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Abstract – The capacitive charging of porous electrodes is crucial to various electrochemical
systems which store or harvest energy, or desalinate water. Volume averaging of the equations
governing system dynamics is often employed due to a random electrode pore structure, resulting
in a closure problem. The closure problem introduces significant mathematical complexity, thus it
is important to understand and probe under which conditions it can be neglected. We here solve
for the dynamics of capacitive charging within pores of various shapes and compare to results
of volume-averaged models neglecting the closure problem. We quantify errors and determine
constraints under which neglecting the closure problem is largely justified, and find pore shape
has a significant impact on the associated errors.

Copyright c© EPLA, 2020

Introduction. – A multitude of electrochemical sys-
tems leverage the capacitive charging of porous electrodes,
towards applications such as energy storage, energy har-
vesting, or water desalination. Prominent examples in-
clude electric double layer capacitors (EDLCs), which
store energy in electric double layers (EDLs) that form
along electrically charged pore surfaces [1–3]. In EDLCs,
electrodes are soaked in electrolyte with either an aque-
ous or organic solvent, with aqueous electrolytes enabling
higher power density while organic electrolytes allow for
maximized energy density [4,5]. Capacitive charging is
also employed for energy harvesting by capacitive mixing,
where the difference of potential associated with charged
electrodes filled by concentrated or dilute solutions is ex-
ploited [6–8]. Another example is water treatment via
capacitive deionization (CDI), in which undesired ions
present in feedwater are removed via electrosorption into
EDLs forming along charged surfaces [9]. In CDI, ion elec-
trosorption can be utilized for wastewater purification [9],
both brackish and sea water desalination [10], water soft-
ening [11], microfluidic sample preparation [12], ion sepa-
rations [13], and organic solvent remediation [14].

The electrode material used in cells performing
capacitive charging are often activated porous carbon
electrodes with a random mesoscale or macroscale

(a)E-mail: mesuss@technion.ac.il (corresponding author)

through-electrode pore structure. As a result, model-
ing the ion and charge dynamics of such cells requires
accounting for spatial complexities induced by the pore
structure. Several techniques exist to model such a pro-
cess, including direct numerical simulations layered onto
3D random pore structures [15,16], reduced order mod-
els [17,18], and homogenization or volume averaging of
the governing equations [19,20]. Volume averaging is of-
ten employed as it allows for relatively simple implemen-
tation and is generally less intensive numerically. For
CDI cells, a volume-averaged model was first developed
by Johnson and Newman for a simple Helmholtz-like EDL
structure [21], and extended decades later by Biesheuvel
and Bazant [22] for Gouy-Chapman (GC) EDLs. The lat-
ter two models investigated a monoscale porous structure
with thin EDLs relative to pore size. In parallel, volume-
averaged models were developed for EDLC cells, such as
that of Allu et al. [23]. More advanced volume-averaged
models were later developed to capture effects such as
surface transport in EDLs [24,25], and multiscale pore
structures with thin EDLs [26]. In addition to mesoscale
or macroscale through-electrode pore structure, many CDI
and EDLC carbon electrodes include microscale pores
with strongly overlapped EDLs for maximized ion stor-
age [27,28]. EDL models used to describe micropore EDLs
include modified-Donnan-type [29–31] and amphoteric
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Donnan [32,33]. Beyond carbons, other capacitive elec-
trodes include intercalation sites for ion storage between
atomic planes [34–36], where the charged interface is often
modeled using Frumkin intercalation isotherms [37,38].

Mathematically, the volume-averaging technique used
for capturing charge and ion dynamics in electrochemical
systems bears similarity to the Reynold’s (time) averag-
ing of mass and momentum conservation equations used
to model turbulent fluid flows [39]. While in turbulent
flows, the complexity is in time due to random velocity
fluctuations induced by eddies [39], in electrochemical sys-
tems the complexity is in space due to the random pore
structure in typical porous electrodes [40]. One impor-
tant characteristic of the turbulent flow problem is that
time averaging gives rise to a closure problem, as averaging
leads to new variables, namely the perturbed flow veloc-
ity components. In electrochemical systems, new variables
are similarly obtained upon volume averaging, such as the
perturbed ion concentration and electric potential. How-
ever, in the electrochemical systems literature the closure
problem is generally neglected ad hoc [21,22,25], for exam-
ple by assuming “slowly varying parameters” [22], where
the perturbed variable’s magnitude is assumed to be much
smaller than that of the volume-averaged variable.

