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Abstract – In stochastic resonance, a periodically forced Brownian particle in a double-well
potential jumps between minima at rare increments, the prediction of which poses a major the-
oretical challenge. Here, we use a path-integral method to find a precursor to these transitions
by determining the most probable (or “optimal”) space-time path of a particle. We character-
ize the optimal path using a direct comparison principle between the Langevin and Hamiltonian
dynamical descriptions, allowing us to express the jump condition in terms of the accumulation
of noise around the stable periodic path. In consequence, as a system approaches a rare event
these fluctuations approach one of the deterministic minimizers, thereby providing a precursor for
predicting a stochastic transition. We demonstrate the method numerically, which allows us to
determine whether a state is following a stable periodic path or will experience an incipient jump
with a high probability. The vast range of systems that exhibit stochastic resonance behavior
insures broad relevance of our framework, which allows one to extract precursor fluctuations from
data.
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Introduction. – Rare events, which frequently accom-
pany fluctuations or phase transitions, arise in a wide
range of natural and social systems, such as infectious dis-
ease outbreaks, earthquakes, stock market crashes, and
many others (e.g., [1–3]). Of particular interest are dy-
namical systems that have bifurcations, at which sud-
den transitions to distinct dynamical regimes occur [4,5].
Even before reaching a bifurcation, noise-induced transi-
tions can occur with low probability [6]. In consequence,
a system experiences a large-magnitude change resulting
in significant positive or deleterious consequences. Hence,
it is important to understand the mechanism leading to
the occurrence of such events, and to seek precursors to
anticipate them [7].

The desire to predict these rare events in advance has
fueled studies, to simulate [8], classify [9], analyze [10] and
predict [11,12] their properties. Although the existence of
early warning signals for rare events has been suggested,
there are few results determining reliable and robust in-
dicators for noise-induced transitions [13]. Because most

systems are inherently noisy, understanding the role of
noise in inducing these transitions is critical for their quan-
titative prediction well in advance. Here we describe a
theory quantifying the role of noise in rare events, which
underlies probabilistic forecast models.

We study noise-induced transitions using a class of peri-
odically forced low-dimensional stochastic dynamical sys-
tems and identify a novel early warning indicator for the
jumps from one stable state of the system to another. Pe-
riodically forced stochastic systems are ubiquitous in na-
ture. For example, periodic forcing and background noise
are the main ingredients of stochastic resonance [14–17]
(see [18,19] for reviews), wherein the response to a weak
signal is magnified by noise-induced fluctuations that drive
hopping from one stable state to the other in a double-well
potential with two minima. Settings of relevance range
from the human cardiovascular system [20] to the seasonal
variability of the Earth’s climate [21].

This paper is organized as follows. In the following
section, we provide an outline of the mathematical
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formulation, with the details provided in the Supplemen-
tary Material Supplementarymaterial.pdf (SM). In the
third section, we discuss the task of finding precursors for
the occurrence of a rare event. We propose a data-driven
strategy to study the problem in the fourth section. This
strategy constitutes the main contribution of our paper
and is presented as a five-step procedure. We test this
strategy with an example in the fifth section using two
different numerical simulations before concluding in the
last section.

Outline of the mathematical formulation. – In or-
der to insure our treatment is reasonably self-contained,
here we outline the principal waypoints of the path-
integral treatment of stochastic processes. For readers not
intimate with this approach we have provided details in
the SM.

The state or position, x, of the system is modeled
by the following nonautonomous one-dimensional over-
damped Langevin equation:

ẋ(t) = F (x(t), t) +
√

2σξ(t), (1)

in which
F (x, t) = −U ′(x) + A cos(ωt), (2)

where the dot (prime) denotes differentiation with respect
to time (position), U(x) is a multi-well potential, A cos(ωt)
is external periodic forcing and ξ(t) is zero mean Gaussian
white noise with correlation function

〈ξ(t)ξ(s)〉 = δ(t − s). (3)

We study systems described by eqs. (1)–(3) with the (con-
stant) noise intensity σ � A by employing a path-integral
formulation [22,23]. The use of this formulation allows
us to identify the most probable (optimal) trajectories
(also called instantons) among all the possible trajecto-
ries that the system state follows to go from a point with
the space-time coordinates (xi, ti) to another point with
the coordinates (xf , tf ). These optimal paths can be de-
rived by studying large deviations from the unperturbed
deterministic dynamics of the system in the weak noise
regime (see [24] for the details of sample-path large devi-
ation theory for stochastic differential equations).

