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PACS 03.65.Pm — Relativistic wave equations

PACS 98.80.Cq — Particle-theory and field-theory models of the early Universe (including cosmic
pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)
PACS 03.65.Ge — Solutions of wave equations: bound states

Abstract — In this work, we investigate the spin-half relativistic particles described by the Dirac
equation on the topological defect background induced by the cosmic string and torsion with an
internal magnetic field. We derive the general expression of the generalized Dirac oscillator on the
topological defect background and analyze the analogue of the Aharonov-Bohm effect for the Dirac
oscillator with function f(p) considered as the Cornell potential, and we explain the influence of
related parameters on the energy levels of the studied system.

Copyright © 2021 EPLA

Introduction. — We study the influence of gravita-
tional effect on quantum systems that have attracted ex-
tensive attention and have been widely studied such as
topological defects in static or rotating cosmic string [1-9],
domain wall [10] and global monopole [11]. Note that
topological defects associated with cosmic string appear
due to symmetry breaking phase transition in the ini-
tial universe [12-14], Applications of topological property
on quantum systems may construct a subtle connec-
tion for microscopic quantum theories and macroscopic
scales [15-17]. Research showed topological defects of
curvature and torsion called as dislocation in condensed
matter systems in recent years [18-20]. In particular,
topological defects associated with dislocation have been
finished in crystalline solids via the differential geometry
method [21,22]. Topological defect associated with dislo-
cation have been studied in quantum systems. The rel-
ativistic quantum systems such as the spiral dislocation
have been investigated in a scalar field in a non-inertial
frame [23], and the screw dislocation has been studied
in the KG and Dirac oscillator [24-26]. In contrast, ex-
amples of well-known works include the spiral disloca-
tion in harmonic oscillator [27], the screw dislocation in
the harmonic and doubly anharmonic oscillator [28-30]
and an electric dipole [31] and non-inertial effects on a

(2) E-mail: zwlong@gzu.edu.cn (corresponding author)

non-relativistic spin—% Dirac particle in non-relativistic

quantum systems [32].

Our work is motivated by the Dirac oscillator on the
topological defects background with an internal magnetic
field. [33]. Carvalho, Furtado and Moraes derived the
eigenfuntions and energy eigenvalues of considered sys-
tems and analyzed the analogue of the Aharonov-Bohm
effect. Further, the generalized Dirac oscillator has been
introduced through a generalized momentum operator,
which means that the radial coordinate p is replaced by a
similarly potential function f(p) in studied systems, and
the generalized Dirac oscillator considered as different po-
tential functions in cosmic string space-time has been in-
vestigated [34]. It is noteworthy that the generalized KG
oscillator [35-38] and DKP oscillator [39,40] interacting
with the topological defects have been widely addressed.
Therefore, we are interested in the study of the Dirac os-
cillator with function f(p) to be considered as the Cornell
potential on the topological defect background induced by
the cosmic string space-time with a space-like dislocation
with an internal magnetic field.

The generalized Dirac oscillator in a cosmic dis-
location space-time. — We start with the analysis of
generalized Dirac oscillator on the topological defect back-
ground induced by the cosmic string space-time with a
space-like dislocation [41,42], the expression corresponding
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to line element in cylindrical coordinates reads (¢ = h = 1)

(1)

where 0 < a < 1 indicates the cosmic string parameter,
and x represents the dislocation (torsion) parameter. Note
that these parameters are associated with the Burgers vec-
tor b via x = (b/27) in condensed matter physics [22,41].
We can recognize that the cosmic string and Minkowski
flat space are recovered if the related parameters satisfy
x — 0 and x — 0, and o — 1 in metric (1), respectively.
Further, the spin-% relativistic particle described by the
Dirac equation on the topological defect associated with a
cosmic string and torsion reads [33]

