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Abstract – In this work, we study a generalized Klein-Gordon oscillator field on the background
space-time induced by spinning cosmic string coupled to a homogeneous magnetic field includ-
ing a magnetic quantum flux. We solve the generalized Klein-Gordon oscillator equation in the
considered system and obtain the energy eigenvalues and eignfunctions and analyze a relativistic
analogue of the Aharonov-Bohm effect.

Copyright c© EPLA, 2020

Introduction. – The one-dimensional spinning cosmic
strings are characterized by a wedge parameter α and an
angular momentum J . Spinning cosmic strings are the
counterpart of static cosmic strings that would arise in
the early universe [1] and were studied in the context of
Cartan-Einstein’s theory [2,3] and teleparallel gravity [4].

The relativistic wave equations have been studied in
physics [5–8]. Landau levels of a particle localized in
spinning cosmic strings space-time were investigated
in [9,10]. Several authors have studied the spinning cosmic
string space-time, such as the Dirac oscillator [11], scalar
charged particle with an external field and potential [12],
Klein-Gordon oscillator with an external field [13], Klein-
Gordon scalar field with a Cornell-type potential [14], mo-
tion of a quantum particle [15], spin-0 relativistic scalar
particle [16]. On the other hand, static cosmic string
space-time has also been studied in the relativistic quan-
tum system (e.g., [17–21]).

Our motivation is to analyze a relativistic analogue
of the Aharonov-Bohm effect for bound states [22,23] of
a relativistic scalar particle in a spinning cosmic string
space-time subject to a homogeneous magnetic field. The
generalized Klein-Gordon oscillator field is coupled co-
variantly with an electromagnetic field including a mag-
netic quantum flux and we solve this equation which was

(a)E-mails: faizuddinahmed15@gmail.com,
faiz4U.enter@rediffmail.com

not studied earlier [13,20,24,25]. We solve the general-
ized Klein-Gordon oscillator subject to a homogeneous
magnetic field including a magnetic quantum flux in the
spinning cosmic string space-time and evaluate the energy
eigenvalues and eigenfunctions.

Generalized KG-oscillator in spinning cosmic
string space-time. – The relativistic quantum dynamics
of a spin-0 particle of mass m is described by the following
equation [19]:

1√−g Dμ(
√−g gμν Dν Ψ) =

(mc

h̄

)2
Ψ, (1)

where Dμ = ∂μ − i e
h̄ c Aμ, e is the electric charge and Aμ is

the electromagnetic four-vector potential.
We consider the electromagnetic four-vector potential

Aμ = (0, 0, Aφ, 0) with [12,26–28]

Aφ = −1
2
αB0 r

2 +
ΦB

2 π
, (2)

such that the applied magnetic field is �B = −B0 k̂. Here
ΦB=const is the internal magnetic quantum flux [29,30]
through the core of topological defects [30,31]. It is
noteworthy that the Aharonov-Bohm effect has been in-
vestigated in several branches of physics, such as in
graphene [32], Newtonian theory [33], bound states of mas-
sive fermions [34], scattering of dislocated wavefronts [35],
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torsion effects on a relativistic position-dependent mass
system [27,28], the Kaluza-Klein theory [24,36–41].

Consider the following spinning cosmic-string space-
time [10–12,15,42–44]:

ds2 = −(c dt+ a dφ)2 + α2 r2 dφ2 + dr2 + dz2. (3)

Here a = 4 G J
c3 is the rotation parameter and has units of

distance, J is the angular parameter, and α = 1 − 4 μ G
c2 is

the wedge parameter which determines the angular deficit,
∇φ = 2 π (1 − α). The letters c, h̄, G, and μ stand for
the speed of light, Planck constant, gravitational Newton
constant, and linear mass density of the string.