We are interested in the behavior of the system shortly
before its state jumps from one potential well to another.
Since tf−ti is finite, there exists a finite number of optimal
paths, of the order of (tf − ti)/T , where T = 2π/ω is the
period of the external periodic forcing. In fact, it can be
shown that these optimal paths, denoted as xk(t) (with
the subscript k denoting a particular path), satisfy the
following system of first-order differential equations [25]:

ẋk(t) = 2pk(t) + F (xk(t), t), (4)
ṗk(t) = −pk(t)F ′(xk(t), t), (5)

with the boundary conditions

xk(ti) = xi and xk(tf ) = xf . (6)

We have introduced the conjugate momenta pk(t) relative
to the optimal paths xk(t). These momenta are defined
as pk(t) := 1

2 [ẋk(t) − F (xk(t), t)] and they measure the
deviation from the deterministic unperturbed dynamics.
Each path xk(t) starts at t = ti and first follows a stable
periodic orbit xs(t), defined as the solution of eq. (1) with
σ = 0:

ẋs(t) = F (xs(t), t) and xs(t) = xs(t + T ). (7)

The path begins to deviate from this periodic orbit at a
random time t0 and then transitions to a path that closely
follows another stable periodic orbit. This random time
t0, which also denotes the time at which the pk(t) begin
to deviate from zero, differs for different realizations of
system paths described by eq. (1).

Formally, the probability distribution that the process
x(t) reaches a point xf at time tf , given that it started at
a point xi at time ti can be written as

P (xf , tf |xi, ti) =
n∑

k=1

Pk(xf , tf |xi, ti), (8)

with n = �(tf − ti)/T �, where �·� denotes the floor func-
tion. Each optimal path xk gives the contribution

Pk(xf , tf |xi, ti) =
1√

4πσ2Qk(tf )
e−S[xk]/σ2

(9)

to the series defining eq. (8). Here

S[xk(t)] =
∫ tf

ti

p2
k(t)dt, (10)

where the Qk satisfy the following second-order initial
value problem [25]:

Q̈k(t)
2

−∂t[Qk(t)F ′(xk(t), t)]+Qk(t)pk(t)F ′′(xk(t), t) = 0,

(11)
with

Qk(ti) = 0, Q̇k(ti) = 1. (12)

The early warning indicator. – For a long time in-
terval with high probability the system will follow a stable
periodic orbit, xs(t), around one of the local minima of the
potential with fluctuations of order σ. Rarely, however,
the system will jump from one minimum to the other,
in which case the most probable path is described by
eqs. (4)–(6), with the jump beginning at time ti and end-
ing at time tf . Our principal goal is to obtain quantitative
precursors of such rare events and, combined with knowl-
edge of the optimal path, estimate the most probable time
of the rare event.

The key observation is as follows. We compare eq. (4)
with the Langevin equation (1) and observe that the opti-
mal condition for the system to jump from one potential
well to the other is when the fluctuations around the stable
periodic path,

ξ(t) =
1√
2σ

[ẋ(t) − F (x(t), t)], (13)
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accumulate to
√

2p(t)/σ, where p(t) is one of the pk(t)’s
satisfying eq. (5). Namely, up to a multiplicative factor
of

√
2/σ, as the system approaches a rare event, the fluc-

tuations around the stable state approach one of the de-
terministic minimizers

√
2pk(t)/σ. Therefore, it is crucial

to extract such fluctuations from data in order to deter-
mine whether a state is simply following a stable periodic
path, or begins to follow eqs. (4)–(6), describing the most
probable path that can lead the system to jump.

