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Abstract – We report evidence of irregular unsteady flow of two-dimensional polymer solutions in
the absence of inertia in cross-slot geometry using numerical simulations of Oldroyd-B model. By
exploring the transition to time-dependent flow vs. both the fluid elasticity and the polymer con-
centration, we find a periodic behaviour close to the instability threshold and more complex flows
at larger elasticity, in agreement with experimental findings. For high enough elasticity we obtain
dynamics pointing to elastic turbulence, with temporal spectra of velocity fluctuations showing a
power-law decay, of exponent between −3 and −2, and probability density functions of velocity
fluctuations that weakly deviate from Gaussianity while high non-Gaussian tails characterise those
of local accelerations.

editor’s  choice Copyright c© EPLA, 2020

Introduction. – The rheological behaviour of vis-
coelastic flows at vanishingly small inertia can be related
to strongly non-linear phenomena and includes an associ-
ation of viscous and elastic effects, with the latter being
typically due to the presence of flexible long-chain poly-
mers in the solution. The elasticity of the flow can give rise
to complex dynamics that are relevant for both fundamen-
tal studies and industrial applications, as, e.g., efficient
mixing and heat transfer in microdevices [1], or painting
and coating processes [2–4].

The purely elastic instabilities marking the transitions
between different flow regimes have been documented in
a variety of geometrical configurations [3,5–7], including
complex ones, such as the abrupt axisymmetric contrac-
tion [8] and the lid-driven cavity [9]. The cross-slot setup,
made of two perpendicularly intersecting channels with
two inlets and two outlets, is, in this sense, no excep-
tion. Due to its relevance for mixing and rheology, it
has been the subject of extensive studies. Indeed, exper-
imental [10–12], theoretical [13,14] and numerical [15–17]
investigations have reported about the existence of in-
stabilities solely driven by elasticity in this setup. It is
now known that low-Reynolds-number polymeric flows
in this geometry can display two types of instabilities:
a first one, corresponding to a supercritical pitchfork
bifurcation, leading to steady asymmetric flow [16,17],
and a second one leading to unsteady oscillatory be-
haviour [11,16,18]. Concerning the latter, it is interesting
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to recall that numerical evidence has been provided, in a
two-dimensional (2D) flow, that it occurs via a supercriti-
cal Hopf bifurcation [19]; a mechanism relying on the role
of stress gradients and the existence of a stagnation point
at the centre of the setup was also proposed [19].

Above a critical Weissenberg number (Wi), meaning
for elasticity larger than a threshold, purely elastic in-
stabilities can lead to the appearance of disordered flows
corresponding to the dynamical regime known as elastic
turbulence [6,20]. As shown in the seminal work [6], where
a swirling flow between counter-rotating parallel disks was
considered, and in subsequent ones also employing differ-
ent geometries [21,22], such flows are reminiscent of the
turbulent ones occurring in Newtonian fluids. In partic-
ular, they are characterised by a whole range of active
scales, irregular temporal behaviour, growth of flow resis-
tance and enhanced mixing properties [21]. Interestingly,
however, the spectrum of velocity fluctuations displays
power-law behaviours, in both the temporal (E(f) ∼ f−δ)
and spatial (E(k) ∼ k−δ) domains, with an exponent
(in absolute value) δ ≈ 3.5 > 3, corresponding to a
smooth flow essentially dominated by the largest spatial
scales. It is worth remarking that such experimental find-
ings are supported by theoretical predictions based on a
simplified uniaxial model of viscoelastic fluid dynamics in
the absence of walls and in homogeneous isotropic con-
ditions [23]. At the same time, it was recently pointed
out in [24] that numerical simulations based on standard
constitutive models may be dramatically affected by the
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polymer-stress diffusivity typically added to the evolution
equations to ensure numerical stability, and that this par-
ticularly applies to flows characterised by regions of pure
strain. Notably, using a cellular forcing in two dimensions,
it was shown that kinetic energy spectra are considerably
flatter in the absence of artificial polymeric diffusion and
scale as k−2.5 [24].