By contrast, Gabitto and Tsouris posed and solved
the closure problem for monoscale capacitively charging
porous electrodes with thin Gouy-Chapman-Stern (GCS)
EDLs [41]. The latter leveraged the volume-averaging
technique pioneered by Whitaker [20], and also applied
towards systems such as porous catalysts [42], soil aggre-
gates [43] and biofilms [44]. However, posing and solving
the closure problem added significantly more mathemati-
cal complexity relative to the simplified volume-averaged
model. In this work, we investigate, for a variety of
pore shapes and model parameters, under what condi-
tions the closure problem can be neglected with acceptable
loss of accuracy. We develop and solve both 2D in-pore
models capturing coupled ion and charge dynamics, and
the associated 1D volume-averaged models with neglected
closure problem in order to carefully compare and eval-
uate the latter model. Overall, we find that pore shape
can have a significant effect on the errors between the in-
pore and volume-averaged models, but that in most cases
the volume-averaged model gives acceptably accurate re-
sults for times significantly longer than the pore diffusion
timescale.

Theory. – We here focus on porous media with uni-
modal pore structure and assume that the pores are filled
with an electrolyte containing one univalent anion and one
univalent cation with equal diffusivities. In the pore bulk,
away from surfaces and so where the electroneutrality con-
dition holds, the balance of salt and charge equations are
given as [22,41,45]

∂ĉ

∂t̂
= ∇̂2ĉ, (1)

∇̂ · (ĉ∇̂φ̂) = 0, (2)

where ĉ is the bulk salt concentration (ĉ ≡ ĉcation =
ĉanion), scaled by the initial concentration, c0, and φ̂ is
the bulk electric potential, scaled by the thermal volt-
age VT = kTe/e, where k is the Boltzmann constant,
Te is the absolute temperature and e is the elemen-
tary charge. Further, t̂ is time scaled by the pore dif-
fusion timescale, τhp ≡ h2

p/D, where hp is the pore’s
characteristic lengthscale, defined by the ratio between
the pore’s volume and surface area, hp ≡ Vp/Ap, (see
fig. A1 in appendix A in the Supplementary Material
Supplementarymaterial.pdf (SM)), D is the diffusivity
and ∇̂ is the Nabla operator scaled by hp.

We restrict to the case where the EDLs are thin rela-
tive to the pore size, hp, and neglect tangential (surface)
transport of ions in the EDLs. Therefore, the boundary
condition between the pore surface with an EDL skin and
the bulk solution can be described by an effective flux,
given as [22,46–48]

n̂ · (∇̂ĉ) = −ε
∂w̃

∂t̂
, (3)

n̂ · (ĉ∇̂φ̂) = −ε
∂q̃

∂t̂
, (4)

where n̂ is the outwards pointing normal vector, ε is the
ratio between the Debye length characterizing EDL thick-
ness [49], λD, and hp, and w̃ and q̃ are, respectively, the
local areal excess salt and charge densities of the EDL,
scaled by 2λDc0. For a GC EDL, the expressions for the
EDL excess densities are w̃ = 4

√
ĉ sinh2[(φ̂el − φ̂)/4], and

q̃ = −2
√

ĉ sinh[(φ̂el − φ̂)/2], where φ̂el is the electrode
potential scaled by the thermal voltage [22,24,25,46].

