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PACS 03.65.Pm — Relativistic wave equations

PACS 03.65.Ge — Solutions of wave equations: bound states
PACS 98.80.Cq — Particle-theory and field-theory models of the early Universe (including cosmic
pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Abstract — In this work, we study a generalized Klein-Gordon oscillator field on the background
space-time induced by spinning cosmic string coupled to a homogeneous magnetic field includ-
ing a magnetic quantum flux. We solve the generalized Klein-Gordon oscillator equation in the
considered system and obtain the energy eigenvalues and eignfunctions and analyze a relativistic

analogue of the Aharonov-Bohm effect.

Copyright © EPLA, 2020

Introduction. — The one-dimensional spinning cosmic
strings are characterized by a wedge parameter o and an
angular momentum J. Spinning cosmic strings are the
counterpart of static cosmic strings that would arise in
the early universe [1] and were studied in the context of
Cartan-Einstein’s theory [2,3] and teleparallel gravity [4].

The relativistic wave equations have been studied in
physics [5-8]. Landau levels of a particle localized in
spinning cosmic strings space-time were investigated
in [9,10]. Several authors have studied the spinning cosmic
string space-time, such as the Dirac oscillator [11], scalar
charged particle with an external field and potential [12],
Klein-Gordon oscillator with an external field [13], Klein-
Gordon scalar field with a Cornell-type potential [14], mo-
tion of a quantum particle [15], spin-0 relativistic scalar
particle [16]. On the other hand, static cosmic string
space-time has also been studied in the relativistic quan-
tum system (e.g., [17-21]).

Our motivation is to analyze a relativistic analogue
of the Aharonov-Bohm effect for bound states [22,23] of
a relativistic scalar particle in a spinning cosmic string
space-time subject to a homogeneous magnetic field. The
generalized Klein-Gordon oscillator field is coupled co-
variantly with an electromagnetic field including a mag-
netic quantum flux and we solve this equation which was

(a)E-mails: faizuddinahmed150gmail.com,
faiz4U.enter@rediffmail.com

not studied earlier [13,20,24,25]. We solve the general-
ized Klein-Gordon oscillator subject to a homogeneous
magnetic field including a magnetic quantum flux in the
spinning cosmic string space-time and evaluate the energy
eigenvalues and eigenfunctions.

Generalized KG-oscillator in spinning cosmic
string space-time. — The relativistic quantum dynamics
of a spin-0 particle of mass m is described by the following
equation [19]:

1

vy
where D), = 9, — +S Ay, e is the electric charge and A, is
the electromagnetic four-vector potential.

We consider the electromagnetic four-vector potential

A, = (0,0, Ay, 0) with [12,26-28]

D/ Doy = () e

h

1
A¢:7§OLB0T2+§,

(2)

such that the applied magnetic field is B = —By k. Here
®p=const is the internal magnetic quantum flux [29,30]
through the core of topological defects [30,31]. Tt is
noteworthy that the Aharonov-Bohm effect has been in-
vestigated in several branches of physics, such as in
graphene [32], Newtonian theory [33], bound states of mas-
sive fermions [34], scattering of dislocated wavefronts [35],
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torsion effects on a relativistic position-dependent mass
system [27,28], the Kaluza-Klein theory [24,36-41].

Consider the following spinning cosmic-string space-
time [10-12,15,42-44]:

ds? = —(cdt + adg)* + a?r?d¢® + dr? +dz2.  (3)

4G is the rotation parameter and has units of

Here a = =3

distance, J is the angular parameter, and o = 1 — 4—0‘%0 is
the wedge parameter which determines the angular deficit,
V¢ =2m(1l—«). The letters ¢, h, G, and p stand for
the speed of light, Planck constant, gravitational Newton
constant, and linear mass density of the string.

The determinant of the corresponding metric ten-
sor (3) is

2 7“2 a2.

(4)

The co-variant and contra-variant form of the metric ten-
sor are

detg = —c¢

-2 0 —ac 0
oo o1 0 0
v = —gec 0 —a24+12a% 0|’
0 0 0 1
a2 —r2a? a
c2r? o? cr? a?
0 1 0 0
g = 1 )
a
— 0
cr? a? r2 o2
0 0 0 1

Now, let us consider a Klein-Gordon oscillator [45,46]
coupled to this background. A Klein-Gordon oscillator is
obtained from the Klein-Gordon equation by the replace-
ment of four-momentum as [25,47]

Pp— (P +iMwX,), (6)
where X, = (0,7,0,0) with ¥ = r#, r being the distance
from the particle to the string. Thus the covariant form
of the Klein-Gordon oscillator is given by

