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Abstract – Emerging collective behavior in complex dynamical networks depends on both cou-
pling function and underlying coupling topology. Through this Perspective, we provide a brief yet
profound excerpt of recent research efforts that explore how the synergy of attractive and repul-
sive interactions influence the destiny of ensembles of interacting dynamical systems. We review
the incarnation of collective states ranging from chimera or solitary states to extreme events and
oscillation quenching arising as a result of different network arrangements. Though the existing
literature demonstrates that many of the crucial developments have been made, nonetheless, we
come up with significant routes of further research in this field of study.

perspective Copyright c© 2020 EPLA

Emergence of diverse macroscopic states in ensembles of
interacting oscillators depending on coupling configura-
tion is a central issue of interest in many different fields
of research. Attractive (positive) coupling, in general,
gives rise to in-phase allignment among the oscillators.
On the other hand, repulsive (negative) coupling drives
the oscillators apart and induces out-of-phase synchro-
nization. However, realistic systems are far more compli-
cated and introducing mixed coupling with both positive
and negative couplings is another way of bringing the real
coupled-oscillator systems closer to reality. Simultaneity
of attractive and repulsive couplings can be observed in a
plethora of different contexts including sociology [1], ecol-
ogy [2,3] as well as in modelling of physical [4,5], biologi-
cal [6], socio-technical systems [7–9], and thus it serves as
a simple yet highly efficient framework to understand the
underlying mechanism of many complex systems. Coexis-
tence of these couplings makes the system frustrated [10]
and examples of such frustrated systems are omnipresent.
Even the most complex organ brain consists of attractive
and repulsive couplings [11,12] and it contains almost 75%
excitable neurons and 25% inhibitory neurons [13,14].

(a)E-mail: diba.ghosh@gmail.com

Interplay between attractive and repulsive couplings
may originate suppression (death) of oscillation among
coupled oscillators. Along this line, the number of minimal
repulsive links, which is sufficient enough to induce death
in a network of globally and diffusively coupled Stuart-
Landau (SL) oscillators, is inspected in ref. [15]. Their
numerical investigation attests that the repulsive strength
should be passed through at least 30% links of the network
for a death scenario to emerge. Zhao et al. [16] found that
while uniform coupling (i.e., either only attractive or only
repulsive alone) is unable to stabilize the amplitude death
(AD) state, mixed coupling can induce AD in the relay
system of SL and Rössler oscillators. Figure 1 demon-
strates the tranisition mechanism for the occurence of AD
in a relay system of three Rössler oscillators, where the
middle oscillator is repulsively coupled with the outer os-
cillators and the outer oscillators are attractively coupled
with the middle oscillator. The dynamical equation of the
i-th Rössler oscillator (i = 1, 2, 3) is given by

ẋi = −yi−zi+εGi, ẏi = xi+0.1yi, żi = 0.1+zi(xi−14).
(1)

Here, ε is the coupling strength and G2 = [(x1 −
x2) + (x3 − x2)] is the difference feedback between two
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Fig. 1: The transition mechanism for the emergence of AD
with increasing coupling strength ε for a chain of N = 3
oscillators is explored. (a) A schematic presentation is por-
trayed for the relay system, where “R” (dashed lines) stands
for repulsive sum feedback and “A” (solid lines) signifies at-
tractive diffusive interaction. (b) Incoherent behaviors of
x1, x2 and x3 are depicted through oscillations with differ-
ent amplitudes for ε = 0.04. (c) Outermost oscillators (x1

and x3) are in anti-synchronized state, but the amplitude of
the middle oscillator (x2) is damped out to the AD state
whenever ε = 0.09. (d) All the oscillators arrive at the
AD state at ε = 0.14. All the panels are drawn with fixed
initial condition (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0), x3(0),
y3(0), z3(0)) = (1.1, 0.2, 0.3, 1.2, 0.3, 0.4, 1.3, 0.5, 0.6). We refer
the reader to ref. [16] for further details.

