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Abstract – Visual manifestations of intermittency in computations of three-dimensional Navier-
Stokes fluid turbulence appear as the low-dimensional or “thin” filamentary sets on which vorticity
and strain accumulate as energy cascades down to small scales. In order to study this phenomenon,
the first task of this paper is to investigate how weak solutions of the Navier-Stokes equations can
be associated with a cascade and, as a consequence, with an infinite sequence of inverse length
scales. It turns out that this sequence converges to a finite limit. The second task is to show how
these results scale with integer dimension D = 1, 2, 3 and, in the light of the occurrence of thin
sets, to discuss the mechanism of how the fluid might find the smoothest, most dissipative class
of solutions rather than the most singular.

editor’s  choice Copyright c© 2020 EPLA

Introduction. – The most striking visual manifesta-
tion of intermittency in three-dimensional incompressible
fluid turbulence is the accumulation of vorticity and strain
on “thin” or low-dimensional sets. When displayed graph-
ically as iso-surfaces in a cube, these sets typically appear
as spaghetti-like entangled tubular filaments: see fig. 1
where snapshots of the energy dissipation field ε, and the
Q-field (defined in the caption) of a forced Navier-Stokes
flow are displayed. Although differing in the fine detail
from case to case, initial three-dimensional vortical struc-
tures tend to flatten at intermediate times into quasi–
two-dimensional pancakes which subsequently roll up into
quasi–one-dimensional tubes, with further iterations of
flattening and filamentation resulting in ever finer stria-
tions [1–11]: see the recent paper by Elsingha, Ishihara
and Hunt [12]. Historically, Batchelor and Townsend [13]
were the first to suggest that vorticity and strain are not
distributed in a Gaussian fashion across a domain but ac-
cumulate on local, intense sets which they identified with
intermittency in the energy dissipation [14–18]. In the lit-
erature these filamentary structures are loosely referred
to as “fractal” because of the roughness of the detail of
their evolving fine-scale structure: see fig. 1 for an illustra-
tion. In the last generation, various cascade models, such
as the beta, bi-fractal and multi-fractal models, explicitly
talk about accumulation on sets of non-integer dimension

D [16]. Studies in Fourier decimation have pursued the
idea of intermittency more precisely by projecting a three-
dimensional Navier-Stokes velocity field onto a chosen sub-
set of Fourier modes by employing a generalized Galerkin
projector [19,20]. Intermittency properties have then been
investigated by tuning both the restricted subset and the
Reynolds number. Recent work has culminated in making
this restricted set fractal [21–24]: in effect, the number
of degrees of freedom are limited to a sphere of radius k
growing as kD (for non-integer D) embedded in the three-
dimensional space. Reference [24] contains an excellent
set of references. However, from the point of view of rig-
orous Navier-Stokes analysis, the phenomenon is by no
means understood, mainly because technical tools exist to
pursue analysis only on fixed domains of integer dimen-
sion but not on time-evolving fractal sets. In this context,
many questions remain outstanding. Is there a universal
value of D or are there many disjoint sets of differing di-
mension? How does this fit in with the idea of a cascade to
small scales and the regularity of solutions of the Navier-
Stokes equations at these scales? For instance, Biferale
and Titi [25] have shown that a helically decimated ver-
sion of the 3D Navier-Stokes equations leads to global reg-
ularity. A global theory that answers all these questions
still remains elusive: this paper aims to build on what
is known rigorously for three-dimensional Navier-Stokes
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Fig. 1: The left-hand figure is a snapshot of the energy dissipation field ε = 2νSi,jSj,i of a forced 5123 Navier-Stokes flow at
Reλ = 196 which is colour-coded such that yellow is 4 times the mean and blue denotes 6 times the mean. The right-hand figure
shows the field Q = 1

2 (|ω|2 − |S|2): the colours correspond to −2Qrms (blue) and 5Qrms (red). Plots courtesy of J. R. Picardo
and S. S. Ray.

equations to discuss how this fractal set might
occur.

Cascades, scaling and weak solution estimates in
three dimensions. – A cascade is a sequential process
that involves vorticity and strain being driven down to
ever smaller length scales in the flow and has long been
closely associated with intermittency [16,26–28]. For suffi-
ciently long times a cascade to smaller scales should show
up in estimates of both spatially and temporally averaged
gradients of a divergence-free velocity field u(x, t) that
evolve according to the Navier-Stokes equations

(∂t + u · ∇)u + ∇p = νΔu + f(x). (1)

The domain V = [0, L]3per is chosen to be three-
dimensional and periodic. ν is the viscosity and f is an
L2-bounded forcing. Here we show that Leray’s weak so-
lutions of the Navier-Stokes equations [29] can be inter-
preted in terms of a cascade.