While eqs. (1) and (2) can be solved together with
boundary conditions (3) and (4) for spatiotemporal con-
centration and potential fields during capacitive charging,
the complex geometry of pores in typical porous electrodes
can render such an approach difficult. An alternate ap-
proach is to develop volume-averaged equations, where the
local equations, here eqs. (1) and (2), are integrated over
a representative element volume (REV) [50] and re-cast
in terms of volume-average parameters (see appendix A
in the SM). Such an approach allows for averaging over
complexities in pore structure, thus often reducing model
dimensionality and enabling simpler boundary conditions.
Starting from the local equations (1) and (2), the resulting
volume-averaged equations for a general porous structure
(eqs. (A15) and (A16) in appendix A in the SM) are
given as

∂(cp + εwp)
∂t

+
cp

p

∂p

∂t
=

1
p
∇ · (p∇cp)

+
Le

hpV̂p

∇ ·
∫

Âp

(n̂c′)dÂ, (5)

ε
qp

∂t
=

1
p
∇ · (cpp∇φp) +

1
V̂p

∇ ·
∫

V̂p

c′∇φ′dV̂

+
Le

hpV̂p

∇ ·
[
cp

∫
Âp

(n̂φ′)dÂ

]
. (6)
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Here cp and φp are the dimensionless intrinsic-averaged
variables, defined by cp ≡ ∫

V̂p
ĉdV̂ /V̂p and φp ≡∫

V̂p
φ̂dV̂ /V̂p, where V̂p is the pore volume within the REV

scaled by h3
p. There are additionally pore surface area-

averaged variables in eqs. (5) and (6), the area-averaged
EDL excess salt density, wp ≡ ∫

Âp
w̃dÂ/Âp, and excess

EDL charge density qp ≡ ∫
Âp

q̃dÂ/Âp, where Âp rep-
resents the pore surface area within the REV scaled by
h2

p. Further, t is time scaled by the electrode diffusion
timescale, τle ≡ L2

e/D, where Le is the electrode’s thick-
ness, ∇ is the Nabla operator scaled by Le and c′ and
φ′ are perturbed variables defined by c′ ≡ ĉ − cp and
φ′ ≡ φ̂ − φp. Finally, p is the electrode’s porosity de-
fined by p ≡ Vp/Vtot, where Vtot is the total (solid and
liquid phase) volume of the REV.

For the case of homogenous porous media with constant
porosity, eqs. (5) and (6) can be simplified to

∂(cp + εwp)
∂t

=
∂2cp

∂x2 +
Le

hpV̂p

∇ ·
∫

Âp

(n̂c′)dÂ, (7)

ε
qp

∂t
=

∂

∂x

(
cp

∂φp

∂x

)
+

1
V̂p

∇ ·
∫

V̂p

c′∇φ′dV̂

+
Le

hpV̂p

∇ ·
[
cp

∫
Âp

(n̂φ′)dÂ

]
, (8)

where x is position scaled by Le. Equations similar to (7)
and (8) were presented by Gabitto and Tsouris [41], al-
though there the factor ε multiplying the excess EDL
quantities was absent. Equations (7) and (8) contain three
terms which include perturbed variables. The right-most
terms of eqs. (7) and (8) result from the spatial averag-
ing theorem, as described in previous works [51–53] and in
appendix A in the SM. The second term in the right-hand
side of eq. (8) results from integrating the nonlinear elec-
tromigration term in eq. (2) over the pore volume of the
REV (see appendix A in the SM). The latter term bears
an analogy to turbulent flows, where the Reynolds stress
terms involving velocity perturbations arises from time av-
eraging the nonlinear advection of momentum terms in
the Navier-Stokes equation [39]. Overall, both for eqs. (7)
and (8), and for the case of turbulent flow, the presence of
perturbed parameters suggests the need to pose and solve
a closure problem [39,41].

In capacitive charging, the closure problem has typ-
ically been neglected ad hoc [22,24]. For exam-
ple, Biesheuvel and Bazant [22] presented and solved
the 1D volume-averaged model for capacitive charg-
ing of a porous electrode with GC EDLs. The au-
thors rationalized neglecting the closure problem by
assuming that the perturbed quantities were small
relative to the 1D volume-averaged quantities (so
called “slowly varying parameters” on the pore scale).