neighbouring oscillators. The repulsive sum feedback is
depicted through G1 = −(x2 + x1) and G3 = −(x2 + x3).
The system settles down to AD through three basic
steps. Initially with small coupling strength ε = 0.04,
the three oscillators are oscillating with different ampli-
tudes (fig. 1(b)). The amplitude of the middle oscil-
lator is smaller compared to the outer oscillators. For
ε > εc = 0.1, suppression of oscillations to the AD state is
observed as in fig. 1(d). For an intermediate choice of ε,
the outer oscillators maintain anti-synchronization while
the middle oscillator acheives AD (fig. 1(c)). The observed
transition mechanism for the emergence of AD remains
unchanged if the relay system is coupled in attractive-
repulsive-attractive (ARA) manner instead of RAR way
as shown in fig. 1. Emergence of amplitude death in a
network of identical oscillators through repulsive mean
coupling under coupling delay is reported in ref. [17].
A globally coupled network of SL and Rössler oscillators
under the effect of time delay can reveal oscillation quench-
ing in the form of AD or oscillation death (OD), whenever
suitable oscillators are perturbed through repulsive dif-
fusive delay coupling [18]. Revival of oscillation is also
possible from the AD state depending on the internal pa-
rameters of the network. The transition mechanism from
AD to OD under attractive coupling and with additional
repulsive link is investigated in ref. [19] by considering
three different systems containing two or three identical
oscillators. The detailed analysis of synchronized and anti-
synchronized oscillatory states along with the OD state
has been presented, and these collective behaviors emerge

as a result of the trade-off between attractive and repulsive
couplings [20].

Earlier, the fascinating outcomes that emerge due to
attractive-repulsive interactions are also revealed by Hong
et al. [21] through their studies. They consider a general-
ization of the Kuramoto model,

φ̇i = ωi +
Ki

N

N∑
k=1

sin(φk − φi), i = 1, 2, . . . , N, (2)

with RejΦ = 1
N

∑N
k=1 ejφk , which reduces to

φ̇i = ωi + KiR sin(Φ − φi), i = 1, 2, . . . , N, (3)

where the natural frequencies ωi are drawn from a
Lorentzian probability density g(ω) = γ/[π(ω2 + γ2)] of
width γ and mean 〈ω〉 = 0. The mean-field variables R
and Φ describe the phase coherence and average phase,
respectively. The interaction strength among those os-
cillators Ki is drawn from a double delta distribution
Γ(K) = pδ(K − D2) + (1 − p)δ(K − D1), where D2 > 0
and D1 < 0. Motivated by sociophysical models of opin-
ion formation, the repulsively coupled oscillators represent
contrarians who oppose everything, while the positively
coupled oscillators are treated as conformist favoring co-
herence in the population. The probability of being a
conformist is p. Clearly, the limiting cases reflect to the
scenario that either the system is full of contrarians for
p = 0 or the system coincides with the original Kuramoto
model for p = 1. When γ is sufficiently small, the system
converges to an asymptotic behavior termed as traveling
wave state for an intermediate regime of p. The phase dis-
tribution at this state follows a constant distance d �= π
possessing a non-zero mean-phase velocity 〈φ̇i〉 �= 0. For
small p, the system is dominated by contrarians and as a
result of that, the globally coupled phase oscillators are
completely desynchronized. As soon as p crosses a certain
threshold, the system settles down to a π-state, where both
conformist and contrarian exhibit stationary distribution
of phases leading to a fixed point behavior of the order pa-
rameter RejΦ. The peaks of both distributions maintain a
constant mean phase difference d = π. Further increment
of p generates the traveling wave state before the system
collapses back to the partially synchronized π-state. Note
that the coupling strengths in eq. (2) appear outside of
the summation. Whenever the coupling strengths are in-
serted within the summation, the traveling wave state and
π-state are no longer observed [22]. Unexpectedly, the sys-
tem exhibits a second-order phase transition similar to the
Kuramoto oscillator. A different situation [23] can be ana-
lyzed when the correlation between the natural frequencies
and coupling strengths is established deterministically by
distributing an equal number of positively and negatively
coupled oscillators around ω = 0. This correlated dis-
order ultimately favors the partially locked state for any
non-zero fraction of positively coupled oscillators. To un-
derstand the local dynamics around each fixed point, the
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eigenvalues of the Jacobi matrix around each fixed point
in the Hong-Strogatz model are explicitly calculated in
ref. [24].

