(sym)
MP = ηC/2 + η2

C/8 + O[η3
C ]. Interestingly, the

CA-efficiency emerges as the lower bound for EMP in the
symmetric case.

Fig. 3: Bounds on EMP of the two-stage heat cycle plotted
against Carnot value ηC. Upper and lower solid curves are
as given in eq. (29). The dashed lines depict the bounds of

η
(sym)
MP as in eq. (30), the lower being the CA-efficiency. The

shaded region defines efficiencies under the symmetry condition
L22(T ) ≡ L′

22(T
′), which show universality up to the second or-

der in ηC. The dots represent data on the observed efficiencies
of a few thermal and nuclear plants as in ref. [46].

In order to study how ηMP depends upon the nature
of the finite-sized heat source/sink, we assume a general
form of the heat capacity, CV = β Tα, where β and α are
constants depending upon the model system1. Then, we
obtain

ηMP =
ηC

2 − ηC

[
1 + L

(
α

α+1
1−(1−ηC)α+1

1−(1−ηC)α

)√
1 − ηC

]−1 .

(31)
Expanding the above ηMP in terms of ηC, we get

ηMP =
ηC

2
+

η2
C

4(1 + L)
+

1 + 2L
8(1 + L)2

η3
C

+
6 + (23 − 2α)(1 + L)L

96(1 + L)3
η4
C + O[η5

C], (32)

which shows that the efficiency at maximum power de-
pends only weakly on the nature of the auxiliary system.

Conclusions. – We have proposed a two-stage heat
cycle with a finite time period, where an auxiliary system
plays the role of a finite sink in one stage and a finite
heat source in the other stage. In each stage, a linear ir-
reversible engine, coupled to the finite system and one of
the heat reservoirs, is optimized for maximum work out-
put in a given time. The usual formulations of finite-time
Carnot engines involve four stages where, for simplifica-
tion, the time spent on adiabatic stages is often assumed
to be negligible [9,16,19] (see also footnote 2). In this re-
gard, note that the proposed model does not involve any

1For instance, for an ideal monatomic gas, β = 3NκB/2, and
α = 0. For solids at low temperatures, β = 12π4NκB/(5ΘD) and
α = 3, where N , κB and ΘD are the number of particles, Boltzmann
constant and the Debye temperature, respectively.

2It may be noted that some studies have incluced adiabatic times
in the four-step low-dissipation models [47,48], and the obtained
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adiabatic stages. Also, the model does not depend on spe-
cial conditions such as endoreversibility [2,5].

It is observed that under the tight-coupling condi-
tion, the present model is formally analogous to the
low-dissipation model [19]. In fact, the dissipation con-
stants that are introduced phenomenologically in the lat-
ter model are determined within the theory in terms of
heat transfer coefficients and heat capacity of the auxil-
iary system. It is to be noted that LD behaviour has been
derived both within classical or quantum domains with
mesoscopic or microscopic systems [16,49,50] and also ob-
served experimentally [51,52]. However, a basic deriva-
tion of this behavior for classical, macroscopic engines is
not known. The present model provides a foundation for
the low-dissipation assumption for macroscopic thermal
machines [19], based on notions from linear irreversible
thermodynamics.

Now, it is well known that for a linear irreversible en-
gine, coupled simultaneously with the infinite-sized hot
and cold reservoirs, the efficiency at maximum power is
bounded from above by one-half of the Carnot value [15].
The main outcome of our study is that if the engine is de-
signed to operate with an additional finite-sized reservoir
which alternately acts as a finite heat source and sink, then
the efficiency at maximum power can surpass the upper
bound mentioned above (see eq. (32)).

Further, the efficiency at maximum power is found to
be consistent with the universal properties of efficiency ob-
served in other models. In contrast to the low-dissipation
model where CA-efficiency is obtained under the sym-
metric condition [19], here we get a class of efficiencies
with CA-efficiency being the lower bound. Curiously, we
note that though the observed efficiencies of quite a few
well-known plants fall within the bounds (eq. (29)), the
available data seem to be excluded from the region of sym-
metry (shaded area in fig. 3). This suggests that the sym-
metric situation may not be a preferred design, although
it would be a simpler choice. This observation might also
indicate that power optimization is not a common objec-
tive for the various power plants. On the other hand,
real heat engines may work at a trade-off between power
and efficiency [10,19,53–61]. Particularly, under the sym-
metric condition, the performance of such models at the
maximum trade-off criterion explains the observed power
plants quite well [48,54,57]. Finally, among other general-
izations, it will be interesting to extend the model beyond
the linear regime [21,62], as well as for refrigerators [63,64].
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Appendix A: input heat flux approximation. –
The input heat flux in the first stage is given by (eq. (9))

J2 =
L22

2Th

⎡
⎣

√
1 +

4T 2
hCV Ṫ

L22T
− 1

⎤
⎦. (A.1)

Here, the Onsager coefficient L22 ≥ 0 and the rate of
change of temperature of the finite-size sink, Ṫ ≥ 0. When
the quantity 4T 2

hCV Ṫ
L22T � 1, the input heat flux can be ap-

proximated as

J2 ≈ CV Th
Ṫ

T
− C2

V T 3
h

L22

(
Ṫ

T

)2

, (A.2)

which gives the following optimal rate of change for the
temperature (eq. (15)):

CV Ṫ√
L22T

= A =
B

τh
. (A.3)

Therefore, the quantity

4T 2
hCV Ṫ

L22T
=

4T 2
hB√

L22τh

. (A.4)

For a constant L22, we get B = ΔS/
√

L22, where ΔS ≡∫ Th

Tc
(CV /T )dT . Rewriting the above equation

4T 2
hCV Ṫ

L22T
=

4T 2
hΔS

L22τh
. (A.5)

Thus, our approximation implies the following condition:

4T 2
hΔS

L22τh
� 1, (A.6)

which requires a sufficiently long duration for the first
stage, given the values of other parameters.

Further, the consistency of our approximation can be
checked with the optimal power solution, for which we
obtained the optimal time τh as

τ�
h =

2T 3
hB2

ΔTΔS
(1 + Γ

√
θ) =

2T 3
hΔS

L22ΔT
(1 + Γ

√
θ), (A.7)

where Γ ≡ B′/(ThB) and θ ≡ Tc/Th. Substituting the
above τ�

h in eq. (A.5), we get

4T 2
hCV Ṫ

L22T
=

2ΔT

Th

1
(1 + Γ

√
θ)

. (A.8)

Since ΔT � Th in the linear irreversible regime, it follows
that

4T 2
hCV Ṫ

L22T
� 1. (A.9)
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Appendix B: bounds on parameter Γ for the
symmetric case. – Let us consider the inequality

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ M

∫ b

a

g(x)dx, (B.1)

with m ≤ f(x) ≤ M . Assuming the functions f(x) and
g(x) to be integrable between the limits a and b, we take
the symmetric situation where L22(T ) ≡ L′

22(T
′) and Tc ≤

T ≤ Th. Therefore, we can write

1
Th

∫ Th

Tc

CV dT√
L22

≤
∫ Th

Tc

CV dT√
L22T

≤ 1
Tc

∫ Th

Tc

CV dT√
L22

. (B.2)

Using the definitions of B and B′, we get

B′

Th
≤ B ≤ B′

Tc
. (B.3)

Rewriting the above equation, we get the bounds as

Tc

Th
≤ Γ ≤ 1. (B.4)
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