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Abstract – This paper integrates two different ways to face the emergence of communication
systems. First, information-theoretic models argue for the emergence of Zipfian properties based
on the minimization of communicative energy, combining speaker and hearer efforts. Second,
decentralized agent-based models focus on the emergence of a shared communication system in a
population of individuals. The main aim here is to explore how a decentralized agent-based model
of language formation can exhibit purely from local speaker-hearer interactions the minimization
of communicative energy. Numerical simulations show an evolution towards the minimum of
communicative energy for populations communicating with Zipfian languages. Our results suggest
thus a new way to understand energy-based approaches to the formation of human language.

Copyright c© 2020 EPLA

Introduction. – Is it possible to define an energy-
like quantity describing how individuals negotiate word-
meaning associations over linguistic interactions? To
(partly) answer this question, we consider an idealized
speaker-hearer interaction: given some meaning to trans-
fer, the speaker must choose some word-form (from her
vocabulary) to convey such meaning. This simple decision
involves a fascinating phenomenon: in a selfish scenario,
the speaker prefers to minimize her memory costs, and
thus she tries to use the least number of words. On the
contrary, the hearer prefers to minimize disambiguation
costs. Put differently, speakers and hearers exhibit com-
peting interests: while speakers prefer a one-word inven-
tory, hearers prefer a one-to-one word-meaning mapping.

The trade-off between speaker and hearer efforts pre-
sented in the previous communicative scenario defines the
so-called least effort principle [1,2]. G. Zipf introduced a
competition between two pressures, ambiguity and mem-
ory: speakers prefer to minimize memory costs; whereas
hearers prefer to minimize disambiguation costs. Strik-
ingly, several information-theoretical works have proposed
that Zipfian vocabularies appear as a phase transition at
a critical stage for both competing pressures [3–7]. The
key aspect of the Zipf-type behavior exhibited by those
works, as explained in [8,9], is the emergence of the phase
transition between referentially useless one-word systems
and one-to-one word-meaning reference systems. More

precisely, the mentioned information-theoretic interpreta-
tion of the least-effort communication principle is not suf-
ficiently strong for generating power laws (Zipf’s law) at
the critical effort stage. Our approach focuses therefore on
the emergence of a Zipf-type phase transition, instead of
Zipf’s power law. With this, in our work the word Zipfian
must be considered as a sign of a phase transition between
two extreme cases of communication systems.

The information-theoretical interpretation attempts to
explain, in turn, the appearance of the Zipf-type behav-
ior seeing communication as a global minimum of the
so-called communication energy Ω(λ) (where λ is a param-
eter for the relative costs of speakers and hearers), defined
by the interplay between maximization of the information
transfer and minimization of the entropy of signals [3,10].
In its simplest form, the algorithm proposed by [3] assumes
that only one word-meaning mapping (one binary matrix
formed by meaning-rows and word-columns) is modified
by randomly modifying word-meaning pairs. The new
matrix is accepted if Ω(λ) is lowered. The algorithm
hypothesizes that Zipfian properties appear at λ ≈ 0.5,
where speaker and hearer efforts have a similar contribu-
tion to Ω(λ).

A key feature of the information-theoretic accounts for
the appearance of Zipfian properties in human language is
the lack of population structure. Contrasting with this, a
language game is a cooperative and decentralized solution
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to the emergence of communication systems in a popula-
tion of individuals [11–14]. It involves a situated dialog,
in opposition to the isolated sentences, that is commonly
used in formal linguistics [15]. We extend, in our context,
an isolated lexical matrix (of information-theoretic ac-
counts) to a situated dialog between individuals equipped
with lexical matrices. A language game defines thus sim-
pler models of linguistic interactions within populations of
artificial agents, endowed with minimal human cognitive
features, negotiating pieces of a common language. In the
simplest language game, the naming game [16,17], at a dis-
crete time step a pair of players (typically one speaker and
one hearer) interacts towards agreement on word-meaning
associations.

