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Abstract – We report a theoretical study of the linear and nonlinear dynamics of edge excitations
of an integer quantum Hall state of non-interacting fermions. New features beyond the chiral
Luttinger liquid picture are anticipated to arise from the interplay of the curvature of the Landau
level dispersion and of the Pauli exclusion principle. For long-wavelength perturbations, the
microscopic numerical results are captured by a chiral nonlinear hydrodynamic equation including
a density-dependent velocity term. In the wave-breaking regime, shock waves are found to be
regularized into a complex ripple pattern by higher-order dispersive effects. Our results are of
specific relevance for experiments with synthetic quantum matter, in particular ultracold atomic
gases.

focus  article Copyright c© 2020 EPLA

Introduction. – The quantum Hall (QH) effect is one
of the most surprising and intriguing effects of quantum
condensed-matter physics. This effect was first discovered
in two-dimensional electron gases subject to a strong mag-
netic field [1,2]: at sufficiently low temperatures and for
suitable integer or rational values of the electron density,
the electron gas enters a strongly correlated state charac-
terized by a quantized value of the transverse conductance.
Along the lines of the so-called bulk-boundary correspon-
dence, such exotic behaviours can be interpreted in terms
of the non-trivial topology of the many-body wave func-
tion in the bulk and of the quantized conductance of chiral
states propagating around the edge system [3].

The present paper reports a theoretical study of the
dynamics of edge excitations, with a special attention to
those dispersion and nonlinear effects that go beyond the
usual chiral Luttinger liquid picture of linearly dispersing
and non-interacting bosons [4,5]. In order to have an ex-
act microscopic description of the system, we focus on the
simplest model displaying the QH effect, namely an In-
teger QH (IQH) state of spin-polarized neutral fermions
in the presence of a strong synthetic magnetic field and
of a steep trapping potential. While this model might
be an oversimplification for a realistic solid-state system

(a)Contribution to the Focus Issue Turbulent Regimes in Bose-
Einstein Condensates edited by Alessandra Lanotte, Iacopo
Carusotto and Alberto Bramati.

of Coulomb-interacting electrons moving through a disor-
dered potential [6], it is the most natural description of
ultracold gases of fermionic neutral atoms subject to a
strong synthetic magnetic field [7,8], an emerging system
for the study of topological states of matter [9,10].

As compared to previous works on fractional QH
states based on the one-dimensional (1D) Calogero
model [11,12], our fully two-dimensional theory is able to
properly include the main ingredients of the microscopic
dynamics, namely the curvature of the energy-momentum
dispersion of the Landau levels in the trapping potential
and the intrinsic nonlinearities due to Pauli exclusion prin-
ciple. At the same time, the simplicity of our model allows
for an exact numerical solution as well as for perturbative
analytical insight into suitable limits. Similar studies for
the hydrodynamics of 1D Fermi gases based on a Wigner
function approach were reported in [13].

The goal of our study will be to shine a light on the com-
plex nonlinear features displayed by the spatio-temporal
dynamics of the density modulation on the edge in re-
sponse to classical excitation potentials of different spatial
shapes and different strengths. For long-wavelength per-
turbations, the numerical results are quantitatively cap-
tured by a chiral hydrodynamic description based on a
density-dependent propagation speed. At sufficiently long
times wave-breaking effects may set in, but shock waves
get regularized by higher-order dispersive terms beyond
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this simple hydrodynamic description into large-amplitude
ripples. These results are a preliminary step in view of at-
tacking the much more challenging case of fractional QH
states, for which the nonlinear dynamics is intertwined
with the fractional statistics of the excitations [14].

The problem. – An IQH system can be described
as an ensemble of non-interacting spin-polarized fermions
with single-particle Hamiltonian

H1 =
π2

2m
+ Vc(x), (1)

where π = p + eA(r) is the gauge-invariant mechani-
cal momentum, A(r) is the vector potential and Vc(r) a
smooth confining potential. The magnetic fieldB = ∇×A
is taken as constant. To simulate a strip geometry with
steep edges, periodic boundary conditions ψ(x, y + Ly) =
ψ(x, y) are imposed along y and the confinement poten-
tial is chosen to only depend on x. Along this direction,
Vc(x) is taken as steeply rising on the scale of the mag-
netic length lB =

√
�/eB and to have a magnitude much

larger than the spacing between different Landau levels
�ωc = �eB/m, as shown in fig. 1.