We define a doubly labelled set of norms in dimension-
less form

Fn,m = ν−1L1/αn,m‖∇nu‖2m, (2)

where αn,m is defined by

αn,m =
2m

2m(n + 1) − 3
. (3)

The norm notation ‖ · ‖2m in (2) is defined by

‖∇nu‖2m =
(∫

V
|∇nu|2mdV

)1/2m

. (4)

Higher values of n allow the detection of smaller scales,
while higher values of m account for stronger deviations

from the mean, with m = ∞ representing the maximum
norm.

The Navier-Stokes equations are well known to possess
the scale-invariance property

u(x, t) → λ−1u(x/λ, t/λ2), (5)

for any value of the dimensionless parameter λ. Under
this scaling the Fn,m in (2) are invariant in λ and are thus
invariant at every length and time scale in the flow. This
makes them invaluable as a tool for investigating a cascade
of energy through the system. This is further illustrated
by the fact that there exists a bounded, weighted, double
hierarchy of their time averages

〈Fαn,m
n,m 〉T ≤ cn,mRe3

}
n ≥ 1, 1 ≤ m ≤ ∞,

n = 0, 3 < m ≤ ∞,
(6)

as demonstrated in [30]. The angled brackets 〈·〉T are
defined by

〈·〉T = T −1
∫ T

0
· dt, (7)

and the Reynolds number Re by

Re = LU/ν with U2 = L−3〈‖u‖2
2〉T . (8)

The physical meaning of the set of inequalities in (6) can
be illustrated thus. Consider the time-averaged energy
dissipation rate defined in the conventional manner as
εav = νL−3〈‖∇u‖2

2〉T . Then in the case n = m = 1, (6)
becomes

εav ≤ c1,1ν
3L−4Re3. (9)

The upper bound is recognizable as the same result de-
rived by Kolmogorov’s theory [16] and, as we shall see
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below, leads to the well-known Re3/4 estimate for the in-
verse Kolmogorov length. The double hierarchy displayed
in (6) furnishes us with bounds which generalize (9) to all
derivatives and in every L2m-norm. It is valid for Leray’s
weak solutions and encapsulates all the known weak so-
lution results in Navier-Stokes analysis [30]. These are
distributional in nature and are not unique and thus the
result in (6) falls short of a full regularity proof; i.e., ex-
istence and uniqueness of solutions. It was shown in [30]
that to achieve this would require

〈F 2αn,m
n,m 〉T < ∞. (10)

While it remains an open problem, there is no evidence
that any bounds with the factor of 2 in the exponent exist.
Indeed it is possible that weak solutions are all that are
available. What has been deduced is that (2) and (3) lead
to a definition of a set of inverse length scales �−1

n,m

(L�−1
n,m)n+1 := Fn,m, (11)

whose estimated time averages are [30]

〈L�−1
n,m〉T ≤ cn,mRe

3
(n+1)αn,m + O(T −1). (12)

The exponents of Re in the two cases n = m = 1 and
n, m → ∞ are

3
(n + 1)αn,m

∣∣∣∣
n,m=1

= 3/4, (13)

lim
n,m→∞

3
(n + 1)αn,m

= 3. (14)

The first result in (13) is consistent with the inverse Kol-
mogorov length while the second result in (14) implies that
there exists a finite limit to the cascade process. However,
when Re is large it does so at a level below molecular scales
where the Navier-Stokes equations are not valid. Never-
theless it validates Richardson’s original assertion that vis-
cosity eventually terminates the cascade process [16,31].

Estimates and scaling in D-dimensions. – Inequal-
ities (6) and (12) are true for weak solutions in a D = 3
domain. For integer values of D = 2 or D = 3 on a peri-
odic domain VD the definition of (2) can be generalized to1

Fn,m,D = ν−1L1/αn,m,D‖∇nu‖2m, (15)

where αn,m in (3) and (6) is replaced by

αn,m,D =
2m

2m(n + 1) − D
. (16)

The Fn,m,D in (15) possess the same invariance properties
as Fn,m in (2). The details of the proof of (6) have been

1When D = 1 the Navier-Stokes equations make no sense unless
the pressure and divergence-free terms are removed, in which case
we have Burgers’ equation. The results expressed in D-dimensions
with D = 1 are valid for this.

generalized for the integer D-dimensional case using the
same methods and results as in three dimensions [30], al-
though the calculation is far from straightforward: see the
appendix.