The main aim of this paper is therefore to integrate two
different ways to face the emergence of Zipfian features
in communication systems: information-theoretic and de-
centralized approaches. To do this, we address a decen-
tralized approach (based on a previous proposal [18]) to
the minimization of communicative energy Ω(λ), while
Zipfian properties in a human-like language tend to arise
at some intermediate level of speaker and hearer efforts.
Our methodology is mainly based on the characteriza-
tion of the evolution of speaker and hearer efforts over
linguistic interactions, using simple statistical mechanics
tools. We run numerical simulations over simple popula-
tion topologies.

The model. – We first review some concepts of graph
theory, in order to propose a precise definition of word-
meaning mappings as bipartite graphs. Next, we introduce
the language game rules, in which a population of individ-
uals negotiate a common bipartite word-meaning mapping
(based on [18]). Finally, to mathematically define the cost
of communication for both speakers and hearers, we recall
some information-theoretical measures [3,10].

Vocabularies as bipartite graphs. A graph is a pair
G = (V, E), where V is a set of nodes and E ⊆ V ×V is the
set of edges. A bipartite graph is defined by two requisites:
i) its vertex set is formed by two disjoint subsets of V ,
denoted � and ⊥ and ii) edges only are defined between
� and ⊥. More precisely, a bipartite graph is a triple
B = (�, ⊥, E), where � and ⊥ are two mutually disjoint
set of nodes, and E ⊆ � × ⊥ is the set of edges of the
graph. Here, � represents the set of word nodes, whereas
⊥ represents the set of meaning nodes. The neighbors of
u ∈ � are the nodes connected to u: N(u) = {v ∈ ⊥:
uv ∈ E} (if u ∈ ⊥ the definition is analogous). The degree
d(u) of the node u is simply defined by d(u) = |N(u)|.

A classical useful tool is the matrix representation of
(bipartite) graphs. Let us denote by A = (a)wm the ad-
jacency matrix for the (bipartite) graph B. From the bi-
partite sets � and ⊥, representing respectively word and
meaning nodes, we define the rows of A as word nodes,
and the columns as meaning nodes, where (a)wm = 1 if
the word w is joined with the meaning m, and 0 otherwise
(see fig. 1).

w1

m1

m2

m3

m4

w2

m5

m6

w4

w3

m1 m2 m3 m4 m5 m6⎛
⎜⎝

⎞
⎟⎠

1 0 0 0 1 1 w1
1 1 1 1 0 0 w2
0 0 0 0 1 0 w3
0 0 1 0 0 0 w4

Fig. 1: Adjacency matrix for a bipartite graph. For the ex-
ample graph, its adjacency matrix representation is exhib-
ited. The graph is formed by two disjoint set of nodes:
� = {w1, w2, w3, w4} and ⊥ = {m1, m2, m3, m4, m5, m6}. In
the adjacency matrix, rows represent words, whereas columns
represent meanings.

Basic ingredients of the language game. The language
game is played by a finite population of individuals P =
{1, . . . , p}, sharing both a set of words W = {1, . . . , n}
and a set of meanings M = {1, . . . , m}. Each player k ∈ P
is endowed with a bipartite word-meaning mapping Bk =
(�k, ⊥k, Ek). Bk is formed by two disjoint sets: �k ⊆ W
(word nodes) and ⊥k ⊆ M (meaning nodes). Each player
k ∈ P only knows its own graph Bk.

Two technical terms are introduced. First, we say that
a player k ∈ P knows the word w ∈ W if w ∈ �k. Clearly,
this definition is equivalent to the existence of the edge
wm ∈ Ek, for some m ∈ ⊥k. Second, the ambiguity of the
word w, denoted a(w), is defined as its node degree d(w).

Language game rules. The dynamics of the language
game is based on pairwise speaker-hearer interactions at
discrete time steps. At t � 0, a pair of players is se-
lected uniformly at random: one plays the role of speaker
s and the other plays the role of hearer h, where s, h ∈ P .
Each speaker-hearer communicative interaction is defined
by two successive phases. The first phase involves the se-
lection of a meaning and a word to transmit them. Next,
the hearer receives the word-meaning association and both
speaker and hearer behave according to either repair or
alignment strategies.

To start the communicative interaction, the speaker
s selects the topic of the conversation: one meaning
m∗ ∈ M . To transmit the meaning m∗, she needs to
choose some word, denoted w∗. If she does not know a
word with the meaning m∗, she chooses a word at random
from her vocabulary and adds this word-meaning pair to
her lexicon Bs.