Motivated by Daido’s pioneering work [25], where a new
type of ordered state analogous to glass transition in a
large ensemble of coupled limit cycle oscillators with pos-
itive and negative couplings is explored, Hong et al. [26]
investigated a variant of the Kuramoto model with assy-
metric pairwise interaction and uniform natural frequency.
This asymmetric interaction creates different types of frus-
tration as the l-th oscillator may be negatively coupled
with the j-th oscillator, but, in return, the j-th one is
coupled positively to the l-th one. The percieved numer-
ical and analytical techniques reveal that the long-time
dynamics for the homogeneous system converges to one of
the following four states: i) incoherent state, ii) blurred
π-state, iii) traveling wave state, and iv) π-state. The
same model of identical phase oscillators is analyzed with
a phase shift and arbitrary finite number of oscillators
causing rich complex dynamical behavior [27]. The pres-
ence of weak pinning force in the model [26] helps to
produce several peculiar dynamical states including peri-
odic synchronization, breathing chimera and fully pinned
state depending on the fraction of the conformists [28].
If the pinning force is strong enough, then only the fully
pinned state exists in the system. The collective behav-
ior of the generalized Kuramoto model with an external
pinning force [29] is also investigated under the limelight
of the situation, in which the natural frequencies of the
oscillators follow a uniform probability density. Diverse
emergent behavior including traveling wave state, π-state,
blurred π-state and periodic synchronous state (termed
as oscillating π-state) can be obtained due to the inter-
play of conformists and contrarians. Yuan et al. [30] also
found such rich dynamics in a variant of the generalized
Kuramoto model with a bi-harmonic coupling function
term, in which oscillators with positive first harmonic cou-
pling strength are conformists and oscillators with neg-
ative first harmonic coupling strength are contrarians.
Depending on the parameters, the Kuramoto model of
globally coupled phase oscillators with time-delayed pos-
itive and negative couplings is also capable of displaying
a variety of dynamic behaviors including fully coherent,
incoherent states and mixed (coherent, incoherent, and
clustered) states [31]. The recent advances on the emer-
gence of a traveling state has been studied with positive
and negative couplings [32–34] and thus offering new pos-
sibilities for exploration.

In fact, coherent motion is not necessarily the desired
state always, e.g., wobbling of the millennium bridge and
traffic congestions in networks. A fraction of contrari-
ans is significant enough to suppress the global synchro-
nization of the system. Based on the local information,
the coherent behavior can be reduced effectively whenever
the number of contrarians crosses a certain threshold [35].
Surprisingly, global information may still entertain the
global synchronization state as illustrated in ref. [35].

Zanette [10] inspected the frustration in a model with
pairwise coupling analogous to the magnetic XY model
in the limit of ωi = 0. From a different perspective in
ref. [36], appearance of the stable glassy phase state and
the mixed state in a model of phase-coupled frustrated os-
cillators with random excitatory and inhibitory couplings
of Van Hemmen type along with incoherent and synchro-
nized phases is contemplated in the thermodynamic limit.
The dynamical robustness property of the damaged net-
works under the influences of both repulsive and attractive
couplings has been recently inquired in ref. [37]. Also, the
presence of a suitable number of repulsive links in a sys-
tem of globally coupled Van der Pol oscillators diminishes
the coherent behavior and leads to an enhanced response
of the external signal [38].

Interestingly, strong coherence can still be observed in
neuronal networks even with the presence of both excitable
and inhibitory neurons [39]. A tit-for-tat strategy is im-
plemented to disregard the negative role of contrarian os-
cillators and to increase the synchronization in ref. [40].
A small fraction of phase-repulsive links can help to sus-
tain and enhance synchronization in a small-world network
composed of non-identical coupled units [41]. Restrepo
et al. [42] unveiled a theoretical approximation to find
the critical coupling strength, where a macroscopic tran-
sition to synchronization takes place in a large directed
network of phase oscillators with mixed positive-negative
coupling. Scale-free neuronal networks with attractive or
phase-repulsive coupling and finite delay lengths have been
studied in ref. [43]. In ref. [44], two periodically bursting
Hindmarsh-Rose (HR) neurons are considered given by the
following equations:

ẋj = yj + 3x2
j − x3

j − zj + 4 − kj(xj − 2)Γ(xl),
ẏj = 1 − 5x2

j − yj ,

żj = 0.01[5(xj + 1.6) − zj]; j, l = 1, 2 (j �= l).
(4)