[iv"(2)0 — iy (@)L () — (2)

where I, () indicates the spinor affine connection and m
denotes the mass of the particle, the covariant Clifford
algebra y#(x) = et (x)y* satisfies the relation {y*,~"} =
2g"¥. In this case, the basis tetrad e is chosen as

ds? = —dt? + dp? + a?p%d¢? + (dz + xde)?,

m]U(t,x) =0,

1 0 0 0
0 coso¢ sing 0
I 3)
0 xsing  xcos¢ 1
ap ap

It is worth emphasizing that the tetrad components e
satisfy the relation eZ(:c)ef,(x)T]ab = 20guv. Therefore, we
can easily know that the Dirac matrices y*(x) are writ-

ten as

'yO _ 'yt, 71 =P = cosz,zS’y1 + sin(,zS’yQ,
—sin ¢! + cos ¢y? )
7 =q%= al & )
ap
P X z X 3
73 = — Lq? = 47 — 2 (—singny! + cos ¢y?),
ap ap
11—«
LT = e,
Y #(X) 2ap v

()
In addition, the Dirac oscillator is denoted by the spin—%
particles described the Dirac equation which interact with
the linear interactions. In other words, the Dirac oscillator
with the oscillator frequency w can be presented via the
non-minimal substitution [43] p, — p, + mwpBx,,, it can
be explained as strong-spin orbit coupling term in non-
relativistic limit [44,45]. Further, the generalized Dirac
oscillator has been defined by replacing momenta [34]

(6)

where f(p) indicates similarly potential function. We as-
sume the generalized Dirac oscillator on the topological de-
fect background induced by the cosmic string space-time
with a space-like dislocation with an internal magnetic

Pp — Pp+ mwﬂfu(x#)éz,

field. Beside, the magnetic flux tube in topological defect
background described by the line element (1) is associated

with the magnetic field B = %ﬁ(}fg)é [46], and the mag-
netic vector potential in the Coulomb gauge is considered
as A’# = 221:5,) €4 [33], which means related flux tube sub-
jected to the cosmic string and the z-axis. In this case,

eq. (2) can be re-expressed as

{mtat +iy° (8,, +mwff(p) + O;T_plﬂ vt 7)

¢
+ [27— <8¢ —x0; + Ze(}l) +1y70, — m:| (t,7) = 0.
ap 27
(7)

By assuming radial coordinate p without dependence and
rotational symmetry for the background around the z-axis,
the solution can be chosen as

U = i BtHi(l+1/2-3° [2)p+iks [41 % )} : (8)

G(p)
by substituting eq. (8) into eq. (7) via simple calculation,
we can obtain

{WE iy <8p + 2% + mwﬂf(ﬁ)) - ﬂm] (2 >

I+ 21— yk+ <2z
_lﬁ7¢(+2 ;(p+ 2w)+ﬁ,yzk.‘| (g;)zo (9)

In this case, we make use of the property v¢%?% = iy” and
combine eqs. (4), (5), it is easy to obtain as a relation

1 2
57#(;0541)(01 U)Jrsingb(OQ U);
o 0 o 0
0 —ot . 0 —o2 (10)
ﬂfypgcosgb((jl 0 )+s1n¢<02 0 >;
0 o 0 o?
¢ — _gj .
(D reen(8 D)

o 0 0 o°
5= L Byt = .
(@ o) =2 %)
With the matrices in eq. (9), we can obtain

(@1 + Oy — k’O’g) (@2 + O3 — k’O’g) 1

—(E*-m*) G =0, (12)
(@2 + O3 — k’O’S) (91 + 0y — kUS) G2
—(B* - m2) G2=0 (13)
with
O = i(cos ot + sin¢02) (0,) + 2—1[) - mwf(ﬂ)) , (14)
edp
o, (1 1/2 -k + )(_Siwal + cos do?),
ap
(15)
03 = i(cos pot + sin gpo?) (8,, + 2_1p + mwf(p)) . (16)
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We eliminate (2 in egs. (12) and (13) by simple algebraic
calculation, the expression corresponding to wave function
(1 reads

2w%%m+nm(i%)—kﬂa

146 11, 12k
sy 2|t a e
e<I>B 2
,% ((1+1/2—Xk+ )) <1+6‘1>3803M<1
P «@ e} P
e'i)B
—2mwf(p) U H 12— Xkt 5 102] G
p @
f2mwf(p) [ (pcosz,zbo 03+psin¢)0203)] ¢ =0.