Then, she calculates w∗ based on her interests. She
behaves according to the ambiguity parameter ℘ ∈ [0, 1]:
with probability 1 − ℘, she calculates w∗ as the least am-
biguous word

w∗ = min
w∈⊥s

a(w),

while with probability ℘, she calculates w∗ as the most
ambiguous word

w∗ = max
w∈⊥s

a(w).
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She transmits the word w∗ to the hearer.
In turn, the hearer behaves as in the naming game. On

the one hand, if there is a mutual speaker-hearer agree-
ment (the hearer knows the word w∗), alignment strategies
appear [17]. On the other hand, a speaker-hearer disagree-
ment (if the hearer does not know the word w∗) involves
a repair strategy in order to increase the chance of fu-
ture agreements (that is, for t′ > t). More precisely, if
the hearer knows the word w∗, both speaker and hearer
remove all word-meaning pairs wm∗ from their vocab-
ularies, where w respectively belongs to �s \ {w∗} and
�h \ {w∗}. On the contrary, if the hearer does not know
the word w∗, she adds the word-meaning pair w∗m∗ to her
vocabulary Bh.

Information-theoretic measures: communicative energy.
Within an information-theoretic approach, a series of

works [3,10] defines explicitly the compromise between
speakers and hearers interests as the so-called communica-
tive energy, formed by the combination of two terms:

Ω℘ = ℘H(R|S) + (1 − ℘)H(S), (1)

where ℘ is a parameter in [0, 1], H(R|S) is the effort for
the hearer and H(S) is the effort for the speaker. In its
original form, ℘ weights the contribution of each term.
Here, ℘ is also the ambiguity parameter as explained in
the section “Language game rules”.

The effort for the speaker H(S) is measured by the en-
tropy of words, that is

H(S) = −
n∑

i=1

p(wi) logn p(wi). (2)

From this definition, if a single word is used for every
meaning, the speaker’s effort is minimal and H(S) = 0; on
the contrary, when all words are associated to one meaning
(the smallest positive frequency), the frequency effect is in
the worst case, and thus H(S) = 1. The frequency of the
word wi is defined as

p(wi) =
m∑

j=1

p(wi, mj). (3)

According to the Bayes theorem and assuming that
p(mj) = 1

m , we have

p(wi, mj) = p(mj)p(wi|mj) =
1
m

p(wi|mj); (4)

p(wi|mj) is defined as

p(wi|mj) = awimj

1∑n
i=1 awimj

, (5)

where
∑n

i=1 awimj indicates the number of synonyms as-
sociated to the meaning mj.

The effort for the hearer H(R|S) is defined as the aver-
age noise for itself, that is

H(R|S) =
n∑

i=1

p(wi)H(R, wi), (6)

where the noise for the hearer when the word wi is heard,
is defined as the entropy of the distribution of meanings,
given wi:

H(R|wi) = −
m∑

j=1

p(mj |wi) logm p(mj |wi). (7)

Methods. – The population of agents is located on the
vertices of a complete graph of size |P | = 100 (the mean
field approximation; from now MF). See the “Results”
section for simple variations of this initial topology. The
population shares both a set of n = |W | = 128 words and
a set of m = |M | = 128 meanings. Starting from an initial
condition in which each player k ∈ P is associated to a vo-
cabulary Bk, where each word-meaning pair appears with
probability 0.5, the dynamics performs a speaker-hearer
interaction at discrete time steps t � 0. The vocabularies
Bs and Bh are then reevaluated according to communica-
tive success.

To describe previous results about the drastic formation
of phases in language formation, first proposed in [3], we
consider the (effective) lexicon size at time step t, V (t) [3]:

V (t) =
1

n|P |
∑
k∈P

|�k|,

where V (t) = 1 if |�k| = n, while V (t) = 0 if |�k| = 0. For
this measure, all results consider averages over 10 initial
conditions and 3 × 105 time steps. We denote by tf the
final time step. The ambiguity parameter ℘ is varied from
0 to 1 with an increment of 1%.