Equations (7) and (8) can then be simplified as

∂(cp + εwp)
∂t

=
∂

∂x

(
Deff

∂cp

∂x

)
, (9)

ε
∂qp

∂t
=

∂

∂x

(
Deff cp

∂φp

∂x

)
, (10)

where here Deff ≡ Deff/D represents the scaled effective
diffusivity. Dimensional effective diffusivity is defined as
Deff ≡ D/T , where T is the tortuosity quantifying the
increase in diffusion pathways for ions due to the local
pore structure. Equations (9) and (10) are identical to
the model presented by Biesheuvel and Bazant [22] and
by Gabitto and Tsouris [41] and we refer them here as the
1D volume-averaged model.

Another method towards simplifying eqs. (7) and (8)
was presented in Gabitto and Tsouris [41]. There, the
authors estimated the order of magnitude of the perturbed
variables by posing the closure problem. The following two
constraints were required:

t̂ ≡ tD

h2
p

� 1, (11)

hp

Le
� 1. (12)

Considering constraints (11) and (12), the perturbed vari-
ables behave as [41] c′ = f1 · ∇̂cp + f2ε∂wp/∂t̂ and
φ′ = f1 · ∇̂φp + f2(ε/cp)(∂qp/∂t̂) where f1 and f2 are,
respectively, vector and scalar functions related to the ge-
ometry of the porous structure1. Considering the above
results, eqs. (7) and (8) become

∂(cp + εwp)
∂t

=
∂

∂x

(
Deff

∂cp

∂x

)

+
∂

∂x

(
ε
∂wp

∂t

hp

LeV̂p

∫
Âp

n̂f2dÂ

)
, (13)

ε
∂qp

∂t
=

∂

∂x

(
Deff cp

∂φp

∂x

)
+

1
V̂p

∇ ·
∫

V̂p

c′∇φ′dV̂

+
∂

∂x

(
ε
∂qp

∂t

hp

LeV̂p

∫
Âp

n̂f2dÂ

)
, (14)

where tortuosity was defined as T ≡ 1/[1 +
(
∫

Âp
n̂ · f1dÂ)/V̂p] [41]. Moreover, the authors argued via

a scaling analysis that the right-most term on the right-
hand side of eq. (13), and the two right-most terms on
the right-hand side of eq. (14) can be neglected, and
so eqs. (13) and (14) can be approximated by eqs. (9)
and (10) [41].

One additional note is that in past works [22,24,25],
the area-averaged variables (wp and qp) were assumed

1Scaling the problems and their boundary conditions described
by eqs. (25)–(30) and (37)–(42) in Gabitto and Tsouris [41] results
in identical functions for perturbed concentration and potential.
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to be equivalent to the local variables (w̃ and q̃) except
with intrinsic volume-averaged quantities replacing local
quantities, wp ≈ 4

√
cp sinh2[(φ̂el − φp)/4] and qp ≈

−2
√

cp sinh[(φ̂el − φp)/2]. The latter assumption was to
our knowledge not explicitly justified previously. How-
ever, we do so by adapting a technique presented in ap-
pendix B in Quintard and Whitaker [54], and find that
the expressions for wp and qp used previously are accu-
rate by assuming slowly varying parameters or within the
constraints given by eqs. (11) and (12).

Results. – In this work, we evaluate the use of the
“slowly varying parameters” assumption invoked to ne-
glect the closure problem and lead to the 1D volume-
averaged model of eqs. (9) and (10). To form a basis for
comparison, we solved the full, in-pore, 2D model given by
eqs. (1) and (2) with pore wall boundary conditions (3)
and (4), for several pore shapes. The results of the in-
pore model are compared to predictions of the associated
volume-averaged model given by eqs. (9) and (10). For
all models, the porous separator has a scaled thickness
of L̂sep ≡ Lsep/hp = 10, and its porosity and tortuosity
are equal to those of the electrode. Constant concentra-
tion (ĉ = cp = 1) and potential (φ̂ = φp = 0) boundary
conditions are used at the separator’s far end (away from
the porous electrode), and zero salt and charge flux con-
ditions are imposed at the electrode’s far end (away from
the separator). Figures 1(a), (c), and (e) show concentra-
tion fields predicted by the in-pore model for a slit-shaped
pore at times of t̂ = 0.1, 1 and 10, respectively. In these
figures ŷ = 0 represents the midline of the pore, the pore
wall is at ŷ = 1, and the interface between the electrode
(x̂ ≥ 0) and the separator (x̂ < 0) is shown schemati-
cally by a vertical dashed line. Figures 1(b), (d) and (f)
are plots of the predicted concentration profiles from the
in-pore model at the pore wall (dotted lines), and from
the associated volume-averaged model (solid lines, where
T = 1 for slit-shaped pore). The parameters used for cal-
culations in fig. 1 include L̂e ≡ Le/hp = 100, φ̂el = 20,
and ε = 0.01.