The determinant of the corresponding metric ten-
sor (3) is

detg = −c2 r2 α2. (4)

The co-variant and contra-variant form of the metric ten-
sor are

gμ ν =

⎛
⎜⎜⎝

−c2 0 −a c 0
0 1 0 0

−a c 0 −a2 + r2 α2 0
0 0 0 1

⎞
⎟⎟⎠ ,

gμ ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 − r2 α2

c2 r2 α2 0 − a

c r2 α2 0

0 1 0 0

− a

c r2 α2 0
1

r2 α2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Now, let us consider a Klein-Gordon oscillator [45,46]
coupled to this background. A Klein-Gordon oscillator is
obtained from the Klein-Gordon equation by the replace-
ment of four-momentum as [25,47]

pμ → (pμ + iM ωXμ), (6)

where Xμ = (0, r, 0, 0) with �r = r r̂, r being the distance
from the particle to the string. Thus the covariant form
of the Klein-Gordon oscillator is given by[

1√−g (Dμ +mωXμ) {√−g gμν (Dν −mωXν)}

−
(mc

h̄

)2
]

Ψ = 0, (7)

where ω is the oscillator frequency.
To generalize the above Klein-Gordon oscillator field,

we replace r by a function f(r) into the vector Xμ defined
as [41,48–50]

Xμ = (0, f(r), 0, 0), (8)

where we have chosen the function [41,48–50]

f(r) = c1 r +
c2
r
, c1 > 0, c2 > 0. (9)

For the line element (3), KG-oscillator (7) with eq. (9)
becomes[

−
(

1
c
∂t

)2

+
{

a

crα
∂t− 1

αr

(
∂φ − ie

ch̄
Aφ

)}2

+
1
r
∂r(r∂r)

−2mω c1−m2ω2
(
c1r +

c2
r

)2
+∂2

z −
(mc
h̄

)2
]

Ψ = 0. (10)

Since the metric is independent of t, φ, z, one can choose
the following ansatz for the function Ψ

Ψ(t, r, φ, z) = ei (− E
h̄ t+l φ+k z) ψ(r), (11)

where E is the total energy, and l = 0,± 1,± 2, . . . are the
eigenvalues of the z-component of the angular momentum
operator, and k is a constant.

Using the above ansatz eq. (11), we obtain the following
equation:

ψ′′(r)+
1
r
ψ′(r)+

[
E2

c2h̄2 − 1
α2r2

(
aE

ch̄
+l− e

ch̄
Aφ

)2

−2mωc1

−m2 ω2
(
c1 r +

c2
r

)2
− k2 −

(mc

h̄

)2
]
ψ(r) = 0. (12)

Considering the angular component of four-vector po-
tential (2) into the eq. (12), we obtain the following dif-
ferential equation for ψ(r):

ψ′′(r) +
1
r
ψ(r) +

[
λ−m2 Ω2 r2 − j̃2

r2

]
ψ(r) = 0, (13)

where

λ =
(
E

c h̄

)2

−
(mc

h̄

)2
− k2 − 2mωc

h̄ c
j

−2mω c1 − 2m2 ω2 c1 c2,

Ω =

√
ω2 c21 +

ω2
c

h̄2 c2
,

j̃ =
√
j2 +m2 ω2 c22,

j =
1
α

(
aE

h̄ c
+ l− Φ

h̄ c

)
,

Φ =
ΦB

(2 π/e)
,

ωc =
eB0

2m
(14)

is called the cyclotron frequency of the particle moving in
the magnetic field.

Let us introduce a new variable x = mΩ r2, then
eq. (13) becomes [51]

ψ′′(x) +
1
x
ψ′(x) +

1
x2 (−ξ1 x2 + ξ2 x− ξ3)ψ(x) = 0, (15)

where

ξ1 =
1
4
, ξ2 =

λ

4mΩ
, ξ3 =

j̃2

4
. (16)
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By comparing eq. (15) with (B.1) in appendix B
in [47,48], we get

α1 = 1, α2 = 0, α3 = 0, α4 = 0, α5 = 0, α6 = ξ1,

α7 = −ξ2, α8 = ξ3, α9 = ξ1, α10 = 1 + 2
√
ξ3,

α11 = 2
√
ξ1, α12 =

√
ξ3, α13 = −

√
ξ1. (17)