To describe the minimization of communicative en-
ergy, we measure over language game dynamics three
information-theoretical quantities: Ω℘(t), H(S) and
H(R|S). We remark that language game rules are not
influenced by the minimization (or maximization) of any
of such three quantities. In this case, due to the intensive
computational work we focused on the evolution of one
randomly chosen lexical matrix. This simplification is jus-
tified by the small standard deviation of V (tf ), as shown
in fig. 3.

Results. – This section focuses on several aspects of
language game dynamics. First, we verify that the popu-
lation (for any value of the parameter ℘) reaches a com-
mon bipartite word-meaning mapping. Next, we describe
the appearance of drastic transitions in language forma-
tion. The third subsection presents a decentralized way
to minimize communicative energy. In the fourth section,
we study the role of topology on the minimization of com-
municative energy. Finally, we outline the evolution of
speaker and hearer costs.

Measuring consensus on a bipartite word-meaning map-
ping. Language games aim to model how a population
of individuals reaches an agreement on simple versions of
communication systems. Here, individuals negotiate with
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Fig. 2: Consensus function D(tf ) vs. ambiguity parameter ℘.
D(tf ) vs. ℘: after tf speaker-hearer interactions. ℘ is varied
with an increment of 1%. Averages over 10 initial conditions.
Vertical axis is in log scale.
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Fig. 3: Effective vocabulary V (tf ) vs. ambiguity parameter
℘. Purple circles display the average behavior of V (tf ) vs. ℘,
after tf speaker-hearer interactions. Black circles indicate the
standard deviation of V (tf ). Three phases appear clearly for
language formation: (almost) full vocabularies (℘ < 0.4), Zip-
fian vocabularies (0.4 < ℘ < 0.6) and single-word vocabularies
(℘ > 0.6).

each other towards a common vocabulary. To measure
this process, we define a simple consensus quantity af-
ter tf speaker-hearer interactions: for each player k ∈ P ,
we extract the adjacency matrix Ak from its vocabu-
lary Bk. We define then the average adjacency matrix
Ā = 1

nm

∑
k∈P Ak. For each matrix Ak, we count the

number of (w, m) positions in which Ak and Ā differ.
The consensus function D(tf ) denotes therefore the av-
erage distance between each matrix Ak and the average
matrix Ā. With this, D(tf ) ≈ 0 means that a common
word-meaning mapping is reached by the entire popula-
tion. Figure 2 shows that for all values of the ambiguity
parameter ℘, D(tf ) varies from 10−2 to 10−4.

Evidence of a drastic transition in language formation.
As suggested by previous works (see [3] and [18] for

different approaches), three clear domains can be noticed
in the behavior of the effective vocabulary V (t) vs. ℘,
at tf , as shown in fig. 3 (purple circles). First, full vo-
cabularies are attained also for ℘ < 0.4. Next, a drastic

Fig. 4: Ω℘(t) vs. ambiguity parameter ℘. Left: communica-
tive energy Ω℘(tt) for one initial condition, after tf = 3 × 105

speaker-hearer interactions. ℘ is varied with an increment of
1%. Right: Ω℘(t) over time. Points indicate measurements ev-
ery 104 speaker-hearer interactions (starting from t = 0). ℘ is
varied from {0, 0.4, 0.5, 0.6, 1}.

transition appears at the critical domain ℘∗ ∈ (0.4, 0.6),
in which V (tf ) shifts abruptly towards 0. A small peak
of the standard deviation σ(V (tf )) is also found at the
critical domain. Finally, single-word languages dominate
for ℘ > 0.6.

It is remarkable, in turn, that a Zipfian word-meaning
mapping tends to appear at the critical domain ℘∗ ∈
(0.4, 0.6), where the communicative costs are shared by
both speakers and hearers.

Decentralized minimization of the communicative en-
ergy. Figure 4 displays the variation of Ω℘(t) vs. the
ambiguity parameter ℘. First, after tf speaker-hearer
interactions fig. 4 (top) shows that Ω℘(tf ) is minimized
at the critical domain (0.4, 0.6). There is a clear linear
growth of Ω℘(tf ) on either side of the minimum energy
point ℘∗ ≈ 0.5, where the efforts of speakers and hearers
are equivalent.