T
(17)

In this case, we can know the relation from refs. [33,34]

ikp (0103 cos p 4 o203 sin <p)

L+1/2— xk+ 22 -
riot2UEYEEXEE5E) oo b (s)
a

— _ ed

where §= 3, the value of §- & indicates W,
and eq. (17) becomes

2

Coo 1d6 102 xk SR L)
dp*  pdp  p? a 2| >

P[5 (42) -]

eq)B
o @) [ 12— X+ 4 )]Q
p e’
e;;if&pp)gl = 0. (19)

We use a similar technique as done earlier, the expres-
sion corresponding to the wave equation for (5 can be
obtained,

2
(+1/2—xk+B) 1
+35] G
« 2

d*¢,
dp?

ldé 1
pdp  p?

2W2f2(/))€2 T |:E2 _m2 — mw (%aif) _k,2:| CQ

e<I>B
o @) [CH1/2- X+ 4 )]@
P Q@
Bps
_6275)45 55)4:2:0- (20)

Note that d-function terms in egs. (19), 20) are inter-
preted as the Zeeman interaction between the spin and
the magnetic flux tube [47,48]. In a conical space, the

spin—% particles coupled to an Aharonov-Bohm potential
in the non-relativistic limit are studied by using the self-
adjoint extension method [49,50]. The Dirac oscillator
considered by the Zeeman interaction in magnetic cosmic
string space-time is investigated [51]. We can observe that
the generalized Dirac oscillator on the topological defects
background is degenerated into the Dirac oscillator if the
Dirac oscillator has function f(p) = p [33]. In the fol-
lowing, we mainly study the effects of the Dirac oscillator
with function f(p) to be chosen as the Cornell potential
on the energy spectrum of the addressed systems.

The Dirac oscillator with the function f(p) taken
as the Cornell potential. — The Cornell potential is
well known for its extensive applications such as heavy
quarks and mesons in particle physics [52-57], which con-
tain the short-range Cornell potential characterized quark
and gluon interaction and large-distance linear potential.
The Cornell potential reads

f®:%+®m (21)

where the related potential parameter A; indicates the
Coulomb strength, and As indicates the string tension
from lattice gauge theory associated with the dual string
model. In order to facilitate the study for wave equa-
tions (3 and (2, all parameters containing + correspond
to (1, and all parameters containing — are associated with
¢2. Based on this principle, by substituting eq. (21) into
eq. (19) and eq. (20) we find the related equation

d’¢t 1d¢t 1
2

dp2 T pdp

Vi(i + 2mwA T —m wQAgpQCi

+ [EQ —m?—k*— 2m2w2A1A2+Nis—6(p)} =0
p

(22)
with
_ o -
(l+1/2— K S8 B)
21 1
vy = 7§*mWA1 )
- ¢ -
(l+1/2— k+ B)
21 1
v_ = +§fmwA1 ,
L _ . 23)
o (
(z+1/2 Yk + 2—3) . .
+_ s 1 Ni + B
p Jr2 ’ 2’
= ecI)B =
l+1/2—x —
g = ( +1/ 27 ) 71
N 2

Our interest is to study the Dirac oscillator with func-
tion f(p) considered the Cornell potential excluding the

p = 0 region. In this case, the term Ni&;) disappears in

50006-p3



H. Chen et al.

eq. (22), by making a change in variables n = mwAgp?, the
equation corresponding to eq. (22) can be re-expressed as

T+
dmwAsn

d*¢*
dn?