1 e —mw
b__g@,ﬁmwx,tw-—gg (D, —mwX,)}

mc\?2
—— ¥ =0,
(%) ]
where w is the oscillator frequency.
To generalize the above Klein-Gordon oscillator field,

we replace by a function f(r) into the vector X, defined
as [41,48-50]

(7)

X,u = (Oa f(r)aovo)a (8)

where we have chosen the function [41,48-50]

c1 >0, co > 0. (9)

) =eirt 2

For the line element (3), KG-oscillator (7) with eq. (9)
becomes

1.\ [ a 1 ie 21
—| - — O —— - —A —0p (10
l (cat) +{craat ar (6¢ ch ¢)} +7"8 (rdr)

2\ 2 me\ 2
—2mw ¢; —m?w? (clr + —2) +82— (—) ] U =0. (10)
r
Since the metric is independent of ¢, ¢, z, one can choose
the following ansatz for the function ¥

U(t,r, ¢, 2) = ¢ (0 HLEHRD) ) (11)

where F is the total energy, and [ = 0,£1,+2,... are the
eigenvalues of the z-component of the angular momentum
operator, and k is a constant.

Using the above ansatz eq. (11), we obtain the following
equation:

E? 1 [aE e 2
= (A, 2
K2 a?r? <ch T ¢> mea

—m? w? (01 r+ 072)2 - k% - (%)2] P(r) =0. (12)

Considering the angular component of four-vector po-
tential (2) into the eq. (12), we obtain the following dif-
ferential equation for ¢ (r):

9 )+ )+

1 52
W0+ L)+ - mrer - B e =0, 3)
where
E\? me\2 5, 2muw. .
A—(a) ~() T
—2mwcl—2m2w2clcg,
/ w?
Q= w2c%+h262,
j: \/j2+m2w203,
. 1 aE+Z P
7= a0 \he he)’
P
=2,
(27/e)
€B0
, = —— 14
We 2m (14)

is called the cyclotron frequency of the particle moving in
the magnetic field.

Let us introduce a new variable z =
eq. (13) becomes [51]

mQr2, then

W)+ () (6 o E)0(x) =0, (15)

where

(16)

>
4; |ul\.gz
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By comparing eq. (15) with (B.1) in appendix B
in [47,48], we get

041:17 05220, a3:0, 044207 045207 a6=§1,
Oé7:*£27 a8:£37 049:51; a10:1+2\/£37

11 = 2\/5_1a 12 = \/§_3a a13 = *\/f—b

Therefore, the second degree energy eigenvalues equation
using eqs. (14), (15) into eq. (B.8) in appendix B in [47,48]
is given by

(17)

2
E, 2mw,
: — hel—® E,
<Ch> 0471202( ‘ aBn)
2mQ mc\?
e Ihel= @t aBul = (57)

+k2+2mQ(2n+1)

+2mwer +2m?w? e e, (18)

where n =0,1,2,....

Equation (18) is the compact expression of the rela-
tivistic energy eigenvalues of a generalized Klein-Gordon
oscillator particle subject to a uniform magnetic field in-
cluding magnetic quantum flux in the spinning cosmic
string space-time.

The corresponding wave-function is given by

Yna(z) =

1 1 P aEn 1o 2,2 .2
2 \/a_z (I—met—Fme)?+m?w? el

_z
2

a E
‘\/fz (= + )2 +m2 w? c3
X L, x).

(19)

For zero rotation, a — 0, the energy eigenvalues eq. (18)
becomes

2muw, P P
Enp = ifbc{ e <l%>+2mﬂ <2n+1+‘l — %D

1
2

(20

~~

me 2
+ (?> +E+2mwa (1 +mw02)}

Equation (20) is the relativistic energy eigenvalues of a
generalized Klein-Gordon oscillator field in the presence
of a uniform magnetic field including a magnetic quantum
flux in the static cosmic string space-time.

Special case.  Now we discuss a special case corre-
sponding to ¢; — 1 and ca — 0. In that case, the consid-
ered system reduces to the Klein-Gordon oscillator field in
a spinning cosmic string space-time.