The elasticity-driven transition to turbulent-like states
was experimentally investigated in cross-slot devices of dif-
ferent aspect ratio (vertical size over channel width), for
more and less concentrated polymer solutions [25]. Inde-
pendently of the aspect ratio, it was found that the more
concentrated solution undergoes a transition to unsteady
flows that become progressively more irregular when the
Weissenberg number is increased. The power spectra of
velocity fluctuations, obtained from single-point time se-
ries of the streamwise component measured in the outlet
channel halfway from the lateral walls (both in the hori-
zontal and vertical directions), were characterised by the
presence of marked peaks (a fundamental frequency plus
some harmonics), and by a power-law behaviour of ex-
ponent smaller than −3, at small and large Wi values,
respectively. In particular, for the smaller aspect ratio,
continuous spectra and features typical of elastic turbu-
lence were observed when Wi � 25. For the more dilute
solution, although the phenomenology of the transitions
was similar, the chaotic flow observed at high Wi did not
show similar spectral properties.

In this letter we explore the unsteady viscoelastic flow
regime occurring in a 2D cross-slot geometry at high elas-
ticities and vanishing Reynolds number (Re) by means
of extensive numerical simulations, for different polymer
concentrations. For this purpose we adopt the Oldroyd-
B model, i.e., the simplest possible one, to describe the
dynamics of the viscoelastic fluid. As in [26], where elas-
tic turbulence was simulated in a 2D Taylor-Couette sys-
tem, we integrate the model evolution equations using the
open-source code OpenFOAM R© [27,28], which allows con-
trol of the numerical instabilities associated with large
Weissenberg numbers [29]. We provide numerical evidence
of the emergence of turbulent-like features for quite con-
centrated solutions when Wi is large enough. We analyse
the transition to irregular dynamics and we characterise
the statistical properties of the high-Wi flows, discussing
the similarities and differences with experimental results.

Model and methods. – We consider an isothermal,
incompressible, inertialess, 2D viscoelastic fluid flow in a
cross-slot geometry. The latter consists of two perpendicu-
lar and bisecting channels of identical width d, with oppos-
ing inlets (here, along the x-direction) and outlets (along
the y-direction), as shown schematically in fig. 1. The ve-
locity field u(x, t) = (ux(x, t), uy(x, t)) at position x and
time t evolves according to the momentum conservation
equation

ρ

[
∂u

∂t
+ (u · ∇)u

]
= ∇ · T − ∇p (1)

10
 d

inletinlet

outlet

outlet

d 1
2

Fig. 1: Schematic of the cross-slot geometry. The dotted square
is the area where the analyses were conducted, with the two
dots indicating the positions where time series were recorded:
probe 1 (entrance, red), probe 2 (exit, blue). Inset: zoom of
the central area and typical mesh refining towards the centre of
the setup; note that simulations were performed with at least
twice finer meshes.

and the incompressibility condition ∇ · u = 0, where T is
the total (viscous plus elastic) stress tensor, p the pressure
and ρ the density.

In the framework of the Oldroyd-B model [30,31], the
stress tensor T is the sum of a viscous component σ =
ηs γ̇, with ηs the zero-shear dynamic viscosity of the sol-
vent and γ̇ = ∇u + (∇u)T the strain-rate tensor, and an
elastic one τ due to polymers. The constitutive equation
for the extra-stress tensor τ reads

τ + λ

[
∂τ

∂t
+ ∇ · (uτ ) − (∇u)T · τ − τ · ∇u

]
= ηp γ̇ ,

(2)
where λ represents the largest polymer relaxation time
and ηp the polymer contribution to viscosity. An impor-
tant parameter is the viscosity ratio β = ηs/(ηs + ηp),
which is inversely proportional to the polymer concentra-
tion. Let us remark that in the limit β → 0, one recovers
the upper-convected Maxwell (UCM) model [31], account-
ing for the dynamics of very concentrated solutions. At
fixed β, the control parameters of the dynamics specified
by eqs. (1) and (2) are the Reynolds Re = ρUbd/(ηs + ηp)
and Weissenberg Wi = λUb/d numbers, where Ub is the
(uniform) velocity at the inlet.