In fig. 1(a), we observe that at early times, t̂ = 0.1, sig-
nificant perturbation of the bulk electrolyte has occurred
near the pore wall at the separator/electrode interface.
We also observe strong concentration gradients in both x̂
and ŷ directions in the latter region, and that elsewhere
in the pore the concentration field is largely unperturbed.
For the same early time, in fig. 1(b), we observe signifi-
cant differences between the 2D in-pore model predictions
at the wall and that of the 1D volume-averaged model.
For example, the minimum dimensionless wall concentra-
tion from the 2D in-pore model is 0.84, significantly lower
than the minimum concentration of 0.95 predicted by the
1D volume-averaged model. Figure 1(c) shows that at
later times where t̂ = 1, regions of perturbed concentration
have diffused to reach the pore midline and into the sepa-
rator space as well. Also, we observe concentration gradi-
ents in both x̂ and ŷ directions in the pore, with stronger
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Fig. 1: Predicted concentration fields for the 2D in-pore model
((a), (c) and (e)), and comparisons between the wall concen-
tration of the 2D model to that predicted by the 1D volume-
averaged model ((b), (d) and (f)). The times investigated are
t̂ = 0.1 ((a), (b)), t̂ = 1 ((c), (d)) and t̂ = 10 ((e), (f)).

gradients in the x̂-direction (maximum value of 0.52) com-
pared to the ŷ-direction (maximum value of 0.37). We also
see from fig. 1(d) that at this time, smaller differences are
apparent between the 2D and 1D models, as the minimum
wall concentration predicted by the 2D model is 0.72, com-
pared to the minimum value of 0.79 predicted by the 1D
volume-averaged model. For even later times of t̂ = 10,
we can see in fig. 1(e) the concentration field becomes al-
most completely one-dimensional in the x̂-direction, and
likewise fig. 1(f) shows only very slight difference between
the concentration profiles of each model, with a minimum
of 0.35 predicted by the 2D in-pore model, compared to
0.37 by the 1D volume-averaged model. Thus, from the
results of fig. 1, we conclude that for a slit-shaped pore at
the aforementioned model parameters, the closure prob-
lem can be neglected for times much greater than τhp, but
this simplification can lead to errors at times on the order
or smaller than τhp.

To probe a wider variety of pore shapes, we de-
veloped 2D in-pore models and associated 1D volume-
averaged models for wavy-walled pores and an idealized
pore network. Figures 2(a) to (c) show the pore shaped
analyzed, where vertical dashed lines represent the elec-
trode/separator interface and horizontal dot-dashed lines
the pores’ midlines. Figure 2(a) shows the slit-shaped pore
analyzed in fig. 1, where slit-shaped pores with different
lengths are analyzed and discussed in appendix C in the
SM. For the wavy-walled pores of fig. 2(b), a sinusoidal
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function was used to define the wall’s location, with wall
amplitude of A = 0.5, wavelength λ = 2, both scaled
by hp, and phase angle at the electrode/separator inter-
face of θ = 0. Other pore shapes with varying A, λ, or
θ are analyzed and discussed in appendix C in the SM.
Figure 2(c) depicts the pore network, characterized by a
vertical distance between pores of α = 1, and a horizon-
tal distance between pores of β = 0.8, both scaled by hp.
Other networks with varying α or β are analyzed and dis-
cussed in appendix C in the SM. The tortuosity of the
wavy-walled pores and pore network was calculated using
the definition provided in the “Theory” section, see ap-
pendix B in the SM for calculation details. Calculated
tortuosity value for the pore shown in fig. 2(b) is 1.23,
and 1.27 for that of fig. 2(c). For the 2D model, the pa-
rameters for calculations include L̂e = 300, φ̂el = 20 and
ε = 0.01. We also plot in figs. 2(a) to (c) the local concen-
tration difference between the 2D and 1D models, Δc ≡
cp(x̂, t̂) − ĉ(x̂, ŷ, t̂) scaled by the concentration predicted
by 2D model ĉ(x̂, ŷ, t̂), at t̂ = 10. For the slit-shaped pore
(fig. 2(a)), near to the pore inlet, we observe values as high
as 0.083 near the walls and as low as −0.082 at the pore
midline. For the wavy-walled pore (fig. 2(b)), we see simi-
lar trends, where the highest positive value of 0.41 occurs
within the apex of the wall sinusoid nearest to the pore in-
let. For the pore network (fig. 2(c)), we see values as high
as 0.16 near the vertical pores’ walls, while values as low as
−0.047 develop away from all walls. Overall, at this time,
we observe in all pores that the 1D model overpredicts
concentration near the walls, and underpredicts near the
midline.