The Landau gauge A = Bxŷ considerably simplifies
the problem of finding the single-particle orbitals in our
geometry. Thanks to the translational symmetry along
y, these are of the form ψn,k(x, y) = eiky φn,k(x), where
φn,k(x) is a solution of the eigenvalue problem

(e−ikyH1e
iky)φn,k = En,kφn,k (2)

and the wave vector k is quantized to an integer multi-
ple of 2π/Ly. In the bulk the single-particle orbitals have
the form of shifted eigenfunctions of the one-dimensional
harmonic oscillator with the (almost) constant energy
(n + 1/2)�ωc of Landau levels. Near the edges they
get pushed against the steep confining potential Vc(x)
and their energy rises accordingly forming the chiral edge
states. The ground state (GS) of the system at zero tem-
perature is built by numerically diagonalizing (2) on a
suitable mesh and filling all the states below the Fermi
energy. In the following, the Fermi energy is chosen to be
located between the lowest and the first excited Landau
level so to focus on a single chiral edge channel as shown
in the upper panel of fig. 1. We indicate with v the Fermi
velocity at the Fermi point kF separating the regions of
filled and empty states.

The edge dynamics is then probed by applying an ex-
ternal time-dependent perturbation potential Ve(r, t) onto
the system. In the absence of interparticle interactions,
every single-particle orbital evolves in time independently
of the others and the only correlations are the ones stem-
ming from the Pauli principle. In the numerics, the wave
function of each electron was evolved in time via a Crank-
Nicolson algorithm; more details can be found in Chapt. 3
of [15]. For analytical simplicity we adopt an excita-
tion potential Ve(y, t) that only depends on y and t, but
we have verified that perturbations localized on the edge
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Fig. 1: Top panel: dispersion of the two lowest Landau levels.
Dots are coloured in red/blue depending on whether each single
particle is filled/empty in the many-body GS. Bottom panel:
GS density profiles for different Fermi wave vectors kF (black,
red, yellow lines, left y-axis); confining potential Vc(x) (blue
line, right y-axis) and position of the Fermi energy (dashed
lines). For clarity, the density of dots in the top panel has
been reduced by choosing a smaller Ly = 50 lB system than in
the bottom panel, Ly = 200 lB .

would give qualitatively similar results for the late time
dynamics after the excitation potential has been switched
off. The external potential is assumed to be turned on
and then off on a time scale τ that is slow compared to
the bulk dynamics (τ � ω−1

c ), but fast enough to excite
the chiral edge modes of frequency vq. These conditions
are compatible provided q−1 � v/ωc, which requires a
large enough system size q−1 � Ly to avoid finite-size ef-
fects as much as possible. We also assume that q−1 � lB,
so that many electrons are involved in the dynamics.

The key observable of our work is the system density
ρ(r). This is obtained as the diagonal part of the one-
body density matrix, which for non-interacting particles
is given by ρ(r′, r, t) =

∑
α ψ

∗
α(r′, t)ψα(r, t). The GS

density ρ0(x) is plotted for different values of the Fermi
energy (and thus of the Fermi momentum kF ) in the bot-
tom panel of fig. 1. Under the assumed τ � ω−1

c condi-
tion, the excitation potential cannot induce transitions to
excited Landau levels and the bulk density remains equal
to its incompressible value ρ = ν/(2πl2B) for integer-valued
filling ν [3], for our parameters equal to ν = 1. The
density variation δρ = ρ − ρ0 will thus be significantly
different from zero only within a few magnetic lengths
from the sharp system boundary. In what follows, we will
focus on an effective one-dimensional description of the
edge, obtained by integrating the two-dimensional density
profile along the orthogonal direction over half a sample,
δρe(y) =

∫ ∞
0 δρ(x, y)dx.