In spite of important limitations, such as the infi-
nite extensibility of polymers —and the consequent un-
bounded nature of extensional viscosity at strain rates
≥ 1/(2λ)— or the absence of shear-dependent viscosity,
the Oldroyd-B model corresponds to the simplest differ-
ential constitutive equation for viscoelastic fluids, and it
exhibits normal stress differences. Furthermore, it has
been successfully employed to numerically reproduce the
basic phenomenology of elastic turbulence in different 2D
configurations [7,26,32].
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Numerical simulations. Equations (1) and (2) are in-
tegrated by means of the open-source numerical solver
rheoTool

R©, which was developed in the framework of
the OpenFOAM R© simulation code [28]. This solver is
based on a finite-volume discretisation and makes use of
the log-conformation technique [33] to control the numer-
ical instabilities appearing at high Wi values. We remark
that no polymer-stress diffusion is included.

The cross-slot configuration has recently been proposed
as a benchmark problem [34], for its geometrical char-
acteristics and the existence of the instability leading to
asymmetric flow at appropriate β, Re and Wi values. Sim-
ilarly to the reference studies with this setup, here we set a
length-to-width ratio of 10 : 1 for each of the four “arms”,
which was previously shown to be enough to ensure a fully
developed flow away from the inlet in a channel [35]. The
global mesh adopted for the numerical integration is com-
posed of four blocks, each of which corresponds to an arm,
with increased density of grid points when approaching
the centre of the system, plus a central square block with
the smallest (uniform) grid size. The results presented
in the following were obtained with a total of 12801 com-
putational cells, corresponding to 51 × 51 cells and a min-
imal grid spacing Δxmin = Δymin ≈ 0.02 d in the central
region. The mesh refinement towards the centre in each
arm is realised via a geometric progression relation with
a stretching factor fs = 0.931. In order to verify the ro-
bustness of our results, some calculations, and particularly
those related to the instability thresholds, were repeated
with a mesh twice as refined. The results were qualita-
tively independent of the mesh size and only slight differ-
ences in the values of the critical parameters were found.
The general phenomenology in the developed regime is
also found to be similar using the more refined mesh.

A uniform velocity profile of amplitude Ub is applied
at both inlets, where a homogeneous Neumann (zero
gradient) boundary condition is specified for the pressure
field, whereas polymeric extra-stresses are set to zero. At
the outlets, a homogeneous Dirichlet (zero value) bound-
ary condition is imposed for pressure, as well as zero-
gradient ones for velocity and extra-stress fields. At the
walls, no-slip conditions (u = 0) are applied to the veloc-
ity field and a linear extrapolation technique is adopted
for the extra-stresses [28]. The velocity and stress initial
condition corresponds to no flow.

The Weissenberg number was varied by changing the
polymer relaxation time λ only; the polymer concentra-
tion was set by choosing ηs and ηp such that their sum is
constant. The Reynolds number, accounting for the rela-
tive strength of the non-linear inertial term to the viscous
one in eq. (1), was kept fixed at Re = 0 by neglecting the
term (u·∇)u in eq. (1) [17], but we checked that including
the latter (and setting Re = 0.1) did not strongly affect
the results on the instability critical parameters. Further,
the dynamics appear not to be very sensitive to the pres-
ence of the term ρ∂tu in eq. (1).

(a) Wi = 0.35 (b) Wi = 1.48

(c) Wi = 10 (d) Wi = 20

Fig. 2: Snapshots of the magnitude of the velocity field
(colour) and flow streamlines (black lines) for β = 1/9 and
Re = 0. Increasing Wi, different regimes are observed: steady
symmetric (a), steady asymmetric (b), unsteady disordered
flow ((c), (d)).

