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Abstract – Time crystals are systems whose properties are periodically modulated in time.
Among these, Floquet time crystals exhibit momentum gaps in their band structures, analogous
to energy gaps in spatial crystals. Recently, time defects with a π-shift in the time modulation
have been introduced theoretically as temporal analogues of spatial topological defects associated
with localized edge modes. Here we perform experiments in a time periodic system using Faraday
instability, a parametric excitation of a liquid bath by vertical shaking. Although time defects also
trigger an exponentially decaying wave, we show that the analogy does not hold due to temporal
causality and lack of energy conservation. However, these time defects provide an original way to
explore momentum gaps and reveal their overdamped modes.

editor’s  choice Copyright c© 2020 EPLA

Introduction. – A new research area was stimulated
by Frank Wilczek in 2012 who postulated by analogy to
the spontaneous breaking of spatial invariance in a crystal
that periodic time structures could emerge spontaneously
in classical or quantum systems [1,2]. It turned out that
this was possible for periodically driven systems to spon-
taneously self-organize and start evolving with a period
different from the driving period. This has led to in-
tensive theoretical and experimental developments on so-
called discrete or Floquet time crystal [3–7]. Quantum
Floquet time crystals have been implemented only recently
in various quantum systems [8–14]. However, their clas-
sical counterparts have been known for quite a long time
in astronomy [15], optics [16], mechanics [17,18] or fluid
dynamics [19]. The first recorded demonstration of such
a periodically driven system appears to have been that of
Faraday instability in 1831 [19]. The surface of a liquid
bath submitted to a vertical sinusoidal shaking becomes
unstable above a given acceleration threshold. Experi-
ments with Faraday instability offer a great versatility and
open a unique platform to investigate a large variety of
condensed matter phenomena in the time domain beyond
the self-organization and the breaking of time translation

(a)E-mail: emmanuel.fort@espci.fr

symmetry [20], like Anderson and many-body localiza-
tion [21,22] or quasi-crystals [23]. Note that in the present
paper, the term “time crystal” refers to a time symme-
try breaking of the system whose dynamics responds at a
sub-harmonic of the parametric driving frequency. It does
not hold all the properties associated to quantum time
crystal.

Very recently, it has been proposed to introduce topo-
logical concepts in the time domain [24,25]. The theoreti-
cal proposals in quantum time crystals [24] and in photonic
time crystals [25] consisted in driving a system resonantly
so that the emerging crystalline structure in time possesses
a symmetry-protected topological phase. For spatial crys-
tals, topologically protected edge states can be achieved
by cascading two crystals with a topological defect which
introduce a localized π-shift in the crystal periodicity (see
fig. 1(a)) [26]. The temporal analog could thus be ob-
tained by introducing a similar π-shift defect in the time
modulation, in which case localized exponentially decay-
ing oscillations would be a signature of topological edge
modes.

Here, we study experimentally this π-shift time defect
in a time periodic system using Faraday instability. The
paper is organized as follow: we first introduce Faraday in-
stability within the framework of a time crystal. We then
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(a) (b)

Fig. 1: (a) Schematics of a time (t) or spatial (x) crystal show-
ing a periodic modulation of the wave speed with time or in
space, respectively (top). Time or spatial defect in the form of
a π-shift in the modulation (bottom) introduced between two
time or space crystals, respectively. (b) Dispersion relation of
the Faraday instability. Real part Re(ω)/ΩF (top) and imagi-
nary part Im(ω)/ΩF (bottom) of the angular frequency ω nor-
malized by the Faraday angular frequency ΩF as a function of
the normalized wave number k/kF , kF being the Faraday wave
number. The vertical gray bands are the vertical k-gaps. The
small parabolic variation corresponds to the viscous damping.
Within the k-gap, two solutions appear, overdamped or un-
derdamped compared to the viscous damping. For sufficiently
strong forcing, Im(ω) becomes negative, resulting in exponen-
tial amplification of the signal.

present the experimental set-up and give evidence of expo-
nentially decaying localized mode. We then discuss what
the differences with their spatial analogs are and how these
modes are related to Floquet modes rather than local-
ized topological edge modes. Finally, we show that these
time defects offer an original way to investigate the Flo-
quet modes and characterize the concealed overdamped
modes.

Faraday instability as a time crystal. – The Fara-
day instability is observed when a liquid bath is vertically
shaken above a given acceleration threshold. The surface
then deforms into a standing wave pattern which oscillates
at half the excitation frequency [27]. When considering
the liquid in the moving frame, the vertical acceleration
of the bath is formally equivalent to a periodic modula-
tion of gravity around its standard value. As it depends
on gravity, the dispersion relation and thus the speed of
the waves also undergo a periodic modulation.