Clearly, p(t) acts as a forcing for x(t) and hence the for-
mer “anticipates” the latter. Thus, although when p � σ
and |x− xs| � σ the instanton and its conjugate momen-
tum can be resolved, the former condition is satisfied be-
fore the latter condition. Therefore, p(t) is a better early
warning indicator than x(t). Now, despite the momentum
being observable when p � σ, the influence of the oscilla-
tory forcing term with amplitude A in eq. (4) is to delay
the effect of p(t) on x(t) until p(t) = O(A). Hence, there
will be a time window τ such that σ < p(t) < A for t ∈ τ
in which the noise accumulates prior to the appearance of
a large deviation. The system begins to follow eqs. (4), (5)
at t = t0 and after t − t0 > T the momenta behave as

p(t) = p(t0) exp
[
−

∫ t

t0

dsF ′(x(s), s)
]

 p(t0)e−λs(t−t0),

(14)
where λs < 0 is the Lyapunov exponent of the stable peri-
odic orbit defined as λs = 1

T

∫ t+T

t
dzF ′(xs(z), z). There-

fore, during a “warning time” τW ∼ − 1
λS

ln[ A
p(t0)

], eq. (14)
describes the noise accumulation before x(t) exhibits a
transition. Clearly, because the warning time is inversely
proportional to λs < 0, in less stable orbits we can deter-
mine a jump precursor earlier.

The rare event momentum precursor is demonstrated
numerically in fig. 1, which shows the transition from
one potential well to the other. We used the instan-
ton dynamics described in the fourth section to force
the appropriate accumulation of noise in the case where
F (x, t) = x − x3 + 0.7 cos(2πt) and σ = 0.01 in eq. (1),
which we evolve for ten periods with initial condition
x(0) = −1. We then use eqs. (4)–(6) to simulate the jump.
Comparing figs. 1(a) and (b) one observes the “momen-
tum anticipation” of the deviation of the trajectory xF (t)
from the stable periodic orbit xs(t).

We can obtain an accurate estimate of the time inter-
val in which the jump will occur from eqs. (4), (5), (9)
and (10). Within each period there are only a few highly
probable paths and thus upon observation of optimal noise
accumulation, we can determine which path the system is
following. Hence, we can estimate the corresponding jump
time, tj , when the system shifts to the other stable basin
(fig. 2(b)). Therefore, by studying the fluctuations around
the stable periodic orbit to determine when they begin to
behave as p(t), we can predict if the system is approaching
a jump by computing the jump probability and time. Next
we provide a systematic outline of our prediction strategy.

Fig. 1: (a) Time evolution of the position xF (t), compared to
the stable periodic orbit xS(t). (b) A semi-log plot of |p(t)|. (c)
Time behavior of the jump probability computed from eq. (9).

Fig. 2: Values of the action corresponding to different values of
(a) t0 and (b) tj . The system has been evolved for 10 periods
setting p(t) = 0 in order to be sure that it follows the stable
periodic orbit, after which eq. (5) was used for p(t).

Prediction scheme. – Our program for the prediction
and study of rare events in stochastic resonance consists
of the following five main steps:

1) We start with the nonautonomous Langevin equa-
tion (1) describing the time evolution of the system,

ẋ(t) = F (x(t), t) +
√

2σξ(t),

assuming we know F (x(t), t) and σ. See [21] and [26]
regarding the construction of these expressions from
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the data (the latter paper treating the autonomous
case).

2) We determine the instantons as follows. First, we
evolve

ẋs(t) = F (xs(t), t),

with xs(t = 0) chosen inside one potential well. After
an initial transient, the system state evolves follow-
ing the stable periodic orbit. When this condition is
satisfied at t = t0, we modify the earlier equation to

ẋ(t) = 2p(t) + F (x(t), t),
ṗ(t) = −p(t)F ′(x(t), t),

with

x(t0) = xs(t0) and p(t0) = p0 > σ. (15)

We evolve the system many times until we observe a
shift to another stable basin at t = tj , using the same
value of p0 but with different values of t0 chosen inside
one period. For each of these paths we compute the
relative action

S[xk(t)] =
∫ tj

t0

p2
k(t)dt.

