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PACS 67.85.-d – Ultracold gases, trapped gases
PACS 03.75.Lm – Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials,

solitons, vortices, and topological excitations
PACS 03.75.Nt – Other Bose-Einstein condensation phenomena

Abstract – We present a method to detect the presence and depth of dark solitons within repulsive
one-dimensional harmonically trapped Bose-Einstein condensates. For a system with one soliton,
we provide numerical evidence that the shift of the density in Fourier space directly maps onto the
depth of the soliton. For multi-soliton systems, combining our spectral method with established
imaging techniques, the character of the solitons present in the condensate can be determined.
We verify that the detection of solitons by the spectral shift works in the presence of waves
induced by density engineering methods. Finally we discuss implications for vortex detection in
three-dimensional Bose-Einstein condensates.

focus  article Copyright c© 2021 EPLA

Introduction. – Quantifying the nature of turbulence
in a three-dimensional (3D) Bose-Einstein condensate re-
quires a way of identifying individual phase defects present
in the system. Quantum turbulence, characterised by a
disordered system of entangled vortices and sound waves
with a power law in the energy spectrum, proves to be
an experimental challenge. Such an entangled 3D sys-
tem provides a difficult system to optically image; if the
individual vortices are not aligned with the direction of
visualisation then they are barely visible within the tur-
bulent cloud. We wish to provide a quantitative method
of detecting vortices within 3D condensates. We hence
take a step back and begin our journey with the study
of one-dimensional (1D) repulsive Bose-Einstein Conden-
sates (BECs) and the dark solitons (the 1D analogue for
vortices in a repulsive condensate) within them. Solitons,
localised waves characterised by the balance of nonlin-
earity and dispersion, are ubiquitous in nature: they are
present in many nonlinear systems, from optics [1–3], thin
films [4,5] and fluids [6–8] to atomic BECs [9–24]. Multiple
methods of creating dark solitons [25–27] were proposed

(a)Contribution to the Focus Issue Turbulent Regimes in Bose-
Einstein Condensates edited by Alessandra Lanotte, Iacopo
Carusotto and Alberto Bramati.

shortly after realisation of BECs [28–31] and the subse-
quent creation of low-dimension condensates [32]. These
methods can be broken into two categories: phase imprint-
ing [9,10,16,33] and density engineering [14,17,26], and
also a combination of the two [23,27]. Recently, new meth-
ods to create solitons [34] through quenching have also
been discussed [35,36]. Dark solitons are stable in BECs
confined in quasi-1D geometries, at T = 0, and under
certain specific forms of trapping potential, such as a har-
monic trapping potential [37]. If any of these constraints
are broken, the solitons are prone to decay, due to unstable
excitation of the dark soliton into vortex rings/pairs (the
snake instability) [11,38–43], thermal dissipation [44–46],
and net sound emission [37,47–49], respectively. The first
generation of dark soliton experiments in BECs showed
the possibility of non-dispersive solitary waves propagat-
ing through the background condensate [9–11,28,33]. In
these particular experiments, propagation was very short-
lived. Dark solitons were shown to break down quickly
due to a mixture of thermodynamic and dynamical insta-
bilities which occurred if the background density was not
strongly enough within the quasi-1D regime [38]. Unlike
theoretical work based on the 1D mean-field limit, experi-
mental quasi-1D condensates consist of cigar-like clouds of
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trapped atoms in which a strong radial confinement pre-
vents excitations in the radial plane. The second genera-
tion of experiments was able to keep the condensate both
cold and confined enough in the radial directions to sus-
tain dark solitons for long periods (that is, for at least one
oscillation of the soliton) [16,17]. Notable experiments in-
clude verification of the oscillation frequency of the soliton
in a harmonic trap being ω/

√
2 (where ω is the trapping

frequency of the 1D system) for systems consisting of a
single soliton [17,50] and the deviation from this predic-
tion for multiple soliton systems [17]. Interesting theoret-
ical models include the study of interactions of multiple
dark solitons [51,52] and solitons in two-component sys-
tems [53–55]. Analysis of the complex structure present
in a condensate —be that a single vortex/soliton or quan-
tum turbulence [56–59]— requires accurate detection of
the density. Techniques to image the density of the con-
densate include dispersive methods [60], absorption [61,62]
and phase-contrast imaging [63,64]. Each technique has
its own advantages and disadvantages; the choice is made
depending on the type of experiment taking place. Imag-
ing happens either in situ (that is, imaging the trapped
condensate) or during a time-of-flight (TOF) expansion
(releasing the condensate from the trap). Absorption
methods, either in situ or after TOF expansion, are
inherently destructive —due to the heating of the con-
densate by the imaging laser and the loss of the conden-
sate in the case of TOF imaging. The viability [65] and
search for minimally/non-destructive imaging techniques
has been an active topic recently [66–68]. A particularly
effective method of imaging the condensate with minimal
destruction of the sample called Partial Transfer Absorp-
tion Imaging (PTAI) was experimentally demonstrated by
Freilich et al. [69] and perfected by Ramanathan et al. [61]
and has the distinct advantage of working for almost any
optical depth. A small given percentage of atoms are
outcoupled and imaged, leaving the original condensate
almost unaltered. Using PTAI, the condensate can be im-
aged up to 50 times before breakdown [70]. The PTAI
method was used successfully to visualise solitonic vor-
tices [71] and reconnecting vortex lines [72,73] in cigar-
shaped condensates. PTAI can be particularly useful for
studying the evolving dynamics of moving solitons within
a condensate. Shining light upon the outcoupled cloud
and projecting this onto a charge-coupled device camera,
experimentalists can thus gain multiple column integrated
density profiles of the system [74,75].