In figs. 2(d) and (e), we plot two parameters prob-
ing the local and integrated error between the 2D and
1D models. The parameter quantifying local error is
max |Δc/ĉ|, while the integrated error is quantified by
Δns/n̂s ≡ (ns − n̂s)/n̂s, where n̂s is the salt storage pre-
dicted by the 2D model, and ns that predicted by the
1D model, both scaled by 2εc0pVel,tot, where Vel,tot is the
total electrode volume. Figure 2(d) shows max |Δc/ĉ| as
a function of t̂, and fig. 2(e) plots Δns/n̂s vs. t̂, both
for the slit-shaped pore of fig. 2(a), the wavy-walled pore
of fig. 2(b), and the pore network of fig. 2(c). From
fig. 2(d), we observe that max|Δc/ĉ| evolves differently
in time for each pore shape. For example, for the slit-
shaped pore (solid black line) a maximum value of 0.14
occurs at t̂ = 0.18, while the wavy-walled pore (dashed
blue line) has a maximum value of 0.41 at the later time
of t̂ = 11. The pore network (dot-dashed red line) reaches
a maximum value of 0.24 at even later time of t̂ = 240. We
also notice that only for t̂ > 300, the value of max |Δc/ĉ|
decreases for all pore shapes. In contrast to the local er-
ror indicator, the integrated error indicator, Δns/n̂s, in
fig. 2(e) shows large values for t̂ < 1, for example 0.11 at
t̂ = 0.03 for the wavy-walled pore, strongly decreasing as
time tends to t̂ = 1, resulting in good agreement between
the models for t̂ > 1 with highest absolute value of 0.013
for the wavy-walled pore at long times, as expected from

constraint (11). Further, we notice the sign of Δns/n̂s in-
dicates whether the 2D or 1D model predicts faster charg-
ing. For example, the 2D model for the wavy-walled pore
is initially slower compared to the associated 1D model,
with Δns/n̂s = 0.88 at t̂ = 0.04, while for later times the
opposite occurs, with Δns/n̂s = −0.011 at t̂ = 100.

We can also observe that the curves plotted in fig. 2(d)
exhibit a rich variety of non-monotonic features. Such fea-
tures can occur when the maximum value of Δc changes
sign relatively suddenly. For example, for the slit-shaped
pore (solid black line), the maximum and minimum scaled
differences are, respectively, 0.093 and −0.077 at t̂ = 7,
0.083 and −0.082 at t̂ = 10, and 0.076 and −0.084 at
t̂ = 13, resulting in seemingly abrupt changes in the slope
at these times in fig. 2(d). Similar phenomena also occur
for the wavy-walled pore and the pore network. In ap-
pendix C in the SM, we explored a wider range of pore
shapes, and find that pore length for a slit-shaped pore
does not affect max |Δc/ĉ| for t̂ < 1, but does as time
tends to τle. For example, at t̂ = 100, max |Δc/ĉ| = 0.13
for L̂e = 30 (t ≈ 0.11), compared to 0.072 for L̂e = 100
(t = 0.01) and L̂e = 300 (t ≈ 0.0011). Further, wall am-
plitude for wavy-walled pores has an important effect on
the deviation between the 2D and 1D results, where only
for A > 0.4 is max |Δc/ĉ| well above that of a slit-shaped
pore. For the pore network, we observed that increasing α
results in higher value of max |Δc/ĉ| at t̂ ≈ 300. Overall,
while the local error indicator, max |Δc/ĉ|, can attain rel-
atively large values of over 0.2, even for times longer than
τhp, the integrated error indicator, Δns/n̂s, is typically of
order 0.01 for times much longer than τhp, consistent with
the constraint of eq. (11).