10002-p2
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In the standard chiral Luttinger liquid approach [4,5],
one considers long-wavelength excitations. In this case,
the dispersion of edge modes can be linearized around
the Fermi momentum. For large enough systems, left and
right edge channels are decoupled and the effective density
variations δρe(y) on both edges obey linear chiral hydro-
dynamic equations [16] with the Fermi velocity ±v and
a source term proportional to the spatial gradient of the
external potential Ue,

∂tδρe = ±v ∂yδρe± 1
2π �

∂yUe. (3)

The potential Ue(y, t) =
∫
Ve(x, y; t)|φ0,∓kF (x)|2dx is the

effective potential experienced by the edge orbitals and
the plus/minus signs indicate chiral propagation towards
negative/positive values of the y-coordinate on the x ≷ 0
edges. The form of the source term in eq. (3) can be
obtained with bosonization techniques1 and corresponds
to the transverse Hall current induced by the force −∂yUe

that directly depletes or replenishes the density on the
edge. This is radically different from the one appearing
in the case of a one-dimensional classical gas, where the
density modulation is instead related to the gradient of the
force, that is the second spatial derivative of the potential.
According to eq. (3), once the external excitation has been
turned off, the density modulation δρe rigidly propagates
at the Fermi velocity v.

To go beyond this chiral Luttinger liquid approach [4,5],
an exact numerical study of the dynamics of each single-
electron orbital is performed. In our calculations, a sep-
arable form of the external potential is used, Ve(y, t) =
λ g(y) exp[−(t− t0)2/τ2] with a Gaussian temporal profile
of duration τ and centered at t0 � τ . In what follows, dif-
ferent forms of g(y) are considered to highlight different
features of the dynamics.

Extended sinusoidal excitation. – As a first step,
we consider the simplest case of a spatially periodic ex-
citation potential with g(y) = sin2(Ky/2). This leads
to a correspondingly periodic density modulation δρe(y, t)
which, on the x < 0 edge, propagates in the positive-y
direction. In the upper panels of fig. 2, we show two snap-
shots of δρe(y, t) in the linear regime of a weak excitation
potential (black line) and we compare them to the same
curve in a stronger-excitation regime where the nonlinear-
ity is relevant (yellow line). Here, the sinusoidal wave of

1We restrict the second quantized form of the external poten-
tial V(t) =

∑〈n, k|Ve|m, q〉C†
n,kCm,q to the lowest Landau level,

n = m = 0. Restricting to low momentum excitations in the
linear-dispersion regime the system edges decouple and the matrix
element approximately depends on k − q only, as 〈0, k|Ve|0, q〉 ≈
∫ dy

Ly
e−i(k−q)yUe(y, t). After some algebra a minimal-coupling

interaction is obtained V(t) =
∫

Ue(y, t)ρ(y) dy where ρ(y) =
1

Ly

∑
k≈∓kF

eiky
∑

q≈∓kF
C†

0,q−kC0,q is related to the effective
1D density operator and satisfies bosonic commutation relations
[ρ(y), ρ(y′)] = ∓ i

2π
∂yδ(y −y′). The corresponding Heisenberg equa-

tion of motion recover eq. (5). A full derivation can be found in
Chapt. 4 of [15].

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

−100 −50 0 50 100

ωc  t = 400

l B
 δ
ρ e

(y
) 

(− hω
c/
λ)

y/lB
−100 −50 0 50 100

ωc  t = 800

y/lB

0.000

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000
| δ
ρ~

e(
K

) 
l B

/L
y|

² 
( 

− hω
c/
λ)

²

ωc t

0.005
0.020
0.030
0.040
0.050

0.00

0.02

0.04

0.06

0.08

0.10

0 1000 2000 3000 4000

|δ
ρ~

e(
2K

) 
l B

/L
y|

² 
 (

 − hω
c/
λ)