Even though there is no equivalent of the speed of light
for water waves, this is akin to having a medium where the
refractive index varies periodically in time. The Faraday
instability has mostly been studied as a hydrodynamic in-
stability in the stationary regime. We propose to revisit
this parametric instability within the framework of Flo-
quet time crystals.

For an inviscid fluid in a bath submitted to vertical ac-
celeration a0 cos(2ΩF t), the modes are given by a Mathieu
equation [28]. The free surface elevation ξ(r, t) at position
r and time t can be decomposed in Fourier modes ξ̂(k, t)

of the wave vector k following

∂2ξ̂(k, t)
∂t2

+ ω2
0(k)ξ̂(k, t) = −a0k cos(2ΩF t)ξ̂(k, t), (1)

with ω0(k) being the angular frequency given by the dis-
persion relation for gravity-capillary waves and k, the
wave number. This equation describes the modes in a
medium with a gravity modulation which induces a speed
modulation [29,30].

The solutions of the Mathieu equation are given by the
Bloch-Floquet theorem ξ̂(k, t) = eiωt

∑
n∈Z

cn(k)ein2ΩF t.
In a fluid with a small viscosity ν, a damping term
−2γ∂ξ̂/∂t should be added to the Mathieu equation, γ
being the damping satisfying γ = 2νk2. By a change
of variables this new equation can also be rewritten as
a damped-free Mathieu equation [31]. Figure 1(b) shows
a typical dispersion curve obtained with a small viscos-
ity. The upper panel shows the real part Re(ω) of the
angular frequency as a function of the normalized wave
number k/kF . We first note that in a similar fashion to
spatial crystals, the periodicity of the medium (here in
time) leads to a folding of the dispersion relation. For suf-
ficiently strong potentials, a gap forms in the structure,
which we highlighted in grey. These k-gaps are the equiv-
alent of the energy bandgaps which appear in the band
structure of spatial crystals. Whereas conservation of en-
ergy in spatial crystals implies that waves injected within
the bandgap are bound to decay exponentially, no such
restriction exists for temporal crystals in which energy is
injected periodically. The lower panel of fig. 1(b) shows
the imaginary part, Im(ω) of the angular frequency as a
function of the normalized wave number k/kF . Outside
of the bandgap the curve is given by viscous damping in
the liquid. Within the k-gap, however, two solutions exist,
respectively, over and under damped with respect to the
bath at rest (viscous damping). For sufficient forcing, a re-
gion appears with Im(ω) < 0, that is a region where an ex-
ponentially growing solution exists. Above this threshold,
the Faraday instability is observed and a standing wave
at half the excitation frequency appears. The transient
growth of the standing wave pattern directly results from
the exponential amplification of waves initially present in
the noise. The corresponding mode with Im(ω) > 0 is
overdamped and remains hidden. The two standing wave
solutions have their phase locked on the parametric exci-
tation and are in quadrature. Each standing wave can be
described as the result of the interference of two counter-
propagating Floquet modes with a relative phase which
depends on their position in the k-gap.

The Faraday instability can therefore be interpreted as
a medium in which the speed of the waves is modulated
in time. When a propagating wave penetrates such a
medium it generates a counter-propagating wave which
can be considered as a time-reversed (or phase-conjugated)
wave together with a wave co-propagating with the ini-
tial wave [29,30]. In terms of the time crystal, the two
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Fig. 2: (a) Experimental setup: a water tank is placed on a shaker (i). The width of the cavity is set to λF /2 ∼ 1 cm.
(ii) Schematics detailing the boundary conditions at the end of the cavity. The meniscus is pinned by the hovering plastic
strip aligned along the y-axis. (iii) Sideview showing the meniscus pinned along the x -axis. (b) Typical evolution of the wave
amplitude upon sufficient shaking of the bath. Exponential fit up to the inflection point (red dashed curve). Insets: snapshots
of the water profile at various times. (c) Growth rate of the waves Im(ω) and (d) mode wavelength λ in the cavity as a function
of the cavity size L. Panels (c) and (d) show results from the same experiment with forcing frequency equal to 2ΩF .

waves produced can be interpreted, respectively, as a time-
reflected wave and a time-transmitted wave. Their char-
acteristics are given by the time analog of Fresnel relations
in optics [32].