Theorem 1. For D = 2, 3, and for n ≥ 1 and
1 ≤ m ≤ ∞, the equivalent of (6) is

〈F (4−D)αn,m,D

n,m,D 〉T ≤ cn,m,DRe3. (17)

For D = 1 the same result holds for Burgers’ equation.

More than 40 years ago Fournier and Frisch [32] introduced
the idea of turbulence in D dimensions where D is no
longer an integer but is restricted to the range D ≥ 2.
They achieved this by analytically continuing the Taylor
expansion in time of the energy spectrum Ek(t), assum-
ing Gaussian initial conditions. Since then the idea of a
non-integer dimension has taken root in the many papers
on the beta, bi-fractal and multi-fractal models [16,17].
Can the Navier-Stokes estimates in (17) be performed on
a domain of non-integer dimension? In a fully rigorous
sense, the answer is in the negative. For instance, there
are no proofs of the Divergence Theorem or the Sobolev
inequalities on fractal domains. Thus we can only claim
the validity of Theorem 1 for integer values of D. What
the result does do, however, is show how the exponent of
Fn,m,D scales with integer values D. The surprising but
crucial factor of 4−D in the exponent multiplying αn,m,D

deserves some remarks:

1) When D = 3, the factor of 4 − D is simply unity
and (17) reduces to (6).

2) When n = m = 1 this factor cancels to make
(4 − D)α1,1,D = 2 for every value of D, as it should.
It also furnishes us with the correct bound on the
averaged energy dissipation rate εav.

3) When D = 2 we achieve the 2αn,m,2 bound required
for full regularity, as in (10). Thus the case D = 2 is
critical for regularity, as is well known [33–35].

As in fig. 1, computations in [7–12] have shown that the
process of flattening and filamentation results in ever finer
striations as the flow progresses. This would indicate that
the set(s) on which vorticity or strain are concentrated
has a non-integer and decreasing dimension. While we
have no rigorous methods for proving the validity of (17)
when D takes non-integer values, it raises the intriguing
possibility that this may nevertheless be true. Certainly it
is clear that when D decreases in (17) then the exponent
(4 − D)αn,m,D of Fn,m,D increases, which is the direction
of more, not less, regularity. This suggests that a flow may
adjust itself to find the smoothest, most dissipative set, not
the most singular, on which to operate. This runs counter
to the traditionally held theory of viscous turbulence in
which singularities have been long-standing candidates as
the underlying cause of turbulent dynamics [36–38], even
though they must be rare events [33–35,39]. Adjustment
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to find the smoothest, most dissipative set could be a way
of the flow re-organizing and regularizing itself to avoid
singularities.

∗ ∗ ∗

I thank J. R. Picardo (IIT, Mumbai) and S. S. Ray

(ICTS, Bangalore) for the plots in fig. 1 from their Navier-
Stokes data.

Appendix: proof of Theorem 1. – The aim of The-
orem 1 is to roll together estimates for the Navier-Stokes
equations that are already known individually in both the
D = 2 and D = 3 cases. In addition, Burgers’ equation is
included, which is appropriate for D = 1 when the pres-
sure term and the incompressibility condition have been
dropped. The main foundation of the proof of Theorem 1
is the original result of Foias, Guillopé and Temam (FGT)
in 3 dimensions [40]. Given that all three results are known
separately, we are able to formally manipulate and differ-
entiate the Hn, defined below in (A.1) below, on a periodic
domain of integer dimension D.

The FGT result in integer D dimensions. We require
the definition

Hn =
∫

VD
|∇nu|2dV, (A.1)

from which we can write [33]

1
2
Ḣn ≤ −νHn+1 + cn‖∇u‖∞Hn. (A.2)

For simplicity, we have omitted the forcing. An integer-
D-dimensional Gagliardo-Nirenberg inequality gives

‖∇u‖∞ ≤ cnH
a/2
n+1H

(1−a)/2
1 (A.3)

with a = D/2n and n > D/2. After re-arrangement, (A.2)
becomes

1
2
Ḣn ≤ −ν

(
1 − 1

2
a

)
Hn+1 + cnν− a

1−a H
2

2−a
n H

1−a
2−a

1

≤ −1
2
ν

(
1 − 1

2
a

)
Hn+1 + cnν− a

1−a H
4n

4n−D
n H

2n−D
4n−D

1 .