4

ωc t

Fig. 2: Upper panels: snapshots at different times of the den-
sity modulation δρe(y) generated on the negative-x edge by a
spatially periodic excitation of wave vector K. Bottom pan-
els: time dependence of the Fourier components of δρe(y) at
K (left) and 2K (right) for different excitation strengths. Pur-
ple shaded regions indicate the excitation transient. In both
panels, different curves are for growing values of the excita-
tion strength λ (black to red to yellow). The dashed blue
curves are the solutions of eq. (5) for λ/�ωc = 0.05. In the
bottom panels these are plotted approximatively up to the
wave-breaking instant. System parameters: Ly = 400lB and
kF � 8.58l−1

B , corresponding to N = 1093 fermions and a Fermi
energy EF � 0.61�ωc. Fermi velocity v � 0.25lBωc and curva-
ture c � 0.42l2Bωc > 0. Excitation wave vector K = 4×2π/Ly ,
centred in time at t0 = 50ω−1

c with a width τ = 15ω−1
c .

the linear response deforms into a sawtooth pattern, with
the compression regions moving faster and the decompres-
sion ones slower, effectively producing a sharp front edge
and a smoother trailing one. A complete plot of the den-
sity profile in the whole system is shown in fig. 3 for the
same configuration: as expected, the bulk is not affected
by the external potential Ve and only the edges get excited.
The sawtooth-shaped deformation due to the nonlinearity
is clearly visible on the iso-density lines that are displayed
in all panels.

This nonlinear behaviour can be heuristically explained
as follows. As usual for degenerate Fermi gases, the Fermi
wave vector kF can be related to the average number of
electrons per unit length in the y-direction. Restricting to
the half-stripe x < 0, we have ρ = Ne/Ly = kF /(2π). An
increase in the particle number density from ρ to ρ + δρ
then corresponds to a shift of the Fermi wave vector by
ΔkF = 2π δρ. Because of the curvature of the dispersion,
the shift in kF implies a corresponding change in the Fermi

10002-p3
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Fig. 3: Left panel: heat-map snapshot at t = 1000/ωc of the
modulated system density ρ(x, y) in response to a strong and
spatially periodic excitation. Top right panel: zoom on a small
portion of the system on the negative-x edge. Bottom right
panel: same data displayed as a surface plot. Same system
parameters as for the strongest λ = 0.05�ωc curves of fig. 2.

velocity, which at the lowest order reads

v′ = v + cΔk = v + 2πc δρ. (4)

For the confinement potentials under consideration here,
the curvature is positive c = ∂2

kEn,k > 0 as shown in fig. 1.
Within a local density approximation, we can consider the
(local) Fermi velocity to be increased in the compressed
regions of the Fermi gas, and vice versa to be decreased in
the rarefied regions. Based on these heuristic arguments,
the chiral hydrodynamic equation (3) may then be gener-
alized to a nonlinear hydrodynamic equation

∂tδρe = ±(v + 2πc δρe) ∂yδρe± 1
2π �

∂yUe (5)

which is expected to hold for long-wavelength excitations.
Equation (5) has an implicit solution due to Riemann

δρe = F (y± (v+2πc δρe)t), with F an arbitrary function.
At not too large times this analytical solution perfectly
captures the steepening of the sinusoidal modulation and
its deformation into a sawtooth profile, as shown by com-
paring the solid and dashed lines in the upper panels of
fig. 2. At later (yet finite) times, however, it predicts over-
turns, that is multivalued unphysical solutions [17]. As is
shown by our numerics in the following figures, this patho-
logical behaviour of the analytical approximation gets reg-
ularized in the complete theory, where the density profiles
remain smooth at all times.

Further light on the dynamics of the system is offered
in the bottom panels of fig. 2, which show the time de-
pendence of the square moduli of the Fourier components
of the density ρ̃e(q) =

∫
ρe(q) e−iqydy in the fundamental

and harmonic modes at q = K, 2K (left, right) for dif-
ferent external potential strengths (black to red to yellow
lines). Even in the linear regime, the finite curvature c > 0
is responsible for a decay of the excitation at late times
(left panel). The mechanism underlying this decay can
be located in the interference between the single-particle
orbitals involved in the excitation at wave vector q, that
span a wave vector region from kF − q to kF . As such,
the decay of weak excitations cannot be accounted for by
the hydrodynamic equation (5). Analytical insight into it
will be offered in the next section by a microscopic per-
turbation theory on the single-particle orbitals. The con-
tribution to the decay of the fundamental mode at q = K
due to up-conversion processes to the mode at q = 2K by
the nonlinearity of eq. (5) is significant for stronger exci-
tations and is visible as a blue dashed line in the bottom
left panel of fig. 2.