Here, the chemical synaptic interaction is captured by the
sigmoidal function Γ(xl) = [1 + exp[−10(xl + 0.25)]]−1.
The coupling strengths kj decide the type of interaction.
Here, we choose k1 = 0.07 and k2 = −0.08. These combi-
nation of excitatory and inhibitory interactions is capable
of generating extreme events as shown in fig. 2. The phase
portrait given in fig. 2(a) draws the conclusion that the
variables endure out-of-phase oscillation for most of the
time, and occasionally they travel towards the in-phase
synchronization x1 = x2 manifold. Coincidence of two
such spikes are highlighted in fig. 2(b) through an elliptical
mark. This intermittent unison generates a large ampli-
tude oscillation in the temporal dynamics of x = x1 + x2
(cf. fig. 2(c)). The probability distribution function of
x is found to display Dragon-king distribution revealing
the appearence of Dragon-king–like extreme events. The
dashed line in fig. 2(c) is the extreme event indicating
threshold HS = μ + 6σ, where μ and σ are the mean
value and the standard deviation of all the peak values in
a sufficiently long time series of x, respectively.
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Fig. 2: (a) Plot of x1 vs. x2 illustrates the fact that they are
in out-of-phase oscillations for most of the time. Occasionally,
they traverse towards the in-phase synchronization manifold.
(b), (c): the temporal behavior of x1 and x2 reflects that when
one oscillator displays bursting oscillations, then the other one
is in the quiescent state. However, a scenario is highlighted
by an elliptical mark, where spikings of these two oscillators
coincide. This intermittent overlapping ultimately reveals a
high-amplitude oscillation of the observable x = x1 +x2 in the
temporal domain. The dashed line in panel (c) is HS ≈ 3.1333.
All the figures are simulated with k1 = 0.07 and k2 = −0.08.
The initial condition (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) =
(0.1, 0.2, 0.3, 0.6, 0.7, 0.8) is also kept fixed. For further details,
see ref. [44].

But, the agents of the social systems rarely remain
isolated and the strategies of those agents generally
change over time to avoid the undesired phase-locked
state. Motivated by these facts, fresh ideas emerge among
researchers and few time-varying networks [45,46] are con-
templated with attractive-repulsive interactions, which
manifest extreme events for an intermediate choice of cou-
pling strengths. During the transition from synchroniza-
tion to incoherent regime, those systems of mobile agents
can give rise to extreme events through the route of on-
off intermittency. Moreover, such a competing interaction
due to the interplay of positive inter-layer and negative
intra-layer interactions may initiate solitary states in mul-
tiplex networks of coupled oscillators [47]. In this state,
one or a few units of the ensemble split off and behave
differently from the other units. Specifically, through this
paper, Majhi et al. [47] articulated the emergence of such
a weak-chimera–like dynamical state in a bi-layer multi-
plex network exhibiting competitive interactions in terms
of the opposite characteristics of inter- and intra-layer cou-
plings. Diverse patterns of solitary states with cluster syn-
chronization and oscillation death states are encountered
dealing with the FitzHugh-Nagumo system in its equilib-
rium and periodic regimes. For the equilibrium regime,
the FitzHugh-Nagumo systems on the two layers are as-
sumed on the two sides of the Hopf bifurcation in response
to the external stimulus, along with positive inter-layer
and negative intra-layer strengths. Evidence of such a
peculiar phenomenon has been presented while contem-
plating with the Lorenz system in its periodic and chaotic
regimes.

A transition from two-cluster synchronization to par-
tial synchronization in a globally coupled phase oscillators