Because S(t0) is periodic, there will be only one in-
stanton in every period. We find the instanton as the
path that minimizes the action in every period (see
fig. 2).

3) We isolate the noise from the data using the Langevin
equation as in eq. (13),

ξ(t) =
1√
2σ

[ẋ(t) − F (x(t), t)],

which is related to the conjugate momentum as p(t) =
σξ(t)/

√
2.

4) Prior to the jump the conjugate momentum is
expected to increase exponentially as p(t) =
p0e

−λs(t−t0). Thus, we scrutinize the behavior of p(t)
obtained from the data of x(t) through eq. (13) un-
til it ceases to exhibit fluctuations of order σ near
zero and begins to grow. We compare its behavior to
the conjugate momentum of the instanton and if the
noise structure differs from optimality we are unable
to make predictions; because the noise structure is not
optimal, the jump is more rare. However, when the
noise structure is optimal, we can accurately estimate
the jump probability and time.

Next we demonstrate this scheme in a numerical
example.

Fig. 3: (a) Plot of the position of the system x(t) and of p(t) =
1
2
[ẋ(t) − F (x(t), t)] computed numerically (using a leap frog

algorithm) from eq. (1), and denoted with the subscript S.
(b) Expansion of the previous plot and comparison with p(t)
computed from eqs. (4), (5), denoted with the subscript P .
Note that x(t) first hits the origin at approximately t = 1011.5,
which is preceded with a peak in p(t) by a time of 4 periods.
The data are smoothed using a moving average.

Numerical demonstration. – In order to demon-
strate this strategy, we evolve eq. (1) numerically for a
very long time, until the system jumps from one poten-
tial well to the other. We use a quartic potential U(x) =
−x2/2 + x4/4 with A = 0.7, ω = 2π and σ = 0.0727.
These parameters are chosen to maximize the difference
between A and σ and yet still yield a jump in a tractable
simulation time.

In the absence of noise and periodic forcing, the result-
ing Langevin equation has two stable periodic solutions
separated by an unstable one. We apply our prediction
scheme to study the transition between the two stable pe-
riodic solutions in the regime σ < A. The results are
discussed in the following.

Figure 3(a) shows the time evolution of the system state
x(t) and of the deviation p(t) from deterministic flow (the
noise) over a time of 2000 periods. We observe that p(t)
exhibits small oscillations around zero, showing a peak
near the jump. Since the system is driven by white noise,
p(t) has no temporal structure in the time frame consid-
ered, except for the increment very near the jump. In-
deed, as described above, this jump can only be observed
if the noise accumulates in an optimal way. Namely, in
this region the noise does not behave randomly. Rather,
in order to drive the system to a jump, the noise should
form a specific structure that depends on the shape of the
potential.

Figure 3(b) shows in detail the behavior of p(t) close to
the jump. When the value of p(t) is near zero, we expect
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that the noise, and thus p(t), will accumulate randomly.
Importantly, in that region, because there are many ways
for the noise to accumulate with equal probability, find-
ing an optimal path is meaningless. However, when p(t)
deviates from zero we find a substantially different cumu-
lative influence of the noise. Namely, because the prob-
ability differences between paths increase exponentially,
only a single path becomes relevant. This path is very
near the optimal path satisfying eqs. (4), (5). Indeed,
the solution of eq. (5) and numerical shapes of p(t) agree
well near the transition; increasing exponentially rather
far from zero as e−λst and then, when approaching the
unstable periodic orbit around the maximum of the po-
tential, it begins to decrease as e−λut, with λu the Lya-
punov exponent of the unstable periodic orbit defined as
λu = 1

T

∫ t+T

t
dzF ′(xu(z), z). Clearly the unstable peri-

odic orbit will not persist and, after reaching the max-
imum of the potential, the system will immediately fall
into the stable periodic orbit around the minimum of the
other well. However, the asymmetric influence of the noise
as the system transitions is responsible for the deviation of
the numerical and the analytical prediction near the peak.