The bottom right panel shows instead the time evolu-
tion of the second harmonic of the density modulation
at q = 2K. This is generated by nonlinear effects and,
at moderate excitation strengths, scales as the square
of the fundamental excitation at q = K. Interestingly,
the linear growth of the harmonic component at early
times is well captured by the hydrodynamic equation (5),
as is shown by the dashed line. The later dynamics is
instead dominated by single-particle interference effects.
The superposition of the fundamental and harmonic com-
ponents is responsible for the sawtooth deformation of
δρe(y, t).

Time-dependent perturbation theory. – Addi-
tional analytical insight on the decay of the excitations
and in the nonlinear response can be obtained by apply-
ing time-dependent first- and second-order perturbation
theory in the applied external potential to each electron’s
wave function. Thanks to the simple expression of the
perturbation, the sum over all the electrons can be ana-
lytically performed so to obtain closed-form results for the
observables (Chapt. 5 of [15]).

At lowest order in λ, only the fundamental density
component δρ̃e(K) at the external potential wave vector
is non-zero; although no direct particle decay is present
in our non-interacting system, we attribute the decay of
δρ̃e(K) to the dephasing of the different particle-hole ex-
citations involved in the density modulation, which in the
Ly → ∞ limit leads to an effective decay in time propor-
tional to sinc[cK2(t − t0)/2], with lifetime of order Td =
π/cK2. The sinc-shaped behaviour is caused by the sharp
discontinuity of the fermionic occupation at the Fermi
point at kF , which acts as an ideal band-pass filter cutting
all the frequencies outside the interval [vK− cK2/2, vK+
cK2/2]: at linear perturbative order no fermion can get
excited beyond kF + K (from below kF − K) and the
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highest (lowest) frequency contained in δρe comes from
the kF → kF +K (kF − K → kF ) transition. Of course,
any finite temperatures will smear the Fermi edge, giving a
faster time decay. A natural question for follow-up work is
whether the decay persists in the presence of (weak) inter-
actions, e.g., p-wave interactions between spin-polarized
fermions and, more importantly, whether the Fermi edge
is stable against such interactions. For Coulomb interac-
tions, this question was addressed in [18] finding interest-
ing edge reconstruction effects.

Going to the next order in λ, we can obtain an approxi-
mate form for the harmonic density modulation, ρ̃e(2K) ∝
sin2[cK2(t− t0)]/(cK2(t− t0)). This formula gives a char-
acteristic time scale for the onset of lowest-order nonlinear
phenomena as TNL ∝ 1/cK2 (shown as a dashed brown
vertical line in the bottom right panel of fig. 2), which
by no coincidence is of the same order of magnitude of
the decay time Td. As expected, in the c → 0 limit, the
fundamental component ρ̃e(K) approaches the solution
of eq. (3) while the harmonic one vanishes ρ̃e(2K) → 0,
showing that the linear theory is exactly recovered in the
limit of a flat edge dispersion. Finally, it is interesting to
note that the corrections to ρ̃e(K) are O(c2), while those
to ρ̃e(2K) are O(c): for small c, far away from a shock
region, dispersive effects will be much weaker than the
nonlinear ones.