G- 1t

¢t =0,

(24)
with Y+ = [E? — m? — k? — 2m2w? A1 Ag + 2mwAo 3T
Generally, eq. (24) can be addressed due to the asymptotic
limit at critical points n — 0 and n — oo, we can assume
that physical solutions ¢* read

=02 e FE()T, (25)
we substitute the above expression into eq. (24) through
simple algebra calculation, and obtain the confluent hy-
pergeometric function as follows:

d*2*(n) =5 (n)

1

1- — - 1=+

T + (lvel+1-n) O 2(Ivj:|+) (n)
T

= =0. 26

e, M) (26)

Note that the polynomial series terminations can lead to
normalized solutions. In other words, the corresponding
requirement must be satisfied without the dependent term
to a zero or negative integer: 3(|vy|+1— )= —n.

So, we make use of the properties of the conflu-
ent hypergeometric function, and obtain the related
solution Z* (1)

2mwA2

[I]

E*(n) =

li <|Ui|+1 (27)

'ri
2 4mwA2’|vi|+1m)'
Further, the corresponding eigenfunction of the gener-
alized Dirac oscillator can be expressed as

U — e—iEt+i(l+1/2—23/2)¢+ikz [Cl(/’)]
G2(p)

ed 1
(1oxbt SE)HEOFO)  wn
2

2a

— e+i(l+1/2_23/2)¢(mwA2)

_ . (1-xk+ 5B 2,,'1 B)+iaFa) masdy
XesztJrzkzp
k+ + 1Fa
( X 2"a) ($)—mwA1 +1 i
xZE "
! 2 4’ITL(,«JA27
l—xk+28)+i1Fa
( X ) 2(1F ) — mwlq +1;mwA2p2
«
(28)

Meanwhile, by simple manipulation, energy levels can
be expressed as

I—xk+92)+ (1 A
E2=4mwA2( xk+ SE) + 5( ¥Oé)_mw 1
2a 2
I—xk+22)+ 11 A
—4mw (7 — xk + 2)+2( :Foz)_mu; 1
«

+4mwAg <n + 1T) + k? +m? (29)
with n = 0,1,2,3,...,s = £1. We can find the effective
angular momentum leﬁ =1l—-xk+ e‘bB associated with
the magnetic quantum flux ®p and torsion parameter .
Further, we can obtain the energy levels of the generalized
Dirac oscillator in the presence of cosmic string space-time
if the torsion parameter satisfies y = 0, the corresponding
energy eigenvalues can be written as

E? = 4mwAy |n+ (ZJ'_ G;I;B) + %(1$O‘) B mwi
? 2 D)
—4dmwA (+52 -5 +3(%0) ~ mwly
’ 20 2
+k? +m?. (30)

In addition, the Dirac oscillator in a cosmic dislocation
space-time with an internal magnetic field is presented
if the Dirac oscillator with function parameters satisfies
A; =0 and Ay = 1. In this case, the energy eigenvalue is
consistent with the expression in [33]

(l—xk+92)+31F )
2a

(lkaJre(PB)Jr%(l:Fa)_l—s
200 2

E? =4mw |n+

—4mw

+k* +m?. (31)

We can observe that the obtained energy levels such
as eqs. (29)—(31) obviously depend on the geometric
phase [58], this phenomenon shows that the geometric
quantum phase modifies the energy levels and gives rise to
the analogue effect to the Aharonov-Bohm effect [59-61].

We have that E 15 (P + @) = En lﬁ—ﬁﬂF’v(q)B)’ Py =

i%“% where ~ takes values 1, 2, 3, 4.

Now we analyze the influence of each parameter on the
considered system. We only consider energy spectrum cor-
responding to wave equation (i, and ignore the energy
levels associated with wave function (5. For the sake of
convenience, we take the natural unit (y =m =k =e =
[=1).

On the one hand, in table 1, we have obtained the en-
ergies of the n = 1,2, 3 states fixing the value of the pa-
rameter s =1, Ao =x=m=e=1=1,k=A1 =2, to
observe the effect of oscillator frequency w, the deficit an-
gle parameter o and the internal magnetic quantum flux

50006-p4
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Table 1: The energy levels E of the generalized Dirac oscillator
for different values of o, w and ®p with values of the quantum

numbers n.