Results. – When increasing the elasticity of the solu-
tion, while keeping β fixed, in our numerical integrations,
we observe a destabilisation of the flow, in agreement with
previous studies [11,16]. The sequence of flow states that
are selected depends on the polymer concentration, how-
ever, and here we provide a full picture of the stability por-
trait of the system as a function of both β and Wi. Let us
preliminarily remark that below the onset of purely elastic
instabilities the flow coming from each of the inlets splits
into two streams of equal flow rate, a symmetric state,
at the outlets (see fig. 2(a)). For concentrated solutions
(β � 0.56), the flow first transitions to a steady asym-
metric state (fig. 2(b), where β = 1/9). By measuring the
degree of asymmetry, expressed in terms of the excess flow
rate in a stream, as a function of Wi we verified (results
not shown) that this transition is a supercritical pitchfork
bifurcation. Our values of the critical Weissenberg num-
ber are in good agreement with those reported in previ-
ous benchmark studies [34] (relative difference of less than
0.05) both for β = 1/9 and the UCM case β = 0. In this
range of low β values, a second instability manifests when
Wi is further increased beyond a second threshold value
close to 1, leading to time-dependent behaviour in the
form of regular oscillations of the asymmetric flow pattern
(which stays similar to that of fig. 2(b)). The situation
changes for more diluted solutions (i.e., when β � 0.56).
Indeed, in this case, the steady asymmetric flow regime
does not set in and a direct change from steady symmet-
ric to unsteady flow is observed. Remarkably, the same
qualitative phenomenology is also found in experiments in
micro-scale devices [12]. In the time-dependent regime,
and particularly for low β, an increase of Wi eventually
gives rise to spatially and temporally more complex flows
akin to elastic turbulence ones. Two illustrative examples
at fixed time are shown in fig. 2(c), (d) for β = 1/9 and
two different values of Wi.
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Fig. 3: Stability diagram in the (β, Wi) plane at Re = 0. The
green squares, blue diamonds and red dots respectively corre-
spond to steady symmetric, steady asymmetric and unsteady
flow. The dashed (Wi

(I)
c ) and continuous (Wi

(II)
c ) lines are

fits using eq. (3); here a
(I)
0 � 2.75, a

(I)
−1 � −3.94, a

(II)
0 � 0.85,

a
(II)
−1 � 0.05. Inset: amplitude and frequency of |u(x(2)

∗ , t)| vs.
Wi at the onset of unsteady flow, for β = 1/9.

The complete stability portrait, obtained by spanning
the (β, Wi) plane with a large number of simulations, is
shown in fig. 3, where the different point types correspond
to the different dynamical regimes observed; here we only
show a limited subset of the results from the simulations
performed. By measuring the amplitude and frequency
of the time series of |u(x(2)

∗ , t)| at the fixed location x
(2)
∗

(corresponding to point 2 in fig. 1) for Wi close to the
onset of the unsteady regime and for different concen-
tration values, we could assess that the second instabil-
ity is a supercritical Hopf bifurcation (see inset of fig. 3
for β = 1/9), as also suggested by [19] using a FENE-P
model at non-zero Re and large β. Indeed, the veloc-
ity signal displays a growth of its amplitude that is fairly
well described by (Wi − Wi

(II)
c )1/2, with Wi

(II)
c the criti-

cal Weissenberg number, and an approximately linear de-
crease of its frequency with Wi. For both the first and the
second instability, the critical Weissenberg number, Wi

(I)
c

and Wi
(II)
c respectively, grows with growing β, which is

reasonable since increasing β corresponds to decreasing
polymer concentration. The faster growth of Wi

(I)
c (β)

causes the shrinking of the region of steady asymmetric
flow. Determining the functional dependencies Wi

(i)
c (β)

(with i = I, II) from stability analysis is not an easy task,
due to the formation of a birefringent strand and a di-
verging base state associated with the infinite extensibil-
ity of polymers [14]. Since here we are mainly interested
in characterising the boundaries, in the (β, Wi) plane, of
the regions where elastic turbulence could be excited, we
proceed heuristically, especially focusing on Wi