Secondly, fig. 4 (bottom) displays the evolution of Ω℘(t)
over time t, for different values of ℘. We notice that for
values at the critical domain (0.4, 0.6) curves converge
smoothly to stationary values. Remarkably, the curves
defined by ℘ ∈ {0, 1} tend to maximize the communica-
tive energy Ω℘(t) towards 1. For ℘ = 1, the curve first
reaches a minimum and then converges to 1. Intriguingly,
this speaker-centered scenario exhibits a local minimum
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Fig. 5: Evolution of speaker and hearer costs. For ℘ ∈
{0, 0.4, 0.5, 0.6, 1}), panels display the evolution of hearer (red
stars) and speaker (black circles) costs: respectively, H(R|S)
and H(S). Points indicate measurements every 104 speaker-
hearer interactions (starting from t = 0).

of energy. For ℘ = 0, the curve shows a stationary value
around 1.

Evolution of speaker and hearer costs. Figure 5 shows
the evolution of hearer H(R|S) and speaker H(S) costs
over linguistic interactions. As we can observe in the
different panels, the dynamics for ℘ ∈ {0, 1} exhibits
opposite behaviors. As expected, for ℘ = 0 hearer
costs H(R|S) are minimized, while H(S) remains ap-
proximately constant. For ℘ = 1, H(R|S) and H(S)
curves converge respectively to 1 and 0. At the criti-
cal parameter ℘∗ ∼ 0.5 both H(R|S) and H(S) tend
to converge very slowly to 0.5, which is equivalent to
Ω℘(tf ) = 0.5H(R|S) + 0.5H(S) ∼ 0.5.

Influence of topology on the minimization of commu-
nicative energy. Consensus emerges from pairwise in-
teractions between speakers and hearers. In line with [19],
it is natural thus to ask to what extent the “form” of
agent’s neighborhood influences the formation of Zipfian
properties. We consider agents located on the vertices of
a one-dimensional ring, where speaker-hearer interactions
occur at radii 2, 25 and 50. With this, short-range and
long-range influences are studied. Figures 6, 7 and 8 ex-
hibit the role of radius on the evolution of Ω℘(t). The
convergence time Tc becomes an essential quantity to ex-
plore the consensus process on different topologies for the
agent-based model proposed here. Indeed, the consensus
is reached approximately in a time T radius= 2

c ∼ 2 × 105,

Fig. 6: Ω℘(t) vs. ambiguity parameter ℘ for radius 2. Left:
communicative energy Ω℘(tt) for one initial condition, after
tf = 3 × 105 speaker-hearer interactions. ℘ is varied with an
increment of 1%. Right: Ω℘(t) over time. Points indicate
measurements every 104 speaker-hearer interactions (starting
from t = 0). ℘ is varied from {0, 0.4, 0.5, 0.6, 1}.

T radius= 25
c ∼ 0.75 × 105, T radius=50

c ∼ 0.5 × 105 and
TMF

c ∼ 3 × 105. At the same time, the results show
that Tc is inversely related to the appearance of a dras-
tic linear growth on either side of the critical energy
point ℘∗. This fact suggests that these topologies in-
duce a trade-off between optimized convergence times Tc

and the appearance of Zipfian properties. For the scenar-
ios over a ring (with radius 2, 25 and 50), the consensus
process is optimized regarding Tc, while Ω℘(tf ) shows a
smoother transition. The analysis of more complex topolo-
gies (e.g., two-dimensional lattice or random graphs), in-
spired by [19], exceeds the goals of this paper and involves
high computational costs.

Discussion. –

Decentralized solution to the emergence of Zipfian prop-
erties. In this paper, we proposed a novel way to un-
derstand the emergence of Zipfian properties in language,
through a decentralized approach in which pairs of agents
negotiate bipartite word-meaning mappings. Agents are
able to select one word to express one meaning according
to lexical constraints measured by the parameter ℘. We
extended in some sense previous information-theoretic ac-
counts for the appearance of a phase transition between
two extreme cases of communication systems, only fo-
cused on the optimization of one word-meaning mapping.