Experimental setup. – We now focus on an imple-
mentation of a 1D time crystal based on Faraday instabil-
ity. Figure 2(a) shows the experimental setup. It consists
in a 1D wave cavity. A glass tank of 40 mm depth, 200 mm
length and 10 mm wide is placed on a vibrating shaker
to perform sinusoidal vertical oscillations with a peak ac-
celeration a0 and an angular frequency 2ΩF . Two hor-
izontal T-shaped plastic strips (ii) pin the fluid contact
line. One of the strip is mounted on a translation stage
to tune the cavity length L. Note that the translation
stage is mounted on the shaker to synchronize its verti-
cal motion to that of the cavity. The tank is filled up
with deionized water approximately 1 mm above the tank
edges (iii). The Faraday waves are excited at half the
forcing frequency ΩF /2π. Their associated wavelength
λF is given by the capillary-gravity dispersion of water
waves. To ensure the excitation of the transverse mode,
we choose λF equal to twice the width of the cavity, which
gives ΩF /2π = 11.6 Hz. Sideview movies of the water sur-
face are recorded using a camera at 464 fps under back-
illumination condition with a resolution of 40 μm/px. The
wave profile is retrieved with a subpixel precision using
fine-tuned edge detection algorithms. The amplitude of
the Faraday waves A(t) is measured at the position of an
anti-node.

Upon turning on the vibration of the bath above thresh-
old at t = 0, the instability sets in and the waves begin
to grow before reaching a saturation (fig. 2(b)). Insets
show snapshots of the water surface at the different times
(stretched in the vertical direction by a factor 4 for clar-
ity). The red dashed line shows the good agreement of
the experimental growth of the wave with an exponential
fit up to the inflection point before a nonlinear saturation
occurs and a plateau is reached. This gives the growth
rate of the unstable Floquet mode which corresponds to
the imaginary part of the Floquet exponent Im(ω).

The evolution of Im(ω) and the wavelength λ with the
length of the cavity L are measured from the wave profiles

(λ is measured in the stationary regime, for t > 30 s). The
growth rates (fig. 2(c)) exhibit peaks separated by λF /2
which correspond to the matching between k-gap mode
and a resonant mode of the cavity with λ = 2Leff/n, n
being the mode number and Leff the effective cavity length
taking into account the boundary conditions. Varying the
cavity length results in scanning the k-gap associated to
the Faraday instability (fig. 2(d)). The curve of the growth
rate thus corresponds to a periodic scanning of the k-gap
with maxima satisfying Leff = nλF /2.

Time defects. – We introduce a defect in the time
crystal by suddenly π-shifting the excitation phase which
amounts to concatenating two time crystals with opposite
phase (fig. 1(b)). A first time crystal starts at t = 0 with
acceleration a0 for 45 s. The end of the first crystal is im-
mediately followed by the beginning of a second π-shifted
time crystal. Figures 3(a) and (b) show the theoretical
signal sent to the shaker and the experimental response,
respectively. The phase shift induces small perturbations
which last approximately two periods. Figure 3(c) shows
the evolution of the amplitude of the waves (see sup-
plementary movie Floquet modes.m4v (SM)). Above the
Faraday threshold, standing waves grow on the surface
and reach a constant value due to a nonlinear hydrody-
namic saturation (see fig. 2(b)). At the interface between
the two time crystals we observe a sudden decrease of the
wave amplitude before the waves start to grow again to
reach a saturation value. The initial standing mode asso-
ciated with the first time crystal is in quadrature with the
one associated with the second crystal. This enables the
tracking of the decay of the envelope of the first mode (red
solid line) together with that of the growing second mode
(blue solid line). The effect of the time interface between
the two periodic crystals is thus to permute the amplified
and the overdamped modes of the two π-shifted crystals.
Neglecting saturation effects, the waves initially present in
the time crystals are thus exponentially decreasing away
from the time interface in a similar way as spatial topo-
logical edge modes do from a spatial topological interface.

Probing the overdamped modes. – The two states
associated to the two Floquet exponents within the k-gap
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Fig. 3: (a) Theoretical time signal sent to the shaker showing
a π-phase shift at approximately t = 45 s. (b) Measurement of
corresponding tank acceleration. (c) Positive half of the evo-
lution of the surface elevation at the location of an anti-node
(dotted line). Envelope of the surface elevation at the phase of
the initially amplified mode (solid red line). Evolution of the
envelope of the quadrature mode (solid blue line). (d) Mea-
surement of growth rates (bottom circle) from the exponential
fit (see fig. 2(b) and the decay rates from the decay of the red
curve (c). The red curve gives the result of the computation
based on a damped Mathieu equation using experimental val-
ues of the viscosity deduced from fig. 4 (inset: zoom on the
lower part of the curve).

correspond to two standing modes in quadrature, their role
being exchanged at the interface. This enables the mea-
surement of both Floquet exponents from the measure-
ment of the exponential decay and growth at the interface
(see fig. 3(c)). These exponents can be measured along the
entire k-gap by tuning the size of the cavity (black dots in
fig. 3(d) and inset). The red line is the theoretical curve
of the complex k-gap obtained from the damped Mathieu
equation with no fitting parameter and an effective viscos-
ity measured experimentally from fig. 4. There is a very
good agreement between the experimental results and the
theoretical model.