Gaussian excitation. – Based on the understand-
ing accumulated on spatially periodic excitations, we can
now proceed to consider the response to spatially lo-
calised excitations of different forms. We start from a
Gaussian-shaped g(y) = exp(−y2/σ2) that, in agrement
with eq. (3), produces at short times an anti-symmetric
two-lobed density modulation, as shown in fig. 4. At lin-
ear regime (dashed lines), the oscillatory pattern that is
visible at later times is due to the same interference effects
that were responsible for the decay of the spatially peri-
odic modulation discussed above and swaps signs under a
change of the sign of λ. This symmetry is no longer valid
for stronger excitations (solid lines). In this case, the os-
cillations are much stronger for λ > 0 (left column) than
for λ < 0 (right column). This behaviour can again be
qualitatively understood in terms of the nonlinear terms
in eq. (4): if a compressed region with δρe > 0 is located
behind a rarefied region with δρe < 0, the effect of the
positive curvature c > 0 will be to push the two regions
against each other. As a result, a shock wave will eventu-
ally form between the two, giving rise to large ripples by
higher-order dispersive effects. In the opposite case, the
two regions tend to separate, leaving a smooth transition
in between. In this case, some ripples will of course ap-
pear on the outer parts of the density pattern, but have a
weaker magnitude.

Sigmoid excitation. – In order to produce an ini-
tial bell-shaped density excitation, a sigmoid-shaped
excitation of the form g(y) = erf(y/σ) can be used.
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Fig. 4: From top to bottom: snapshots at growing t of the den-
sity modulation δρe(y) on the negative-x edge in response to a
Gaussian-shaped excitation with λ > 0 (left) and λ < 0 (right).
Within each panel, solid and dashed lines refer to strong and
weak excitations with |λ|/�ωc = 0.001 and 0.1. System pa-
rameters: Ly/lB = 800 and kF � 9.02l−1

B , corresponding to
N = 2297 fermions below EF � 0.76�ωc, v � 0.47lBωc, and
c � 0.57l2Bωc. Gaussian excitation with σ/lB = 20 centered at
t0 = 50ω−1

c of width τ = 15ω−1
c .

The results2 are shown in fig. 5. For strong (black
lines) and negative perturbations, the trailing edge of the
wavepacket gets steeper during propagation because of
nonlinear effects (top left) and eventually develops den-
sity ripples (bottom left). For an equally strong but posi-
tive perturbation, the shock-wave behaviour occurs on the
leading edge.

Some interesting dynamics is also visible for weak exci-
tations in the linear regime (red lines). Due to the wave
vector dependence of the mode decay time Td ∼ 1/K2 dis-
cussed above, a localised density packet will not only decay

2In this case a linear potential must be added to satisfy periodic
boundary conditions along y which is irrelevant in the large-system
limit.
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Fig. 5: Left column: snapshots at growing t (top to bottom)
of the density modulation δρe(y) on the negative-x edge in
response to a sigmoid-shaped excitation with σ = 20 lB. Red
(black) curves refer to weak (strong) excitations λ/�ωc = 0.001
(0.1). Right column: same plots on the positive-x edge propa-
gating in the opposite direction along y. All other parameters
as in fig. 4. Vertical orange dashed lines correspond to the cen-
tral position of the wavepacket moving at the Fermi velocity,
y = ±v(t − t0).

but also spread in real space as
√
c(t− t0) [19]. Analo-

gously to fig. 4, weak oscillations also appear around the
main wavepacket as an additional consequence of interfer-
ence between the different single-particle orbitals partici-
pating to the excitation.

Spatially localized V-shaped excitation. – As a
last example, a steep square-wave density modulation
has been produced using a suitable V-shaped excitation
g(y) � ln[2 cosh(y/σ)]. The results are shown in fig. 6.
Once again, the nonlinearities make the evolution of trail-
ing edges of the square wave quite differ from that of the
front ones. The front edge remains steep since the fast
high-density region located behind is pushed against the
slower low-density region in front of it. Eventually, this
leads to a shock wave that is regularized into ripples, in
stark contrast with the overturns displayed by the solu-
tion of eq. (5) (blue line). The trailing edge gets instead
smoother and does not display any ripple. The excellent
agreement with the solution of eq. (5) in this region con-
firms that dispersive effects are minimal here and, in par-
ticular, no shock occurs. This form of excitation is thus
ideal to quantitatively assess the accuracy of the analytical
approximation in eq. (5). This predicts that(