68002-p5



J. Vera and F. Urbina

Fig. 7: Ω℘(t) vs. ambiguity parameter ℘ for radius 25. Left:
communicative energy Ω℘(tt) for one initial condition, after
tf = 3 × 105 speaker-hearer interactions. ℘ is varied with an
increment of 1%. Right: Ω℘(t) over time. Points indicate
measurements every 104 speaker-hearer interactions (starting
from t = 0). ℘ is varied from {0, 0.4, 0.5, 0.6, 1}.

This paper reconciles therefore information-theoretic and
decentralized frameworks including a simple, but impor-
tant, novel ingredient: pairwise speaker-hearer interac-
tions between agents calculating their own lexical efforts.

Despite the fact that this paper proposes a decentral-
ized approach to the emergence of Zipfian properties, three
main issues require further work. First, the ambiguity
constraint is implemented only on the speaker side of the
interactions. This should be counteracted by some other
factor on the hearer side. One interesting example could
be a limit on the number of words an agent can remem-
ber (a kind of memory), so that we do not force to end
up with a one-to-one word-meaning mapping. Second, in
our model the alignment strategy only penalizes multiple
words for the same meaning, and does not penalize having
different words for each meaning. In precise terms, this is a
bias against synonymy, not ambiguity. Third, the parame-
ter ℘ works as a probability to select the most-ambiguous
word. Future work could compare different ways to de-
fine ℘. For example, it would be natural to choose w∗

uniformly at random.

Emergence of human-like properties in agent-based
models. From the above discussion, some crucial ques-
tions appear: What properties of human language may
emerge as a consequence of decentralized processes?

Fig. 8: Ω℘(t) vs. ambiguity parameter ℘ for radius 50. Left:
communicative energy Ω℘(tt) for one initial condition, after
tf = 3 × 105 speaker-hearer interactions. ℘ is varied with an
increment of 1%. Right: Ω℘(t) over time. Points indicate
measurements every 104 speaker-hearer interactions (starting
from t = 0). ℘ is varied from {0, 0.4, 0.5, 0.6, 1}.

Is there a causal relationship between the proposal of
agent-based versions of a human-like language feature and
the decentralized “existence” of such feature? How does
our decentralized approach to Zipf-type behavior provides
positive arguments in favour of this causal relationship?
The answers are not obvious. One possible answer arises
from a fascinating aspect of human language: individuals
are not isolated “talking heads”, but rather they belong
to communities, in which word-meaning negotiations may
occur.

Another ingredient of the answer is the debate opened
by [20], about the consequences of the emergence of Zipfian
properties for syntax and symbolic reference. According
to this debate, the Zipfian phase transition is a necessary
precondition for full syntax, and for going beyond sim-
ple word-meaning mappings. Moreover, the appearance
of syntax has been as abrupt as the transition between
the two previously discussed cases of communication sys-
tems. This is a key aspect: only in a community of in-
dividuals the appearance of Zipf-type behavior, and its
consequences for syntax, have a communicative value.

Minimization of Ω℘(tf ). How to explain the linear
growth of Ω℘(tf ) on either side of the central turning point
℘∗ ≈ 0.5 (as shown in fig. 4)? Why is this behavior lin-
ear? A first observation relies on the fact that around ℘∗
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Fig. 9: Evolution of pseudo-energy function. For several values
of ℘ (varying from 0 to 1 with an increment of 1%), the figure
displays the evolution of the pseudo-energy function (H(S) +
H(R|S))/2 over time t. Points indicate measurements every
104 speaker-hearer interactions (starting from t = 0).

Ω℘(tf ) is symmetric. To study in detail this phenomenon,
fig. 9 displays the evolution over time of the pseudo-energy
function, simply defined by (H(S) + H(R|S))/2. Differ-
ent colors represent different values of the parameter ℘. A
central observation is that pseudo-energy curves decrease
smoothly towards the global minimum 0.5.

Our results suggest that the model converges to a sce-
nario in which speaker constraints and decodification ef-
forts for the hearer have a similar contribution to Ω℘(tf ).
At this scenario, the dynamics tends to the same fi-
nal value of (H(S) + H(R|S))/2 ≈ 0.5 (fig. 9). This
fact strongly suggests that the population of individuals
reaches a shared word-meaning mapping that conserves
the sum of H(S) and H(R|S).

∗ ∗ ∗
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