can be realized due to the interplay between attractive
and repulsive interactions within two groups of identical
oscillators [48], where the groups differ in their natural
frequencies. If this frequency mismatch between attrac-
tive and repulsive units is smaller than some critical
value, then the system may exhibit solitary states. Jalan
et al. [49] found that an inhibitory layer of negatively cou-
pled nodes hinders the formation of synchronized giant
cluster in the excitatory layer of all positively coupled Ku-
ramoto oscillators resulting in the manifestation of explo-
sive synchronization (ES) in the multiplex network. An
efficient approach in order to convert the first-order tran-
sition to a second-order transition is proposed in ref. [50].
By changing a small fraction of oscillators into the con-
trarians depending on the average degree and the network
size, one can easily suppress ES in a network of coupled
Kuramoto oscillators. The dynamics of a model with in-
terlinked positive and negative feedback loops is explored
in ref. [51]. Several rich complex phenomena including
monostability, bistability, excitability and oscillation can
be observed in this system (which can be thought of as a
tunable motif) by changing the feedback strength. The
heterogeneity in the coupling and in the characteristic
timescales may influence the system behavior and may
generate a situation which is impossible without timescale
differences. Kirillov et al. [52] inspected a heterogeneous
ensemble of two groups with different internal timescales.
One of these group possesses attractive coupling and the
other one is repulsively coupled. Although qualitatively
same behavior with the equal timescales is observed for the
slower attractive group, in contrast when the attractive
group is faster than the repulsive group, then the emer-
gence of new dynamical regimes including bistability and
rotation of the group mean field with respect to each other
is found. In fact one of the recent findings suggests that in-
stead of uniform couplings (purely positive or purely neg-
ative couplings), mixed positive-negative coupling may be
helpful for the signal amplification [53]. With appropriate
choices of the ratio between two types of coupling and the
coupling strength, the system of globally coupled bistable
oscillators subject to a common weak external signal can
lead to resonance-like behavior and the dynamics of the
system settles down to the three oscillation clusters.

The emergence of bipolar aggregations for the two sub-
ensembles of the swarm sphere model under attractive-
repulsive couplings has been explored recently [54]. The
coherence-incoherence transition in networks of globally
coupled identical oscillators with attractive and repulsive
interactions is found to occur through the appearence
of solitary states, provided the attractive and repulsive
groups act in anti-phase or close to that [55]. Recently,
Chowdhury et al. [56] have made an effort to figure out
whether there exist any universal generic path in a con-
nected network of attractively and diffusively coupled SL
oscillators, which will help to attain anti-phase synchro-
nization by passing a decent amount of repulsive strengths
through it. Using the 0-π rule and bifurcation analysis,
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Fig. 3: (a)–(c) Anti-phase synchronization in bipartite graph: (a) the Desargues graph with N = 20 vertices and L = 30 edges
is considered to demonstrate the manifestation of anti-phase synchronization in a bipartite graph. The vertices of this balanced
bipartite graph can be partitioned into U = {1, 3, 5, 7, 9, 12, 14, 16, 18, 20} and V = {2, 4, 6, 8, 10, 11, 13, 15, 17, 19}, respectively.
(b) A spanning tree of the connected network is accounted for and the repulsive coupling is spread through that spanning
tree with kR = −0.1. The complementary subgraph with 11 links is positively coupled with coupling strength kA = 0.001.
The system settles down to anti-phase synchronization while the oscillators within the set U and V are in-phase synchronized
between themselves. (c) Higher negative coupling with kR = −4.0 helps to reach the entire network to different inhomogeneous
steady states with F = 0 under suitable initial conditions. (d)–(g) Construction of a network with pre-specified F : a connected
acyclic undirected graph with N = 16 vertices and L = 15 edges is given in panel (d). Initially, all links are repulsively coupled
(red lines). By joining one by one attractive edges (black lines), a new non-bipartite network is designed with Fdesired = 1

3 in
panel (g). We refer the reader to ref. [56] where further details of the simulations can also be found.

they showed that the anti-phase synchronization is possi-
ble in any connected network if and only if the network
is bipartite in nature. A measure F = 〈 1

L

∑
i<j Aij [1 +

cos(θi − θj)]〉 is used to determine whether each pair of
adjacent nodes follows anti-phase states or not. Here, Aij

is the N ×N adjacency matrix of the network and L is the
total number of links. θi is the intrinsic phase of the i-th
oscillator. Clearly, F lies within [0, 2], and particularly
F = 0 reflects the emergence of anti-phase synchroniza-
tion (i.e., |θi − θj | = π). This measure F thus acts like a
unique fingerprint which will able to distinguish between
bipartite (F = 0) and non-bipartite graphs (F > 0). If
an adequate amount of repulsive strengths can be passed
through any of the spanning trees of a connected bipar-
tite network, then the system may split into two clusters
maintaining a phase difference of π. To demonstrate this
feature, the only known non-planar partial cube Desar-
gues graph (see fig. 3(a)) is considered. The connectedness
of this graph assures the existence of a spanning tree of
this network and the bipartiteness of this graph ultimately
favors anti-phase synchronization, whenever the negative
coupling is passed through any of the existing spanning

