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Abstract – The efficiency of strain-mediated magnetoelectric composites is heavily reliant on the
effectiveness of strain transfer between the different constituents. Many analytical and experi-
mental studies have trialed various materials, geometries, and boundary conditions reporting the
effect of these attributes on the magnetoelectric response. However, a more sophisticated, but
not yet pursued, approach is to investigate the strain distribution in order to discern the factors
that are most influential and to provide insight on how these factors should be manipulated to
optimize the coupling efficacy. In this study, a mathematical model is developed to observe the
radial and tangential strains in a concentric cylinder composite structure consisting of a piezo-
electric outer layer bonded with a thin elastic layer to an inner piezomagnetic layer. Results from
the study elucidate that the strain distribution behavior was dependent on the mechanical prop-
erties of the constituents as well as the bonding condition. Remarkably, analytical results showed
that the direct magnetoelectric coefficient can be substantially enhanced, if probing takes place
at strategic locations, i.e., leveraging strain localization, on the piezoelectric layer that maximize
the difference between the radial displacements giving rise to higher magnetoelectric response.

Copyright c© 2020 EPLA

Magnetoelectric composites consisting of layered piezo-
electric and piezomagnetic materials have been gaining
scientific and technological attention due to the enhanced
coupling performance at room temperature compared to
intrinsic multiferroic materials [1,2]. This type of mul-
tiferroics relies on the strain mediation at the interface
operating bi-directionally to couple the electric and mag-
netic energies. In the case of the direct magnetoelectric
effect (DME), an applied magnetic field results in a change
in polarization of the piezoelectric material. The DME is
pivotal in many applications including noncontact torque-
sensing, energy harvesting, and wireless energy transfer;
to name a few [3–5]. Conversely, the application of elec-
tric field across the piezoelectric material results in the
generation of strain that transduces across the interface
inducing a change in magnetization of the piezomagnetic

(a)E-mail: gyoussef@sdsu.edu (corresponding author)

materials. Converse magnetoelectric coupling (CME) has
been leveraged in antenna and memory applications as
well as in AC magnetic field generation [3–5]. In all, strain-
mediated magnetoelectric composites overcome the ma-
jor challenges posed by their intrinsic counterparts, while
providing unprecedented development space for energy-
efficient devices.

The performance of magnetoelectric composites has
been investigated using analytical and experimental ap-
proaches of different geometrical configurations and with
various material systems. Jia et al. reported a ME
coefficient of 105 mG/V in tri-layer PMN-PT/Terfenol-
D/PMN-PT [6], while Hockel et al. found that replacing
the PMN-PT layers with PZT enhanced the ME effect up
to 4800 mG/V for the same geometrical configuration [7].
Wu et al. also investigated laminated plate composites of
bi-layer piezofiber/Metglas reporting an ME coefficient of
only 66.2 mG/V [8]. Chavez et al. experimentally studied
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a composite of outer piezoelectric and inner magnetostric-
tive rings and found that the converse magnetoelectric
coefficient (CME) of this structure is 535 mG/V, which
is higher than previously investigated geometries per unit
mass [9]. Lopez et al. and Newacheck et al. continued to
investigate the same composite ring structure under differ-
ent bonding conditions as well as different polarization and
magnetization directions [10,11]. Recently, Wang et al.
reported the magnetoelectric coefficient of tri-layer cylin-
der composites consisting of positive and negative magne-
tostrictive layers deposited using the electroless deposition
process [12], and their results were found to be concurrent
with those reported in [13].