Therefore, the second degree energy eigenvalues equation
using eqs. (14), (15) into eq. (B.8) in appendix B in [47,48]
is given by(

En,l

c h̄

)2

− 2mωc

α h̄2 c2
(h̄ c l− Φ + aEn,l)

−2mΩ
h̄ c

|h̄ c l − Φ + aEn,l| =
(mc

h̄

)2

+k2 + 2mΩ (2n+ 1)
+2mω c1 + 2m2 ω2 c1 c2, (18)

where n = 0, 1, 2, . . . .
Equation (18) is the compact expression of the rela-

tivistic energy eigenvalues of a generalized Klein-Gordon
oscillator particle subject to a uniform magnetic field in-
cluding magnetic quantum flux in the spinning cosmic
string space-time.

The corresponding wave-function is given by

ψn,l(x) = x
j
2 e− x

2 L(j)
n (x)

= x
1
2

√
1

α2 (l− Φ
h̄ c +

a En,l
h̄ c )2+m2 ω2 c2

2 e− x
2

×L
(

√
1

α2 (l− Φ
h̄ c +

a En,l
h̄ c )2+m2 ω2 c2

2)
n (x). (19)

For zero rotation, a → 0, the energy eigenvalues eq. (18)
becomes

En,l = ±h̄c
{

2mωc

αh̄c

(
l− Φ

h̄c

)
+2mΩ

(
2n+1+

∣∣∣∣l − Φ
h̄ c

∣∣∣∣
)

+
(mc
h̄

)2
+ k2 + 2mω c1 (1 +mω c2)

} 1
2

. (20)

Equation (20) is the relativistic energy eigenvalues of a
generalized Klein-Gordon oscillator field in the presence
of a uniform magnetic field including a magnetic quantum
flux in the static cosmic string space-time.

Special case. Now we discuss a special case corre-
sponding to c1 → 1 and c2 → 0. In that case, the consid-
ered system reduces to the Klein-Gordon oscillator field in
a spinning cosmic string space-time.

The radial wave equation for ψ(r) becomes

ψ′′(r) +
1
r
ψ(r) +

[
λ0 −m2 Ω2

0 r
2 − j2

r2

]
ψ(r) = 0, (21)

where

λ0 =
(
E

c h̄

)2

−
(mc

h̄

)2
− k2 − 2mωc

h̄ c
j − 2mω,

Ω0 =
1
h̄ c

√
h̄2 c2 ω2 + ω2

c . (22)

Following a similar technique as done earlier, we obtain
the following second degree algebraic equation for En,l:(

En,l

c h̄

)2

− 2mωc

α h̄2 c2
(h̄ c l− Φ + aEn,l)

−2mΩ0

α h̄ c
|h̄ c l− Φ + aEn,l| =

(mc

h̄

)2

+k2 + 2mΩ0 (2n+ 1) + 2mω (23)

with its solution

En,l = −
(
mωc a

α
− h̄ c a |l− Φ

h̄ c |
α (l − Φ

h̄ c)
mΩ0

)
±
√
δ1 + δ2,

(24)
where n = 0, 1, 2, . . . and

δ1 =
1
4

(
2mωc a

α
− 2 h̄ c a |l − Φ

h̄ c |
α (l − Φ

h̄ c )
mΩ0

)2

+2mω h̄2 c2 + h̄2 c2 k2 +m2 c4,

δ2 = 2 h̄2 c2 (2n+ 1)mΩ0

+

(
−2mωch̄c(l − Φ

h̄c)
α

+ 2h̄2c2
|l − Φ

h̄ c |2
α(l − Φ

h̄ c)
mΩ0

)
.

(25)

We can see that the energy eigenvalues En,l depend explic-
itly on the rotational parameter a, the wedge parameter α
which characterizes the metric in a spinning cosmic string
space-time, and the magnetic quantum flux ΦB.

The corresponding wave function is given by

ψn,l(x) = x
1

2 h̄ c α (h̄ c l−Φ+a En,l)

×e− x
2 L

( 1
h̄ c α (h̄ c l−Φ+a En,l))

n (x), (26)

where L(β)
n (x) is the generalized Laguerre polynomial.