trees embedded in the considered graph. The positively-
negatively coupled limit cycle oscillators under this ar-
rangement exhibit a scenario where the phase differences
between the existing links are in the difference of π. Al-
though the system acquires zero frustration (F = 0) with
oscillation states (fig. 3(b)), and fixed points (fig. 3(c)),
respectively, the system becomes multistable and hence
careful selection of initial conditions is needed in order to
achieve anti-phase synchronization. In fact, the basin of
attraction for F = 0 becomes narrower with increasing
network size. This understanding is also recognized in an-
other recent study [57] where the anti-phase synchroniza-
tion is found to be limited to small-sized networks due to
its dependences on several factors including connectivity
of the network, strength of interaction over distance, and
symmetry of the network. Construction of a non-bipartite
graph by adding few attractive links from a given repul-
sive tree with desired F is exemplified in figs. 3(d)–(g)
using the algorithm prescribed in ref. [56]. Initially, a re-
puslive tree of 16 nodes with coupling strength kR = −4.0
is given in fig. 3(d). From this theory, one can create a
sparse graph from this non-frustrated graph (F = 0) with
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Fdesired = 1
3 . Then, one only needs to decompose the bi-

partite graph into two disjoint sets, say U and V and add
a link between two nodes either from the set U or from
V , so that there is no link between those nodes at prior.
Using the proposed 0-π rule, F = 2m

L is calculated, where
m = L − (N − 1) is the number of attractive links. If
F < Fdesired, then one needs to add again a link between
two nodes either from the set U or from V . This process
will continue until the desired F is achieved. By adding
only 3 attractive links for the graph given in fig. 3(d), one
can accomplish their motive as shown in fig. 3(g).

On the other hand, two different types of chimera-
like behavior have been detected in a network of globally
coupled Liénard system under attractive and repulsive
mean-field feedbacks [58]. Diverse collective states in
the form of cluster chimera death and solitary state are
observed in non-locally coupled oscillatory systems with
attractive and repulsive couplings [59]. Stable ampli-
tude chimera and traveling wave states are encountered
in nonlocally coupled network of oscillators in the pres-
ence of both attractive and repulsive interactions [60].
In the following, we discuss about a significant observa-
tion of frequency-modulated chimera-like pattern during
explosive transitions to synchronization in networks of the
heterogeneous Kuramoto model [61]. Interestingly, this
chimera-like behavior has been encountered not for any
induced repulsion in the networked system, rather it has
been shown that this chimera-like behavior emerges due
to the coexistence of evolved attractively and repulsively
coupled subpopulations of oscillators. A network of Ku-
ramoto phase oscillators is considered as follows:

φ̇i = ωi + λRi

∑N
l=1 Ail sin(φl − φi), i = 1, 2, . . . , N,

Ri =
1
ki

∣∣∣∣∣
N∑

l=1

Aile
jφl

∣∣∣∣∣ ,
(5)

where φi, ωi and ki are the phase, natural frequency
and the degree of the i-th oscillator, respectively, also
j =

√−1. The parameter λ is the overall coupling
strength, and the matrix A = [Ail] is the underlying
graph adjacency. Ri represents the local order param-
eter that contributes adiabatically to the coupling term
and provides the mechanism for explosive synchronization.
The values of ωi are uniformly distributed over the range
[ω0 − Δ

2 , ω0 + Δ
2 ], where ω0 is the central frequency and

Δ is the width of the frequency range. To quantify the
network’s coherence, the authors used the averaged global
order parameter as

R =
1

N(tmax − ttrans)

∫ tmax

ttrans

∣∣∣∣∣
N∑

l=1

ejφl(t)

∣∣∣∣∣dt, (6)

ttrans and tmax being the transient time and the maximal
simulation time, respectively.

For homogeneous frequency distribution (i.e., for
Δ = 0), the system (5) goes through a smooth transition
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Fig. 4: (a) R as a function of λ in the non-locally coupled
network of N = 100 oscillators with p = 0.0 and k = 10 for
different values of the natural frequency distribution width:
Δ = 0.5 (red); Δ = 1.0 (green); Δ = 1.5 (black). Shadings
highlight the respective areas of partially coherent chimera-
like regimes. (b) Phase diagram in the (λ, Δ) parameter plane
with respect to the global order parameter R. We refer the
reader to ref. [61] for further details.