Recognizing the importance of strain on the efficacy of
ME and in an attempt to reconcile the differences be-
tween theoretical predictions and experimental results,
many researchers incrementally accounted for the differ-
ent underlying physical phenomena responsible for de-
grading the magnetoelectric coefficient in these types
of composites. Bichurin and Petrov, using the effective
media theory, included an interface quality factor for
laminated plate composites to penalize the strain trans-
duction hence reducing the resulting magnetoelectric co-
efficient due to the interface losses [14]. Subsequently, our
group [9] quantified the interface quality factors for press
fit, shrink fit, and epoxy-bonded composite rings based
on experimental investigations of these structures. Chang
et al. [15] and Hasanyan et al. [16] concurrently reformu-
lated continuum-based models to account for the shear
lag effect and demagnetization effect on the performance
of strain-mediated magnetoelectric composites. Recently,
Youssef et al. [17,18] abandoned the quality factor ap-
proach by including the effect of an elastic bonded layer
in the derivation of an analytical model to calculate the
DME coefficient for concentric cylinder structures. Inter-
estingly and despite the importance of understanding the
strain distribution and transduction at the interface, the
focus of all previous studies was on the resulting ME coef-
ficient, which is based on homogenizing the response over
the composite continuum.

Therefore, the objective of this paper is to elucidate
the strain distribution throughout a composite structure
consisting of an outer piezoelectric cylinder and an inner
magnetostrictive cylinder. A focus is given on the influ-
ence of the mechanical boundary conditions (BCs) on the

Fig. 1: Schematic representation of the geometry of the inves-
tigated boundary value problem.

strain transduction at the interface. The essence of the re-
search leading to this paper is analytical in nature, where
experimental investigations are the subject of future re-
search. Since the research is mainly analytical and based
on the linear constitutive relationship, experimental un-
certainty and computational solution stability are beyond
the scope of this study. The values of the material proper-
ties used herein are nominal while the solution is given in
a closed-form format, hence avoiding computational chal-
lenges except those associated with numerical integration.

A newly reformulated analytical model based on that
of Wang et al. [19] is considered to calculate the DME re-
sponse of a concentric cylinder structure (shown schemat-
ically in fig. 1) by accounting for the addition of the
properties and thickness of a bonding elastic layer and
various mechanical BCs [17,18]. The geometry is defined
by the thickness of the bonding elastic layer, t, the inner
and outer radii of the magnetostrictive cylinder, a and
b, respectively, and the outer radius of the piezoelectric
cylinder, c. The inner piezomagnetic cylinder was sub-
jected to a time-harmonic, uniform, radial, magnetic field
(Hr) radiating throughout the composite cylinder, while
the piezoelectric cylinder was taken to be radially polar-
ized. Considering the plane strain condition in the polar
coordinate system (r, θ), the hoop stress (σθθ) and radial
stress (σrr) are expressed in the following equation:

see eq. (1) above

where Er is the radial electric field, Ur is the radial me-
chanical displacement, while Cij , eij , and qij have the
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Ur(r) =

{
AEJμE (kEr) + BEJ−μE (kEr), b + t < r < c,

AMJμM (kMr) + BMJ−μE (kMr) + HrG(r), a < r < b,
(4)

usual definitions [17,18]. When considering a thin elastic
bonding layer (b < r < b + t), the radial stress in the
bonding layer is given by σrr = KsdUr/dr, where Ks is
the stiffness of the bonding layer. The resulting electrical
displacement, i.e., change in polarization due to magne-
tostriction, is given by

Dr = e31
Ur

r
+ e33

dUr

dr
+ ε33Er, (2)

where ε33 is the permittivity. The electrical BCs are
Eθ = 0 and Dr = 0 based on the assumption of the radial
polarization direction and the lack of charge accumula-
tion, while the magnetic BCs are Bθ = 0 and Hθ = 0.
The Bessel differential equations of the radial displace-
ment based on the condition of mechanical equilibrium in
the composite cylinder are defined as

see eq. (3) above
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The general solutions of the Bessel differential equations
(eq. (3)) are

see eq. (4) above

respectively, where the coefficients AE , BE , AM and BM

are constants to be found by solving the boundary value
problem, J±μ(�) are the Bessel function of order μ, the
subscripts E and M correspond to the piezoelectric and
piezomagnetic layers, respectively, and the definition of
G(r) based on the Lommel function is given in [17]. It
is worth noting that solving this boundary value problem
requires the application of continuity (as in [17]) and me-
chanical BCs. The latter include clamped BCs at the inner
(Ur|r=a