(II)
c (β). In

order to account for non-zero β effects, we conjecture that
Wi

(II)
c (β) = Wi

(II)
c (0)f(β), where f(β) is a positive ana-

lytic function, except for β → 1 where a divergence is ex-
pected, since the fluid becomes Newtonian and no purely

elastic instability should occur; clearly f(0) = 1. Our nu-
merical results suggest that the data are compatible with a
Laurent expansion at second order around the point β = 1.
Somehow more surprisingly, we find that the same func-
tional shape can also be used to fit the Wi

(I)
c (β) data,

indicating that

Wi(i)c = Wi(i)c (0)

[
a
(i)
0 +

a
(i)
−1

1 − β
+

a
(i)
−2

(1 − β)2

]
, (3)

where a
(i)
−2 = 1 − a

(i)
0 − a

(i)
−1 using the constraint f(0) = 1,

and i = I, II. In fig. 3 we report a comparison between a
fit with function (3) (dashed and continuous lines for i =
I, II, respectively) and the numerical data; the agreement
is rather good for both instability types, confirming our
conjecture.

To conclude this discussion, we mention that in our cal-
culations with a more refined grid or at Re = 0.1 (see
the previous section for the details about simulations) we
did not observe any qualitative difference in the dynamical
regimes occurring for different values of β and Wi.

We now consider the transition to turbulent-like flow.
In the following we will present the results of the analysis
performed for increasing Wi at β = 1/9. Notwithstanding
some quantitative differences, the phenomenology remains
similar in the whole range (β � 0.56) of concentrated so-
lutions, including for UCM (β = 0). In the case of more
diluted solutions, while we observed some hints of the on-
set of irregular flow, we could not reach a fully developed
regime and we cannot conclude about the emergence of
elastic turbulence. Notice that for such large values of β,
the critical Weissenberg number Wi

(II)
c grows very rapidly,

making the simulations more and more delicate.
Our analysis is based on the measurement of time se-

ries of the velocity components at two different positions
marked as probe 1 (x(1)

∗ , entrance) and probe 2 (x(2)
∗ ,

exit) (see fig. 1), over long durations corresponding to at
least 800λ, and up to 1000λ. As for the experiments re-
ported in [25], we choose to focus on the axial component
uy(x

(2)
∗ , t) at the exit probe, whose behaviour is presented

in fig. 4 for several values of Wi. Remark that in this fig-
ure the initial transient was removed and only a subset of
the data record is shown.

The spectra of uy(x
(2)
∗ , t) are shown in fig. 5. All those

corresponding to the developed regime are averages over
ten spectra computed from consecutive subintervals of the
velocity time series obtained for a given value of Wi (af-
ter the transient). For Wi � Wi

(II)
c , time dependency

manifests in the form of regular oscillations with a single
frequency close to 0.4/λ (see inset of fig. 5). At slightly
higher Weissenberg number (Wi = 3 in fig. 4) the flow is
still periodic but it is now characterised by more discrete
frequencies; correspondingly, the spectrum shows several
distinct peaks associated with a fundamental frequency
and some harmonics (inset of fig. 5). The occurrence of
a transitional periodic regime was also found in different
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Fig. 4: Temporal evolution (subset of the total data set, see
text) of the y-component of velocity at the outlet (probe 2),
normalised by its time average over the whole time series, after
the transient, for Wi = 1.55, 3, 6, 12 (from top to bottom),
Re = 0 and β = 1/9.

Fig. 5: Temporal spectra of fluctuations of the axial velocity at
the outlet uy(x(2)

∗ , t), normalised by their integral Etot
y in the

elastic turbulence regime for Re = 0 and β = 1/9; the curves
have been vertically shifted to ease readability. The dashed
black curves stand for Ey(f) ∼ f−δ, the fitted values of δ are
δ � (2.8, 2.5, 2.2, 2.1) ± 0.4 for Wi = 6, 12, 20, 25, respectively.
Inset: similar spectra at lower elasticity. For Wi = 1.55 �
Wi

(II)
c , a single frequency peak is found; at larger Wi = 3

more discrete frequencies are present.