to coherence with weak coupling, however, heterogeneous
distribution yields explosive transition to coherence. Be-
sides, a finite-size plateau has been identified where the
system undergoes a partially coherent state with the av-
eraged order parameter R ≈ 0.7. The path of transition
does not depend on the level of heterogeneity Δ (cf. fig. 4).
The impact of the continuous variation of Δ and λ is
portrayed in fig. 4(b). The region between the dashed
white and black lines reflects the existence of chimera-
like behavior. Evidently, this interval that supports the
chimera-like state improves considerably as Δ increases.
It has further been established that the observed chimera-
like state is excited under weakly non-local, small-world,
and sparse scale-free coupling and suppressed in globally
coupled, strongly rewired, and dense scale-free networks
(see [61] for the detailed mechanism of the evolution of at-
tractive and repulsive mean couplings which is responsible
for such chimeric patterns).

Finally, to conclude, we have put forward a brief review
to point out to the readers about the recent developments
on the field of attractive-repulsive interactions in networks
of coupled dynamical systems. We have discussed a few
articles of the existing literature, as covering all of them
is beyond the scope of this overview. In spite of that, we
have presented the dynamical scenarios emerging due to
the simultaneity of attraction and repulsion as thorough
as possible at least from the perspective of diversity of the
reviewed collective states. We have explained how collec-
tive states such as chimera states, solitary states, extreme
events, amplitude (or, oscillation) death, anti-phase syn-
chrony, cluster states, travelling waves, different π-states
can appear in ensembles of oscillatory units subject to
the coaction of attractive and repulsive interactions. In
this context, several relevant challenges lie ahead which
will help to bring new insights into this interdisciplinary
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topic. For instance, further precise strategies are needed
to implement for achieving anti-phase synchronization on
larger networks and multilayer networks under the influ-
ence of such mixed attractive-repulsive coupling to over-
come the limit on network size as recognized in ref. [57].
Another important challenge in this direction will be to
find out analytically the OD state particularly in large net-
works depending on mixed interactions between species.
A very crucial question from the theoretical perspective
is whether it is possible to explore further the existential
criterion and properties of Daido’s oscillator glass transi-
tion [25]. In fact, it will be interesting if another simplified
model can be constructed which is capable of revealing
such a glass transition with mixed attractive and repul-
sive interactions. Motivated by analogies to spin glasses as
well as to rumor propagation, the microscopic mechanism
of the diverse cognitive processes with both positive and
negative couplings may provide new insights into some as-
pects of interacting units. In fact, a careful design on such
frustrated networks must be emphasized in order to mit-
igate the expected extreme events. Along this line of re-
search, a controlling appraoch is proposed in refs. [45,46].
But, a generic scheme to restrict such catastrophic events
is yet to be found for such coupled systems with mixed
interactions. The possibility of forecasting the occurrence
of such large events is still an open challenge, and thus the
development of new tools is really essential. Besides, con-
trolling chimera or solitary-like weak-chimera states has
been one of the most challenging tasks and has not been
well-attempted yet, particularly in networked systems ex-
periencing both attraction and repulsion. We hope this
short review on attractive-repulsive interactions will open
new venues for a better understanding of the underlying
mechanism of different emergent states in coupled systems.

∗ ∗ ∗

SNC would like to acknowledge the CSIR (Project No.
09/093(0194)/2020-EMR-I) for financial assistance.

REFERENCES

[1] Martins T. V. et al., Eur. Phys. J. B, 67 (2009) 329.
[2] Girón A., Chaos, 26 (2016) 065302.
[3] Bacelar F. S. et al., Ecol. Complex., 17 (2014) 140.
[4] Sun Y et al., Chaos, 26 (2016) 073112.
[5] Dixit S. et al., Chaos, 30 (2020) 033114.
[6] Daido H., Prog. Theor. Phys., 77 (1987) 622.
[7] Burylko O., Proceedings of the Nonlinear Dynamics of

Electronic Systems, 2012, pp. 1–4.
[8] El Ati A. and Panteley E., in 2013 18th Interna-

tional Conference on Methods & Models in Automation
& Robotics (MMAR) (IEEE) 2013, pp. 22–27.

[9] El-Ati A. et al., in 2013 IEEE International Confer-
ence on Systems, Man, and Cybernetics (IEEE) 2013,
pp. 1253–1258.

[10] Zanette D. H., EPL, 72 (2005) 190.

[11] Myung J. et al., Proc. Natl. Acad. Sci. U.S.A., 112
(2015) E3920.