Figures 2(f) to (h) plot various volume-averaged fluxes
which underpin terms seen in eq. (14). These fluxes were
obtained from the 2D model solution at a time of t̂ = 10,
using an averaging volume of width of 10hp. Shown here
are results for the slit-shaped pore (fig. 2(f)), the wavy-
walled pore (fig. 2(g)) and the pore network (fig. 2(h)).
From figs. 2(f) to (h) we see that at t̂ > 1, electromigration
flux due to perturbed fields (red line) is small compared
to the corresponding electromigration flux due to aver-
aged fields for all pore shapes (black lines). Small elec-
tromigration flux due to perturbed field was also observed
for other electrochemical systems not relying on capaci-
tive charging, such as chaotic electroconvection near an
ion selective membrane [55,56]. Figure 2(f) shows that
the term capturing effects of surface geometry on the
EDLs charging process (right-most term of eq. (14)) is
uniquely zero, as expected for a pore with unity tortuos-
ity. Figures 2(g) and (h) show noticeable surface geome-
try effects for a wavy-walled pore and pore network (blue
line), although the magnitude of these fluxes is less than
that of the electromigration due to averaged fields (black
line). Many models for capacitive charging of porous elec-
trodes assume unity pore tortuosity [24,25,57–59], and we
here briefly comment on this assumption. When assum-
ing unity tortuosity for pores other than slit-shaped pores,
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Fig. 2: (a)–(c) Results for the scaled concentration difference between the 2D in-pore model and 1D volume-averaged model,
Δc/ĉ, at time t̂ = 10 for (a) the slit-shaped pore, (b) the wavy-walled pore with A = 0.5, and (c) the pore network with
α = 1 and β = 0.8. (d), (e): predictions for (d) max |Δc/ĉ|, and (e) Δns/n̂s, as a function of t̂. (f)–(h) Fluxes involving
volume-averaged or perturbed parameters, from eq. (14), at t̂ = 10, for (f) a slit-shaped pore, (g) a wavy-walled pore with
A = 0.5 and (h) a pore network with α = 1 and β = 0.8.

Δns/n̂s remains large throughout the charging process,
decreasing only when nearing steady state. For exam-
ple, while assuming unity tortuosity for the wavy-walled
pore of fig. 2(b), Δns/n̂s = 0.22 and 0.12 at t̂ = 1 and
t̂ = 106, respectively, compared to 0.0015 and −0.0042 for
the same model when accounting for the non-unity tortu-
osity (fig. C2 in appendix C in the SM), and similar trends
were observed for the pore network. Overall, for the pores
investigated, the effect of tortuosity is important through-
out the charging process, and assuming unity tortuosity
may lead to significant errors in predicting the charge and
salt dynamics when pores have non-slit shapes.

Conclusions. – We here analyzed the dynamics of ca-
pacitive charging of porous electrodes using both 2D in-
pore models, and associated 1D volume-averaged models
which neglect the closure problem. Long and thin pores
of various shapes were analyzed, in order to quantify the
error between the in-pore and volume-averaged models.

For most pore shapes investigated, neglecting the closure
problem resulted in only small deviations in integrated pa-
rameters, such as salt stored, between 2D and 1D models
at times significantly greater than the pore diffusion time.
Local parameters, such as salt concentration, can exhibit
more notable deviations, even at times much greater than
the pore diffusion time. The approach developed here can
be applied to studying multi-scale porous media and a
wider variety of pore shapes.
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