setups [36,37]. Above Wi ≈ 5, the flow loses periodic-
ity and the velocity spectra become continuous. Indeed,
starting from 5 � Wi � 10 they result to be quite well de-
scribed by a power-law function (fig. 5). When elasticity is
increased in the range Wi > 10, the faster fluctuating be-
haviour of the flow is accompanied by quite wide and irreg-
ular oscillations, over longer durations. The flow now loses
its spatial asymmetry to alternatively select the outlet in
the positive/negative y-direction. Such a phenomenon has
a strong impact on the statistics of the transversal veloc-
ity component ux(x(2)

∗ , t) at the outlet (and similarly on
uy(x

(1)
∗ , t) at the inlet), whose fluctuations are accompa-

nied by irregular jumps between two mean values of op-
posite sign (see fig. 6), thus complicating their analysis.

Fig. 6: Temporal evolution (subset of the total record) of
ux(x(2)

∗ , t), normalised by its time average over the whole time
series, after the transient, for Wi = 11, 12, 15, 20 (from top to
bottom), Re = 0 and β = 1/9.

A detailed investigation of the behaviour of such a two-
state system goes beyond the scope of the present work.

In the turbulent-like regime (Wi > 5), the spectrum
of velocity fluctuations displays a power-law behaviour
Ey(f) ∼ f−δ beyond a frequency that, as in experimen-
tal studies [25], slightly increases with Wi. The absolute
value of the exponent is found to be in the range 2 � δ � 3
and shows some tendency to decrease at higher Wi; the
latter feature is also detected in experiments [25,38]. In
particular, we find δ � (2.8, 2.5, 2.2, 2.1) ± 0.4 for Wi =
6, 12, 20, 25, respectively. The spectra are thus overall less
steep than those previously found in experiments [6,25]
and those theoretically predicted assuming homogeneity
and isotropy [23], pointing to more energetic small scales,
as, e.g., the quite localised ones (fig. 2(c), (d)) stem-
ming from intense polymer stretching, and less smooth
flow. However, they bear an interesting similarity with
those obtained in 2D numerical simulations, without ar-
tificial polymer-stress diffusion, of Oldroyd-B model in
the presence of a cellular forcing generating distinct re-
gions of strain and vorticity [24]. A possible reason for
the difference with the prediction of [23] is the lack of
the statistical symmetries assumed by the theory in the
present case. Indeed, our flow is neither homogeneous
(due to the presence of the walls, but also of the high-
strain region close to the centre of the setup), nor fully
isotropic, as we typically observe that urms

y > urms
x for

the root-mean-square (rms) velocity components. More-
over, the turbulent intensity urms/u, here defined as the
ratio of the rms to the mean value of the full velocity
modulus u ≡ |u| (with the overbar denoting a tempo-
ral average), can quite easily exceed 0.5, and be as high
as ≈ 0.8 in conjunction with the temporal oscillations of
the spatial asymmetry of the flow. Therefore, the validity
of Taylor’s hypothesis [39,40], allowing to convert spectra
from the frequency to the wavenumber domain, appears
questionable. It might be the case that its refined version
could be applied, as in [41], but addressing this question
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Fig. 7: Probability density functions of normalised velocity
fluctuations u′

y = (uy − uy)/σuy (a) and temporal increments
wy = (∂tuy − ∂tuy)/σ∂tuy (b), where uy ≡ uy(x(2)

∗ , t), the
overbar denotes the temporal average and σ the standard de-
viation, for different values of Wi, Re = 0 and β = 1/9. The in-
sets show the pdfs of the same quantities along the x-direction
(velocity and temporal-increment fluctuations, in (a) and (b),
respectively). In all panels the solid black lines are standard
Gaussian pdfs.

requires further investigations. Finally, although previous
numerical studies in two dimensions have revealed that the
spectral exponent of elastic turbulence seems to be quite
insensitive to the space dimensionality [7,26,32], we can-
not exclude that the 2D nature of our flow has an impact.
Note, too, that values of δ for Wi ≥ 25 should be taken
with caution, as they may also likely depend on the length
of the inlet/outlet channels.