= 0) and outer (Ur|r=c
= 0) radii, clamped BCs

at the inner radius (Ur|r=a
= 0) and stress-free BCs at

the outer radius (σrr|r=c
= 0), stress-free BCs at the in-

ner radius (σrr|r=a
= 0) and clamped BCs at the outer

radius (Ur|r=c
= 0), and stress-free BCs at the inner

(σrr|r=a
= 0) and outer (σrr|r=c

= 0) radii. Once the com-
plete expression of the radial displacement is found, the

effective radial (εrr = dUr

dr ) and hoop (εθθ = Ur

r ) strains
were calculated. The outer piezoelectric cylinder was as-
sumed to be a lead-zirconate-titanate (PZT) while the in-
ner cylinder (CoFe2O4) was assumed to be cobalt ferrite
using the properties from [18] with a 5% damping assumed
to avoid resonant singularities.

The radial and tangential strains as a function of the
radial position at different frequencies and BCs in the ab-
sence and presence of a 10 μm elastic bonding layer with
stiffness of 23 TN/m are shown in figs. 2(a) and (b), re-
spectively. While the model was solved at a broader range
of frequencies, a smaller subset of frequencies are plotted,
at which the strain response evolved to different modes
as discussed later. Regardless of the mechanical BCs,
the radial strain was found to be on average one order
of magnitude higher than the hoop strain, which is based
on the mathematical definition of the radial strain as it
relates to the hoop strain (εrr = ∂εθθ

∂r r + εθθ). From that
radial strains are higher than hoop strains since ∂εθθ

∂r is
always positive. For example, the amplitudes of the ra-
dial strain in the piezomagnetic and piezoelectric domains
are −16.8 and 33.7 ppb, respectively, when the composite
cylinder was constrained at the inner and outer diameters
in the absence of any bonding layer. The hoop strains for
the same conditions were found to be −1.7 and −2.1 ppb
within the inner and outer cylinders, respectively. Such
very small levels of strains can be physically measured,
if the structure is realized, using a noncontact interfer-
ometric technique similar to that recently demonstrated
by Newacheck and Youssef [20]. The symbiotic relation-
ship between the strains was found to be ubiquitous in all
investigated mechanical BCs. The disparity between the
amplitude of the strains is attributed to the direction of
the applied magnetic field and the direction dependence of
the properties due to the orthotropy of both piezomagnetic
and piezoelectric materials. The radial strain in the piezo-
magnetic cylinder is the direct result of the radially out-
ward applied magnetic field, while the hoop strain is the
byproduct of the coupling between generated strain in one
direction and the induced strain in an orthogonal direction
due to the Poisson effect and lateral piezomagnetic coeffi-
cients. Other physical phenomena at play here include the
magnetoelastic energy as well as magnetocrystalline and
shape anisotropies [21]. In the case of the piezoelectric
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Fig. 2: Distribution of radial and hoop strains at different mechanical BCs for (a) a directly bonded composite structure (t = 0),
and (b) with an elastic bonding layer (t = 10 µm) (scaled down responses are indicated by arrows to fit within the same frame).

cylinder, the induced strains are resulting from the trans-
duction of the piezomagnetic strains, while also being cou-
pled in a similar manner due to orthotropy.