[12] Izhikevich E. M., Dynamical Systems in Neuroscience
(MIT Press) 2007.

[13] Soriano J. et al., Proc. Natl. Acad. Sci. U.S.A., 105
(2008) 13758.

[14] Vogels T. P. et al., Nat. Neurosci., 12 (2009) 483.
[15] Hens C. et al., Phys. Rev. E, 88 (2013) 034902.
[16] Zhao N. et al., Eur. Phys. J. B, 91 (2018) 1.
[17] Bera B. K. et al., Phys. Lett. A, 380 (2016) 2366.
[18] Kundu P. et al., Chaos, 29 (2019) 013112.
[19] Hens C. et al., Phys. Rev. E, 89 (2014) 032901.
[20] Sathiyadevi K. et al., Phys. Rev. E, 95 (2017)

042301.
[21] Hong H. et al., Phys. Rev. Lett., 106 (2011) 054102.
[22] Hong H. et al., Phys. Rev. E, 85 (2012) 056210.
[23] Hong H et al., Chaos, 26 (2016) 103105.
[24] Peng-Fei W., Commun. Theor. Phys., 64 (2015) 507.
[25] Daido H., Phys. Rev. Lett., 68 (1992) 1073.
[26] Hong H. et al., Phys. Rev. E, 84 (2011) 046202.
[27] Burylko O. et al., Phys. Rev. E, 90 (2014) 022911.
[28] Hong H., Phys. Rev. E, 89 (2014) 062924.
[29] Yuan D. et al., Front. Phys., 13 (2018) 130504.
[30] Yuan D et al., Commun. Nonlinear Sci. Numer. Simul.,

38 (2016) 23.
[31] Wu H. et al., Phys. Rev. E, 98 (2018) 032221.
[32] Choi J. et al., J. Korean Phys. Soc., 65 (2014)

1738.
[33] Choi J et al., J. Korean Phys. Soc., 67 (2015) 1524.
[34] Choi J. et al., J. Korean Phys. Soc., 75 (2019) 443.
[35] Louzada V. H. P. et al., Sci. Rep., 2 (2012) 658.
[36] Bonilla L. L. et al., J. Stat. Phys., 70 (1993) 921.
[37] Bera B. K., Chaos, 30 (2020) 023132.
[38] Martins T. V. et al., Prog. Theor. Phys., 126 (2011)

353.
[39] Borgers C. et al., Neural Comput., 15 (2003) 509.
[40] Zhang X. et al., Chaos, 23 (2013) 033135.
[41] Leyva I. et al., Phys. Rev. E., 74 (2006) 056112.
[42] Restrepo J. G. et al., Chaos, 16 (2006) 015107.
[43] Wang Q. et al., PLoS ONE, 6 (2011) e15851.
[44] Mishra A. et al., Phys. Rev. E, 97 (2018) 062311.
[45] Chowdhury S. N. et al., New J. Phys., 21 (2019)

073048.
[46] Chowdhury S. N. et al., arXiv:2008.07058 (2020).
[47] Majhi S. et al., Chaos, 29 (2019) 013108.
[48] Teichmann E. et al., Chaos, 29 (2019) 093124.
[49] Jalan S. et al., Phys. Rev. E, 99 (2019) 062305.
[50] Zhang X. et al., EPL, 113 (2016) 28005.
[51] Tian X. et al., Phys. Rev. E, 80 (2009) 011926.
[52] Kirillov S. Y. et al., Chaos, 30 (2020) 051101.
[53] Liang X. et al., Phys. Rev. E, 101 (2020) 022205.
[54] Seung-Yeal H. et al., SIAM J. Appl. Dyn. Syst., 19

(2020) 1225.
[55] Maistrenko Y. et al., Phys. Rev. E, 89 (2014)

060901(R).
[56] Chowdhury S. N. et al., Phys. Rev. E, 101 (2020)

022310.
[57] Vathakkattil J. G., Sci. Rep., 10 (2020) 1.
[58] Mishra A. et al., Phys. Rev. E, 92 (2015) 062920.
[59] Sathiyadevi K. et al., Phys. Rev. E, 97 (2018) 032207.
[60] Sathiyadevi K. et al., Phys. Rev. E, 98 (2018) 032301.
[61] Frolov et al., Chaos, 30 (2020) 081102.

20001-p7