∂y′

∂t′

)
δρe

= 2πc δρe, (6)

where the left-hand-side derivative is taken at a fixed δρe

and y′ = y − vt, t′ = t are comoving frame coordinates.
This relation has been numerically checked for the trailing
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Fig. 6: Snapshots at growing t of the density modulation δρe(y)
on the negative-x edge in response to a V-shaped excitation
with σ = 20lB . Red (black) curves refer to weak (strong)
excitations λ/�ωc = 0.0001 (0.1). Blue curves are the solutions
of eq. (5) for λ/�ωc = 0.1, where the overturns are indicated by
the dashed line. All other parameters are as in fig. 4. Vertical
dashed dark-green lines denote the system boundaries. Beyond
these lines, the solutions are extended according to the periodic
boundary conditions for clarity.
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Fig. 7: We compare the numerically calculated value of the
derivative ∂y′

∂t′ at given δρe (colored points) with the result
eq. (6) (green dashed line). The color (black to yellow) of the
points indicates the different t. The upper (lower) panel is for
weak (strong) excitation λ/�ωc = 0.04 (0.1). Same parameters
as in fig. 6.

edge where dispersive phenomena are less relevant. The
numerical results are shown in fig. 7. As λ increases, the
overall agreement with eq. (6) gets better.

The physical origin of the deviation is investigated in
fig. 8, where we plot the spatial profile of the difference
Δ = ∂tδρe + (v + 2πc δρe)∂yδρe (the positive sign is used
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Fig. 8: Plot of the difference Δ = ∂tδρe + (v + 2πc δρe)∂yδρe

(black line) compared to the suitably normalized third-order
derivative term ∂3

yδρe (red line), on the negative-x system
edge at time ωct = 1500 for V-shaped excitations of different
strengths (top to bottom).

since we are focusing on the negative-x sample edge). The
difference is the largest in the regions where the density is
most quickly varying. In agreement with the wavepacket
evolution discussed above, for strong excitations the dis-
persive corrections are much larger for the steeper and pos-
sibly oscillating front edge rather than for the smoother
trailing one. But most remarkably, comparison of the
black and red curves shows how Δ is accurately repro-
duced by (minus) the third spatial derivative of the edge
density δρe, in particular for strong excitations. In do-
ing the comparison, the third derivative was heuristically
scaled by v−1(2πc)2 on the basis of dimensional arguments
and arguing that the underlying microscopic time and
length scales should not matter in this excitation regime.
On this basis, we conclude that the leading correction to
eq. (5) for strong modulations must have a form propor-
tional to the third derivative ∂3

xδρe, giving an effective
Korteweg-de Vries (KdV) dynamics: the behaviour ob-
served in our numerics is indeed resemblant of shock waves
emerging from such an equation [20]. While this conclu-
sion is very accurate for strong excitations (lower panel of
fig. 8), important corrections are still present in the weak-
excitation regime (upper panel): the KdV corrections are
in fact not able to capture those interference effects that
originate from the sharp Fermi edge and that are respon-
sible for the linear damping and spreading of wavepackets.

Conclusions. – In this work we have reported a mi-
croscopically exact calculation of the linear and nonlin-
ear edge dynamics of an IQH system of noninteracting
fermions. For weak perturbations of the GS, a pertur-
bative description is able to capture the effect of the

curvature of the single-particle dispersion on the propa-
gation of the excitation wavepackets. For stronger per-
turbations, the edge hydrodynamics displays important
nonlinear features; in the wave-breaking regime, higher-
order dispersive effects beyond nonlinear hydrodynamics
regularize the shock wave into large-amplitude ripples sim-
ilarly to the KdV equation. While a great deal of the non-
linear effects can be included in a one-dimensional, chiral
hydrodynamic equation for the classical density, a future
task will be to understand the origin of the damping, and
whether it can be included in the hydrodynamic semi-
classical description through additional dispersive, non-
local and/or quantum fluctuation terms. Another exciting
question to be addressed is whether our non-interacting
system can support solitonic solutions. The long-term
perspective is to extend our microscopic approach to frac-
tional quantum Hall states [3], where the anyonic statistics
of excitations is anticipated to interplay with the nonlinear
dynamics to give, for instance, fractional solitons [14].
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