(A.4)

Divide by H
nαn,1
n and time average to give〈

Hn+1

H
nαn,1
n

〉
T

≤ cnν− 1
1−a

〈
H

n(4−D)αn,1,D
4n−D

n H
2n−D
4n−D

1

〉
T

≤ cnν− 1
1−a 〈H 1

2 (4−D)αn,1,D
n 〉

2n
4n−D

T 〈H1〉
2n−D
4n−D

T . (A.5)

Then a Holder inequality gives

〈H 1
2 (4−D)αn+1,1,D

n+1 〉 ≤
〈

Hn+1

H
nαn,1
n

〉 1
2 (4−D)αn+1,1,D

×
〈

H

1
2 (4−D)nαn,1,D αn+1,1,D

1− 1
2 (4−D)αn+1,1,D

n

〉1− 1
2 (4−D)αn+1,1,D

T

. (A.6)

It is then easy to show that the exponent of Hn within the
average can be simplified to

1
2 (4 − D)nαn,1,Dαn+1,1,D

1 − 1
2 (4 − D)αn+1,1,D

=
1
2
(4 − D)αn,1,D. (A.7)

Taking (A.6) and (A.7) together and using the dimension-
less notation of Fn,m,D, we end up with

〈F (4−D)αn+1,1,D

n+1,1 〉T ≤ cn,1〈F (4−D)αn,1,D

n,1 〉T

+cn,2〈F 2
1,1,D〉T . (A.8)

To begin an iteration procedure it is necessary to have a
bound in the n = 2 case because n > D/2 and D = 2, 3.
We repeat the argument above for n = 2 only

1
2
Ḣ1 ≤ −νH2 + ‖ω‖2

4‖ω‖2 (A.9)

We note that in D-dimensions ‖ω‖4 ≤ c‖∇ω‖a
2‖ω‖1−a

2
were a = D/4. Thus we have

1
2
Ḣ1 ≤ −ν

(
1 − 1

4
D

)
H2 + cν− D

4−D H
6−D
4−D

1 . (A.10)

Firstly we consider

〈H 1
2 α2,1,D

2 〉T =

〈(
H2

Hβ
1

) 1
2 α2,1,D

H
1
2 βα2,1,D

1

〉
T

≤
〈

H2

Hβ
1

〉 1
2 α2,1,D

T

〈
H

1
2 βα2,1,D

1− 1
2 α2,1,D

1

〉1− 1
2 α2,1,D

T

. (A.11)

Thus we must choose β to make the exponent of H1 equal
to unity:

β = 2α−1
2,1,D − 1 =

6 − D

4 − D
− 1 =

2
4 − D

. (A.12)

To see about the ratio we look at (A.9) and divide by Hβ
1

to obtain〈
H2

Hβ
1

〉
T

≤ cν− 4
4−D

〈
H

6−D
4−D −β

1

〉
T

= ν− 4
4−D 〈H1〉T .

(A.13)
Thus 〈F (4−D)α2,1,D

2,1 〉T < ∞. Then, from (A.8), the result
follows for all n ≥ 1

〈F (4−D)αn,1,D

n,1,D 〉T ≤ cn,1Re3. (A.14)

Formally this is the equivalent of the result in [40] when
D = 3.

The result for 1 ≤ m ≤ ∞. The bound in (A.14) is
true for m = 1 only. To move up to the m > 1 case we use
a Gagliardo-Nirenberg inequality in integer D dimensions

‖A‖2m ≤ c‖∇NA‖a
2‖A‖1−a

2 , (A.15)
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where 2aN = D(m − 1)/m. Therefore, with A ≡ ∇nu,
we use the Fn,m,D-notation. We also keep in mind the
result (A.14) above to find

〈F (4−D)αn,m,D

n,m,D 〉T ≤ c〈F a(4−D)αn,m,D

N+n,1,D F
(4−D)αn,m,D(1−a)
n,1,D 〉T

= c

〈
(F (4−D)αN+n,1,D

N+n,1,D )
aαn,m,D

αN+n,1,D F
(4−D)(1−a)αn,m,D

n,1,D

〉
T

≤ 〈F (4−D)αN+n,1,D

N+n,1 〉
aαn,m,D

αN+n,1,D

T

×
〈

F

(4−D)αn,m,D(1−a)αN+n,1,D
αN+n,1,D−aαn,m,D

n,1,D

〉1− aαn,m,D
αN+n,1,D

T

. (A.16)

Using the fact that 2aN = D(m − 1)/m and the expres-
sion for αn,m,D given in (16), we can then show that the
exponent of Fn,1,D in the time average satisfies

(4 − D)αn,m,D(1 − a)αN+n,1,D

αN+n,1,D − aαn,m,D
= (4 − D)αn,1,D.

(A.17)

Using (A.14), we see that both factors on the right-hand
side of (A.16) are bounded and finally give (17). �
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