In the majority of the investigated cases, it can be de-
duced from the plots that are shown in figs. 2(a) and
(b) that remarkably the radial piezoelectric strains have
higher values than their piezomagnetic counterparts de-
spite the latter being the stimulus of the former. In the
case of a directly bonded composite cylinder with a me-
chanically constrained inner surface and a free outer
surface at a frequency of 2.2 MHz, for example, the ra-
dial piezomagnetic strain has an amplitude of 12.0 ppb
while the radial piezoelectric is 176% higher at a level
of 21.2 ppb. The same behavior persists in the case
when a bonding layer is present, where for the same con-
ditions as the previous example the radial piezoelectric
strain was found to be 141% higher than the piezomag-
netic strain despite the presence of 10 μm mediation layer.
Similar behavior was also found at different BCs but oc-
curred at different frequencies, such as at 1.0 MHz when
the inner and outer surfaces are constrained, at 0.9 MHz
when the inner surface was mechanically free while the
outer surface was constrained, and 0.4 MHz when both
inner and outer surfaces were prescribed as mechanically
free. This unexpected response of the input piezomagnetic

strain being inferior to the output piezoelectric strain is
attributed to the difference in the elastic properties of
the constituents, which makes the overall stiffness of the
piezomagnetic layer superior to that of the piezoelectric
layer resulting in a difference in the strain in each cylin-
der. The radial stiffness of the cobalt ferrite cylinder used
herein was 286 GPa while the radial stiffness of PZT cylin-
der was taken to be 99.2 GPa. This difference, which is
further influenced by the mechanical BCs [17,18], is re-
sponsible for the reported amplification behavior, where
the transferred displacement is exaggerated in the piezo-
electric cylinder due to its compliance. Notably, the den-
sity of the cylinders is also substantially different such
that the mass of the outer cylinder was 0.33 g per unit
height (ρPZT = 7750 kg/m3) and 0.09 g per unit height
(ρCoFe2O4 = 5300 kg/m3) for the inner cylinder. There-
fore, the constant-mass and the boundary-dependent stiff-
ness dictate the shift in the frequency response between
the layers, which explains the change in the spatial fre-
quency between the two cylinders.

In addition to the overall deformation response, the
strain distribution and transduction behavior are also
clearly elucidated in figs. 2(a) and (b). At low frequen-
cies, the radial piezomagnetic strain is nearly uniform
throughout the inner cylinder whether the effect of the
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DME =
e3D[UrE (r = c) − UrE (r = b + t)] + e1D

∫ c

(b+t) r−1UrEdr

Ho[c − (b + t)]
. (5)
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Fig. 3: The dynamic response of the direct magnetoelectric coefficient at different boundary and continuity conditions measured
across electrodes located at (A) b + t and c, and (B) at b + t and 0.5b + 0.5c.

thickness of the bonding layer is included or not, while the
circumferential piezomagnetic strain appears to monoton-
ically vary. The difference in the order of the response of
the strains is also evident at a higher frequency, which can
be explained through the definition of the radial strain be-
ing the spatial derivative of the radial displacement (i.e.,
εrr = dUr

dr ) while the hoop strain is the quotient between
the radial displacement and the corresponding radial po-
sition (i.e., εθθ = Ur

r ). As expected, the presence of a thin
bonding elastic layer results in a higher jump in the radial
strain at the interface, at which the strain is transduced
from the inner to the outer cylinder. The hoop strain also
exhibited a more apparent jump when the elastic layer was
included as it compares to the response without the effect
of the thin bonding layer. Generally, the difference be-
tween the strains across the interface is attributed to the
disproportion in the mechanical properties between all the
layers.

As mentioned above, the spatial frequencies of the in-
duced piezoelectric strains were found to be higher than
their piezomagnetic counterparts, where the number of
spatial oscillations in the radial and hoop piezoelectric
strains was higher than the number of those present in
the piezomagnetic strains. For example, the composite
cylinder with a constrained inner surface and a free outer
surface at an excitation frequency of 2.2 MHz exhibits ra-
dial piezomagnetic and piezoelectric strains with a spa-
tial frequency of 0.32 and 0.68 cycles/mm, respectively.
Remarkably, the spatial frequency was the same for the
same BC whether the bonding layer was excluded or in-
cluded from the calculation (see figs. 2(a) and (b)). The