To further characterise the statistical properties of
our elastic turbulent flows, we computed the probabil-
ity density functions (pdfs) of the fluctuations of the
velocities ux,y(x

(2)
∗ , t), as well as of the local accelera-

tions ∂tux,y(x
(2)
∗ , t), obtained from the temporal signals

at probe 2. The results are presented in fig. 7, where
all variables are rescaled with the corresponding standard
deviation σ. The statistics of uy fluctuations are not far
from Gaussian, but negatively skewed for large enough
Wi (fig. 7(a)), probably due to the establishment of a
transversal flow component via intermittent bursts [42].
Those of ux are less so (inset of fig. 7(a)), instead, and
show a bimodal shape for 10 � Wi � 20, which reflects

the importance of the flow-asymmetry alternation events
in this range of elasticities. A qualitatively similar phe-
nomenology is found at the entrance probe 1, provided
x and y indices are exchanged. The statistics of fluctu-
ations of the accelerations are remarkably less dependent
on the Weissenberg number (and the probe location), sug-
gesting a faster (with Wi) onset of scaling properties at
small scales. As can be seen in fig. 7(b), the corresponding
pdfs display high tails that are indicative of non-Gaussian
statistics, as is typical in turbulent flows and as observed
in elastic turbulence experiments [42]. This finding high-
lights the intermittent behaviour of local accelerations,
likely due to the passage through the system of tran-
sient intense filamentary structures (fig. 2(c), (d), but see
also [37,43,44] about the role of elastic propagating wavy
patterns).

Conclusions. – We investigated numerically the dy-
namics of Oldroyd-B fluids in a 2D cross-slot geometry
for broad ranges of the Weissenberg number and the poly-
mer concentration, focusing on the possibility to obtain
elastic turbulence. We detected two instabilities: the first
one, present only for rather concentrated solutions (see
also [12]), leads to steady asymmetric flow; the second one,
less documented, manifests for all viscosity ratios β < 1
and corresponds to a supercritical Hopf bifurcation. By
characterising the dependence of the critical Weissenberg
number Wi

(II)
c on the viscosity ratio, we found a heuris-

tic expression that allows to quantitatively delimit the
regions Wi > Wi

(II)
c (β) where elastic turbulence may

be excited.
Close to the onset of the second instability, the flow of

quite concentrated solutions displays regular oscillations
in time, while at larger elasticities its dynamics appear
more irregular. The frequency spectra measured in one of
the outlets and far from the walls show distinct peaks for
Wi � Wi

(II)
c , while for Wi � 5 they are well described by

continuous power-law functions, of exponent −δ, point-
ing to elastic turbulence. As in experiments [25,38], the
scaling range occurs beyond a frequency that moderately
increases with Wi, and δ decreases with Wi. However,
we obtain values 2 < δ < 3, somehow smaller than the
experimental ones and the theoretical prediction for the
homogeneous isotropic case [23]. While we cannot exclude
an impact of the 2D nature of our flow here, and we recall
the influence of the inlets/outlets length on the results for
Wi ≥ 25, we remark that the symmetries assumed in the
theory clearly do not hold for our setup. Similarly en-
ergetic spectra have been recently found in simulations
of 2D Oldroyd-B cellular flows without polymer-stress
diffusion [24].

Further, the statistics of axial velocity components are
found to be weakly non-Gaussian in the developed regime,
while those of transversal ones also exhibit a bimodal pdf
for 10 < Wi < 20 due to the alternations of the spatial
flow asymmetry occurring in this range of Wi. The pdfs
of both components of the local accelerations, instead,
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present high non-Gaussian tails indicative of intermit-
tency. Such a phenomenology agrees with that observed
in experiments (see, e.g., [42]).

In summary, we reproduced the different dynamical
regimes experimentally observed in cross-slot devices, and
we obtained turbulent-like states bearing good statisti-
cal resemblance with elastic turbulence. The quantita-
tive differences highlighted call for further theoretical and
numerical developments. In the future it would be in-
teresting to explore such dynamics in three-dimensional
flows.
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