E (MeV)

s=1,Ac=x=m=e=1l=1k=A1=2

n w| o

dp = 1.0tesla

dp = 1.5tesla

dp = 2tesla

—_

0.50.1

4.100841516

3.901967671

3.692397903

0.3

3.503184319

3.426628649

3.348323077|

0.5

3.370961321

3.323412454

3.275173347]

0.7

3.312679130

3.278182243

3.243318457|

0.9

3.279852658

3.252782599

3.225485360

0.1

6.052586412

5.783658307

5.501600181|

0.3

5.248295034

5.146218787

5.042076442]

0.5

5.072155405

5.009005958

4.945050142]

0.7

4.994765864

4.949036030

4.902879687|

0.9

4.951249026

4.915403266

4.879294172)]

3(1.5/0.1

8.028119544

7.725027839

7.409548355

0.3

7.128597417

7.016078086

6.901724587|

0.5

6.934705522

6.865508796

6.795607505

0.7

6.849929128

6.799958562

6.749618051|

0.9

6.802374613

6.763267251

6.723932438‘

Table 2: The energy levels E of the generalized Dirac oscillator
for different values of ar, A1 and ®p with values of the quantum

numbers n.

E (MeV)

s=l,w=~A=x=m=e=1l=1,k=2

Aloz

3

dp = 1.0tesla

dp = 1.5tesla

dp = 2tesla

11210.1

5.712600308

5.426850229

5.125193123|

0.3

4.852277894

4.741684068

4.628448428|

0.5

4.661197319

4.592400318

4.522556899)

0.7

4.576864215

4.526914803

4.476408071|

0.9

4.529334048

4.490121298

4.450563067|

0.1

6.680853409

6.438222069

6.186081518|

0.3

5.961929282

5.872271094

5.781222609)

0.5

5.807474533

5.752403036

5.696799181]

0.7

5.740007495

5.700259435

5.660232259)]

0.9

5.702180892

5.671083606

5.639814857|

0.1

7.525543321

7.310998797

7.089965060|

0.3

6.895259296

6.817885875

6.739624237|

0.5

6.762156494

6.714919261

6.667347367|

0.7

6.704303546

6.670304163

6.636130591

0.9

6.671946262

6.645388572

6.618724319‘

®p on these states. When we increase «, the energy lev-
els are found to be slightly decreasing. Further, when
we increase the internal magnetic quantum flux ®p, the
energy levels are found to be quickly decreasing. Note

that we can see that the energy eigenvalues of the gen-
eralized Dirac oscillator obviously increase with parame-
ters oscillator frequency w and quantum numbers n. On
the other hand, in table 2, we have obtained the energies
of the n = 1,2,3 states, fixing the value of the param-
eter s = 1, w=~2A=x=m=e=1= 1k = 2,
to observe the effect of the generalized Dirac oscillator
parameter Aj, the deficit angle parameter « and the in-
ternal magnetic quantum flux ®p on these states. By
comparing tables 1 and 2, in particular, we can observe
that energy states go down to a wider shift from nearly
6.052586412MeV (n=2,w = l,a = 0.1,A; = 2 in
table 1) to 6.680853409 MeV (n =2,w=1,a=0.1,A; =
4 in table 2) when the strength of the generalized Dirac
oscillator parameter A; changes from 2 to 4, which shows
that the parameter A; has a non-negligible effect on the
studied system.

Conclusion. — We have solved the Dirac oscillator
with function f(p) considered as the Cornell potential
on the topological defect background induced by the cos-
mic string space-time with a space-like dislocation with
an internal magnetic field. The eignfunctions and energy
eigenvalues are presented by using the confluent hyper-
geometric function. The Dirac oscillator in a space-like
dislocation with an internal magnetic field is obtained if
f(p) associated with parameters satisfies A1 = 0, Ay = 1,
the corresponding energy levels are consistent with the en-
ergy level given in ref. [33]. We also analyze the analogue
of the Aharonov-Bohm effect and observe that the gener-
alized Dirac oscillator associated with parameter A; has
a non-negligible effect on the studied system.
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