increase in spatial frequency implies the strain transduc-
tion at the interface, despite the interface interruption,
to be a mechanically efficient process. The strain as the
main mediator in magnetoelectric composite structures
appears to be more sensitive to the disproportion between
properties of the piezoelectric and piezomagnetic layers
while being less dependent on the interface as long as
the mechanical continuity condition is guaranteed. There-
fore, future investigations can leverage these outcomes to
broaden the selection of materials used through further
hybridization between different classes of materials, e.g.,
polymer/ceramic. In all, the ability to tune the response
of the concentric multiferroic composite cylinders based
on the strain generation, transduction, and induction be-
tween the different materials can be investigated during
device development using our framework.

Given the importance of the mechanical strain in the
performance of magnetoelectric composites, the DME co-
efficient of PZT/CoFe2O4 composite cylinder as a func-
tion of frequency for the investigated BCs is plotted in
fig. 3(a). The results of the DME response reported herein
are consistent with previous studies [19], where it was
calculated based on the difference between the radial dis-
placements at inner and outer diameters of the piezo-
electric cylinder as it is related to the applied magnetic
field:

see eq. (5) above

The essence of the definition of the DME coefficient given
in eq. (5) is the average displacement over the radial
thickness, which in turns smears the response resulting in
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DME =
e3D[UrE (r = c+b

2 ) − UrE (r = b + t)] + e1D

∫ c+b
2

(b+t) r−1UrEdr

Ho[ c+b
2 − (b + t)]

. (6)

diluting the DME over the thickness. The DME at some
frequencies, such as at 1.5 MHz (in fig. 3(a)), is shown
to be zero or nearly zero pointing to the calculation flaw
that limits the coupling efficacy. Despite the DME be-
ing zero at certain frequencies for any of the investigated
mechanical BCs and regardless of accounting for the con-
tribution of the bonding layer, it is essentially due to the
averaging effect, where the DME is calculated based on the
displacement at the inner (r = b + t) and the outer radii
(r = c) such that the displacements could be zero (such
as the case in constrained inner and outer surface). How-
ever, the results here show that if the DME is probed at
strategic locations, there will be a value that is sufficiently
different from zero since there is a strain distribution
within the cylinders even though it is nearly zero at the
boundaries.

The disparity in reporting the DME when using the
smeared approach (state of the art) and the proposed
strategic approach is shown in the results plotted in
fig. 3(b), where regions associated with the maximum
localized strain were used to calculate the latter using
the entire state of strain to resolve the former. A sim-
ple method to probe the DME can be done by physically
inserting an electrode within the piezoelectric layer (simi-
lar configuration to a stack piezoelectric) then measuring
the electric field between the interface (b+ t) and the new
electrode. In other words, the single outer PZT cylinder
can be replaced with several, isolated concentric cylinders
in future experimental investigations, which can still be
bonded to the outer diameter of the inner piezomagnetic
cylinder. For fig. 3(b), the hypothetical electrode was cho-
sen to be at the median radius of the piezoelectric cylinder
( c+b

2 ), this probed DME can be calculated by modifying
eq. (5) to

see eq. (6) above

The improvement in the probed DME was reported re-
gardless of the continuity and mechanical boundary con-
ditions. For example, a 4159% improvement in the DME
was reported for F-F boundary condition when the effect
of the elastic layer was considered at 1.5 MHz. That is,
in the traditional approach of calculating the DME, the
composite cylinder structure yielded merely 0.82 (V/m)
(A/m)−1, while a DME of 34.11 (V/m) (A/m)−1 is fore-
casted when probing was applied. In other words, the
composite is not only efficient at certain frequencies but
indeed can be useful at any frequency as far as the prob-
ing location is selected wisely based on the results pre-
sented here. This fundamental elucidation indicates a

potentially higher efficiency for multiferroics-based energy
transfer devices obtained not only by frequency veering,
but also by dynamic probing as explained above [20].
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