For zero magnetic quantum flux, ΦB → 0, the energy
eigenvalues in eqs. (24), (25) reduce to the result obtained
in [13]. Thus, we can see that the energy eigenvalues in
eqs. (24), (25) are the extended result in comparison to
those in [13] due to the presence of a magnetic quantum
flux.

For zero rotation of the space-time, a → 0, the energy
eigenvalues from eq. (23) become

En,l = ±h̄c
{

2mωc

αh̄c

(
l − Φ

h̄c

)
+
(mc
h̄

)2
+ k2

+2mΩ0

(
2n+1+

|l− Φ
h̄c |
α

)
+ 2mω

} 1
2

. (27)

For ΦB → 0, the energy eigenvalues eq. (27) reduces to
the result obtained in [20]. For B0 → 0 (or ωc → 0)
and ΦB → 0, the energy eigenvalues eq. (27) reduces to
the result in [20] and also in [24] provided λ = 0 there.
For B0 → 0, ΦB → 0 and α → 1, one will recover from
eq. (27) the energy spectrum of a Klein-Gordon oscillator
field in flat space metric [25]. Thus, we can see that the
energy eigenvalues eq. (27) are the modified result due to
the presence of a magnetic quantum flux ΦB, the external
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magnetic field B0 as well as the wedge parameter α which
causes shifts in the energy levels.

We can see that the relativistic energy eigenval-
ues obtained above depend on the geometric quantum
phase [29,30]. Thus, we have that En,l(ΦB + Φ0) =
En,l∓τ (ΦB) where, Φ0 = ± 2 π c h̄

e τ with τ = 0, 1, 2 . . . .
This dependence of the relativistic energy eigenvalues on
the geometric quantum phase Φ gives rise to a relativistic
analogue of the Aharonov-Bohm effect [22,23].

Conclusions. – In this paper, we study a generalized
Klein-Gordon oscillator with electromagnetic field (B0) in-
cluding a magnetic quantum flux (ΦB) in a spinning cos-
mic string space-time. In the second section, we have
solved the generalized Klein-Gordon oscillator equation
under the considered systems and obtained a compact ex-
pression of the relativistic energy eigenvalues, eq. (18),
and eigenfunctions, eq. (19). There, we have obtained the
energy eigenvalues in eq. (20) in a static cosmic string
space-time. We have shown that the energy eigenvalues
depend explicitly on the rotational parameter a, and the
wedge parameter α which characterize the global structure
of the metric. Furthermore, we have discussed a special
case corresponding to c1 → 1 and c2 → 0 in this system.
We have solved the equation and obtained the relativis-
tic energy eigenvalues in eqs. (24), (25). For zero mag-
netic quantum flux, ΦB → 0, the energy eigenvalues in
eqs. (24), (25) reduce to the result obtained in [13] (see
eq. (13) in [13]). For zero rotation of the space-time, we
have obtained the energy eigenvalues in eq. (27) and have
seen that for zero magnetic flux, ΦB → 0, these eigenval-
ues reduce to the result obtained in [20]. Also, for zero
rotation of the space-time, a → 0, no external magnetic
field, B → 0, and zero magnetic quantum flux, ΦB → 0,
these relativistic energy eigenvalues reduce to the results
in [20] and also in [24].

We have seen that the relativistic energy eigenvalues
depend on the geometric quantum phase [29,30]. Thus,
we have that En,l(ΦB + Φ0) = En,l∓τ (ΦB), where Φ0 =
± 2 π h̄ c

e τ with τ = 0, 1, . . .. This dependence of the rel-
ativistic energy eigenvalues on the geometric quantum
phase gives rise to a relativistic analogue of the Aharonov-
Bohm effect for bound states [22,23]. It has also been
shown that the presence of topological defects of the space-
time, and magnetic quantum flux shifted the energy levels
of the quantum system in comparison to the results known
in the literature.
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