The π-shift defect enables waves associated to the am-
plified Floquet exponent to jump to the overdamped
mode, i.e., the upper positive part of Im(ω) which is oth-
erwise hidden by the Faraday instability. In the following,
we take advantage of this transition and more generally
of the interface between two time crystals to explore the
Floquet exponents in the k-gap. The cavity is tuned so
that one of its resonant mode coincides with the Faraday
wavenumber (middle of the k-gap). The first and second
time crystals have different accelerations ai

0 and af
0 , re-

spectively, and the time interface may or may not contain
a π-shift defect. Figure 4 (right) shows how the exponents
of the complex dispersion relation Im(ω) are measured.
The initial state is given by the waves amplified by the
Floquet exponent of the first time crystal (blue cross of
the black solid lines). The second time crystal is associ-
ated to a different opening of the k-gap, in the example

a0
i

a0

f

πa0
 → a0

i fa0
 → a0

i f

2.5 2.7 2.9
-0.2

0
0.2

2.5 2.7 2.9
-0.2

0
0.2

a0
 → a0

i f

πa0
 → a0

i f

Fig. 4: Measured Floquet exponents Im(ω) of the amplified and
overdamped modes using the interface between two time crys-
tals for a cavity set at the Faraday resonance. Principle (right):
the system is prepared in an initial state with acceleration ai

0

(blue cross in the dispersion curves of the k-gap —black solid
line). At the time interface, it undergoes a sudden change from
ai
0 to af

0 changing Im(ω) (dashed red lines). Depending on the
presence of a π-phase shift two transitions can be measured.
The system jumps to either the solid black dot (no π-shift) or
the hollow black dot (π-shift). Knowing the initial growth rate,
we compute the values for each situation. The red lines (left)
are theoretical computation from the damped Mathieu equa-
tion using the experimental values for the effective viscosity
obtained at af

0 = 0.

af
0 < ai

0 which results in a smaller opening (dashed red
lines). After the time interface, the measured transition
corresponds to different a final state depending on the
presence of a π-shift defect (empty black circle) or not (full
black circle). Figure 4 (left) shows the Floquet exponents
measured for ai

0 = 1.78 m2 · s−1 as a function of af
0/ai

0:
the upper and lower branches correspond, respectively, to
time interfaces with a π-shift and without. Each branch
is well fitted by a line which intersect at af

0 = 0. This
allows one to measure with a high precision the effective
damping rate of the bath. We obtain in the present case
νeff = 8.3 · 10−6 m2 · s−1. This damping value is higher
than the usual bulk viscosity owing to additional damp-
ing of the side walls of the cavity. This value can be used
to compute the theoretical predictions from the damped
Mathieu equation (see figs. 3(d) and 4) showing a very
good agreement with the experimental results without fit-
ting parameters.

Discussion. – It is interesting to discuss the analogy
between the temporal π-shift defects in time crystals and
their spatial counterparts. Neglecting a possible satura-
tion effect, both cases lead to waves decaying exponen-
tially away from the interface and both show that the
energy is confined to the defect. However, the origin of
these localized excitations is different. In the case of spa-
tial edge modes, the interface sets the boundary conditions
which fully defines the existence of a localized topological
edge mode. For time defects, however, causality implies

24007-p4



Probing Floquet modes in a time periodic system with time defects etc.

that the growing wave mode excited prior to the time in-
terface does not result from the interface itself. This latter
is not a boundary condition involved in the existence of
the waves for the previous times. The wave is a solution
of the first time crystal only, associated to the Faraday
instability in the present case. As a consequence, its am-
plitude at the time of the interface depends only on the
size and excitation amplitude of the first crystal with a
possible saturation due to nonlinear effects. Such a grow-
ing mode is never observed in spatial crystals because of
energy conservation. Energy band gaps are always forbid-
den gaps since the decaying solution is the only permitted
one. There is no such energy considerations in time crys-
tal and the growing mode can be observed. Consequently
what could appear as a localized time edge mode should
rather be considered as a permutation from a growing to
a decaying crystal bulk mode in the k-gap, induced by the
π-shift defect. However, such time defects provide us with
a unique way to probe these bulk modes and probe the
entire curve of Floquet exponents, including the usually
hidden overdamped modes.

The vertical parametric excitation of a bath can be in-
terpreted as a (degenerate) parametric amplifier of sur-
face waves. When the Faraday instability threshold is
reached, the amplifier goes into self-oscillation and the
waves produced can be considered as modes of the de-
generate parametric oscillator. This type of oscillators,
which is also found in optics [33,34] and mechanics [35],
produces so-called squeezed states which are character-
ized by the presence of unequal fluctuations following the
two components in quadrature. Thus, since temporal de-
fects enable probing the gains and attenuations of the two
quadrature modes, they could also potentially be used to
characterize the fluctuations occurring on each quadrature
components of the squeezed states and be generalized to
other types of systems.
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