The radial wave equation for ¢ (r) becomes

1 -2
W0+ 7o)+ o -t e - 5w =0, (21)
where
E\?2 me\ 2 9 2muw. .
A0—(5) () E -
1
Qo = ﬁ\/h%%uwg. (22)

Following a similar technique as done earlier, we obtain
the following second degree algebraic equation for E,, ;:

B, 2 2mwe.
ch ah?c?
2on

alc
+E24+2mQo(2n+1)+2mw

(hcl— <I>—|—aEn7l)

hel—®+aE,,| = (%)2

(23)

with its solution

a heall— X
En,l=—("“”°“—ca| thQ)i 51+ 0,

« a(lf%)
(24)
where n =0,1,2,... and
® 2
0 = Lzmeea 2hca|l—q)m| m Qo
4 « a(l—ﬂ)
+2mwh? + Rk +m?
Sy = 2h* 2 (2n+1)mQ
2mwche(l — 2 1— 2
- mwe C( hc)+2ﬁ202| hC&I>| mQ | .
« Oé(l—ﬂ)
(25)

We can see that the energy eigenvalues E,, ; depend explic-
itly on the rotational parameter a, the wedge parameter «
which characterizes the metric in a spinning cosmic string
space-time, and the magnetic quantum flux ® 3.

The corresponding wave function is given by

P () = z7Fes (Bel=C+a b
1 (hCl*q)JraEml))

xe 2 Lg”““

(),

where L%ﬁ )(:c) is the generalized Laguerre polynomial.

For zero magnetic quantum flux, &5 — 0, the energy
eigenvalues in egs. (24), (25) reduce to the result obtained
in [13]. Thus, we can see that the energy eigenvalues in
egs. (24), (25) are the extended result in comparison to
those in [13] due to the presence of a magnetic quantum
flux.

For zero rotation of the space-time, a — 0, the energy
eigenvalues from eq. (23) become

2mw, P me\2
E, =+ - — —
o hc{ ahc (l hc)+( h ) Tk

-2 :
+2m€y <2n+1+|%> +2mw} .(27)

(26)

For &5 — 0, the energy eigenvalues eq. (27) reduces to
the result obtained in [20]. For By — 0 (or w. — 0)
and ®p — 0, the energy eigenvalues eq. (27) reduces to
the result in [20] and also in [24] provided A = 0 there.
For By — 0, &5 — 0 and a — 1, one will recover from
eq. (27) the energy spectrum of a Klein-Gordon oscillator
field in flat space metric [25]. Thus, we can see that the
energy eigenvalues eq. (27) are the modified result due to
the presence of a magnetic quantum flux @, the external
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magnetic field By as well as the wedge parameter a which
causes shifts in the energy levels.

We can see that the relativistic energy -eigenval-
ues obtained above depend on the geometric quantum
phase [29,30]. Thus, we have that E, ;(®p + ®g) =
Eni5-(®p5) where, &g = £ 2% 7 with 7 = 0,1,2....
This dependence of the relativistic energy eigenvalues on
the geometric quantum phase ® gives rise to a relativistic
analogue of the Aharonov-Bohm effect [22,23].

Conclusions. — In this paper, we study a generalized
Klein-Gordon oscillator with electromagnetic field (By) in-
cluding a magnetic quantum flux (®5) in a spinning cos-
mic string space-time. In the second section, we have
solved the generalized Klein-Gordon oscillator equation
under the considered systems and obtained a compact ex-
pression of the relativistic energy eigenvalues, eq. (18),
and eigenfunctions, eq. (19). There, we have obtained the
energy eigenvalues in eq. (20) in a static cosmic string
space-time. We have shown that the energy eigenvalues
depend explicitly on the rotational parameter a, and the
wedge parameter o which characterize the global structure
of the metric. Furthermore, we have discussed a special
case corresponding to ¢; — 1 and ¢y — 0 in this system.
We have solved the equation and obtained the relativis-
tic energy eigenvalues in eqgs. (24), (25). For zero mag-
netic quantum flux, ®p — 0, the energy eigenvalues in
eqs. (24), (25) reduce to the result obtained in [13] (see
eq. (13) in [13]). For zero rotation of the space-time, we
have obtained the energy eigenvalues in eq. (27) and have
seen that for zero magnetic flux, &5 — 0, these eigenval-
ues reduce to the result obtained in [20]. Also, for zero
rotation of the space-time, a — 0, no external magnetic
field, B — 0, and zero magnetic quantum flux, &5 — 0,
these relativistic energy eigenvalues reduce to the results
in [20] and also in [24].

We have seen that the relativistic energy eigenvalues
depend on the geometric quantum phase [29,30]. Thus,
we have that E, ;(®p + ®o) = Ey 15+-(Pp), where &y =
+ QWTM 7 with 7 = 0,1,.... This dependence of the rel-
ativistic energy eigenvalues on the geometric quantum
phase gives rise to a relativistic analogue of the Aharonov-
Bohm effect for bound states [22,23]. It has also been
shown that the presence of topological defects of the space-
time, and magnetic quantum flux shifted the energy levels
of the quantum system in comparison to the results known
in the literature.
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