Figures 4(a)–(c) show x(t) in three different simulations
and p(t) during the interval in which noise is accumulating
shortly before the transition. In each simulation we have
modified the shape of the potential in order to change the
value of the Lyapunov exponent of the stable orbit and
the noise amplitude to make the waiting time for the jump
comparable in each simulation. This is accomplished by
varying the value of a in −U ′(x) = a x−x3, with a = 1.5, 1
and 0.5 in figs. 4(a)–(c), respectively, as well as the values
of σ, with σ = 0.1233, 0.0727 and 0.0632 in figs. 4(a)–(c),
respectively. In all cases, A = 0.7 and ω = 2π. These
figures demonstrate the optimal nature of the noise accu-
mulation described by the instanton equations (4), (5). In
fig. 4(d) we show the mean standard error (MSE) between
the realizations of p(t) constructed from the realizations
of the noise and its optimal behavior described in eq. (14).
This is defined as

MSE(t) =
1
n

min
p0

{
m+n∑
i=m

(
pi − p0e

λsti
)}

. (16)

We computed the MSE using the noise from fig. 4(c) taken
over a 200 period time window spanning an interval ex-
hibiting linear behavior on a logarithmic scale. We used
a moving time window of size n = 22 = 2.2dt(∼τW ), in
each of which we chose the value of p0 that minimizes the
MSE between the values of p(t) constructed from the re-
alizations of the noise and the exponential slope given in
eq. (14). We find that the MSE assumes larger values —
ten times larger at least— for the time interval in which
the noise deviates from p0e

−λst. Thus, these simulations
show that the time window during which the noise ac-
quires a specific structure increases thereby decreasing the
value of the Lyapunov exponent, consistent with the dis-
cussion in the second section. Namely, a smaller Lyapunov

Fig. 4: The trajectories of x(t) for 100 periods and p(t) immedi-
ately prior to the jump (along with the analytical prediction)
for three different simulations associated with three different
Lyapunov exponents are shown in (a)–(c). (d) The MSE of the
noise realizations with respect to the optimal behavior pre-
dicted in eq. (14), using the data from the simulation shown in
(c) displayed over a larger time window. The solid line is the
average MSE, the dashed line is the MSE corresponding to the
values of p(t) in the time window highlighted in the top left of
(c) and the dotted line is the minimum value reached by the
MSE if these values of p(t) are removed.

exponent implies a slower optimal accumulation of the
noise. Therefore, the system will take more time to shift
to another stable basin so that the warning time of a rare
event increases for less stable potentials.

When σ � A and σ � ΔU the jump probability is
extremely small and thus poses a substantial numerical
challenge. Having shown that our strategy works well un-
der less extreme cases we have thereby quantified how the
conjugate momentum of the instanton organizes the noise
prior to the jump. Therefore, we expect that the same
noise organization process will be operative in the case
where σ � A and σ � ΔU and the system behavior
shown in fig. 1 will be recovered.

Conclusion. – We have developed a theory to study
and find precursors to noise-induced rare events within the
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general framework of stochastic resonance. In stochas-
tic resonance, a periodically and noise forced system in
a double-well potential jumps between minima, but the
time-scale separation of these forcings insures that the
system oscillates for a long time about one of the local
minima of the potential and only very rarely jumps to the
other minima. The ubiquity of such transitions underlies
the importance of trying to predict when they will occur.

We have used a path-integral method to determine the
particular manner in which the fluctuations around
the unperturbed deterministic flow must organize prior
to the system jump. We have showed how to predict
the time within a period when the system will transit
to another minimum, and have harnessed the signature
of this fluctuation behavior as an advanced indicator of
a potential jump, as well as computing the probability
of such rare events. The method provides a framework
to examine data in a manner that facilitates predictions
across a broad spectrum of stochastic systems. Finally,
the approach identifies a short well-defined structure im-
mediately prior to the rare event. The detection of such
structures in a prediction setting is a central aspect of
many machine learning approaches to rare event predic-
tions (see, e.g., [27]), which provide a test bed for a wide
range of applications.

∗ ∗ ∗
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