We will employ the success of the PTAI method to
show that, by taking multiple snapshots of a conden-
sate, there is a link between the averaged density spec-
tra and the dark solitons present. In this paper, we solve
the Gross-Pitaevskii equation for a harmonically trapped
1D system with dark solitons present. We will study
condensates with single and multiple solitons and intro-
duce the idea of a spectral shift to identify the depth of
any soliton present. We utilise the density engineering
method in order to study more experimentally valid

systems and, finally, will discuss the implications for 3D
condensates.

Model. – In the zero temperature limit, the mean-field
approximation for the wave function Ψ(x, y, z, t) of a con-
densate provides a quantitative model of the dynamics in
the form of the Gross-Pitaevskii equation (GPE),

i�
∂Ψ
∂t

= − �2

2m
∇2Ψ + V (x, y, z)Ψ + g|Ψ|2Ψ − μΨ, (1)

under the normalization
∫

|Ψ|2d3r = N , where N is the
number of atoms, � is the reduced Planck constant h/2π,
m the mass of the atomic species, μ the chemical potential,
g = 4π�2a/m and a is the scattering length of the species.
We take the trapping potential, V (x, y, z), to be harmonic,
of the form V = m[ω2

⊥(y2 + z2) + ω2
xx2]/2, where ω⊥ and

ωx are the trap’s parameters. We can reduce eq. (1) [76]
by taking the perpendicular trapping frequencies to be
sufficiently large, ω⊥ � ωx, and integrate out the depen-
dence on y, z. We also hence rescale the chemical potential
μ1D = μ − �ω⊥ and g1D = g/2π�2

⊥ where �⊥ is the har-
monic oscillator length �⊥ =

√
�/mω⊥. We present our

results using the natural units for a homogeneous conden-
sate, which are time τ = �/μ, length ξ = �/

√
mμ and peak

density n0 = μ/g. There are two limits of elongated con-
densates [77]; when an0 � 1 we enter the 3D cigar limit,
and when an0 � 1 we are in the 1D mean-field limit. In
this paper, we work solely in the 1D mean-field limit. Writ-
ten in terms of these natural units, the 1D GPE is

i
∂Ψ′

∂t′
= −1

2
∂2Ψ′

∂x′2 +
1
2
ω′2x′2Ψ′ + |Ψ′|2Ψ′ − Ψ′, (2)

where t′ = t/τ , x′ = x/ξ and ω′ = ωxτ . All results
presented are for ω′ = 0.02. We normalise the condensate∫

|Ψ′|2dx′ = N ′ so that the peak density (the density at
the trap minimum) n′

0 is unity. For a condensate with ω′ =
0.02, this corresponds to N ′ ≈ 94.2. We choose ω′ = 0.02
to ensure we are within the Thomas-Fermi limit R′

x �
ω′(−1/2). Here R′

x = Rx/ξ and ω′(−1/2) are the Thomas-
Fermi radius and dimensionless harmonic oscillator length
of the condensate, respectively. Provided this relation is
satisfied, we can model the shape of the 1D condensate by
the Thomas-Fermi profile [77,78],

nTF (x) =

⎧⎪⎨
⎪⎩

n′
0

(
1 − x

′2

R′2
x

)
, for |x′| ≤ R′

x,

0, for |x′| > R′
x.

(3)

For ω′ = 0.02, R′
x ≈ 70.

As discussed above, phase defects in a repulsive 1D
condensate take the form of dark solitons. The analytic
expression for a dark soliton of prescribed speed v′ in a
homogeneous background is [18]

Ψ′
S(x′, t′) =

√
n′
[
B′ tanh

{
B′(x′ − x′

0(t
′))
}

+ iv′
]
, (4)
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where B′ =
√

1 − v′2, and v′ = v/
√

n′. The parameter
x′

0(t
′) defines the location of the soliton at time t′, where

x′
0(t) = v′t′ + b, where b is an arbitrary constant denoting

the initial location of the soliton. To set up the initial
condition for a numerical simulation of a single soliton in
our condensate we multiply Ψ′

s by the ground state Ψ′ of a
harmonically trapped condensate. The density depletion
at the minimum of the resulting condensate and the speed
of the soliton are related via

Δn′ = 1 − v′2. (5)

For clarity, hereafter primes are dropped throughout. In
the numerical simulations the GPE is solved via a fourth-
order Runge-Kutta method using MATLAB with dx = 0.1
and dt = 0.01. At desired times, we compute the density
spectrum, defined as the Fourier transform of the density
of the condensate, ñ(k) = F(n(x)) = F(|Ψ(x)|2), using
inbuilt MATLAB subroutines for the Fast Fourier Transform,
where k is the wave number k = 2π/x.

Ground state. – We begin our investigation by first
studying the density spectrum of the ground state of a
1D harmonically trapped condensate. Figure 1 compares
the density spectrum of a ground-state solution, obtained
numerically, to the density spectrum of its Thomas-Fermi
approximation. The two spectra are consistent in the re-
gion of k-space corresponding to the central region within
the Thomas-Fermi width, Rx, and the healing length, ξ,
but they deviate at large wave numbers. This is expected:
whereas the edges of the density profile of the ground state
taper off smoothly, the abrupt cut-off of the Thomas-Fermi
profile means that the spectrum has relatively large power
at large k.

Single soliton. – As discussed above, a condensate
containing a single soliton is easily obtained by multi-
plying the ground-state wave function by the expression
for a dark soliton, eq. (4), in a homogeneous system (see
fig. 2(a)). Upon comparing the spectrum of the ground
state and the spectrum of the single-soliton condensate,
we notice a shift rightwards towards the smaller length-
scale (larger k) region. We quantify this spectral shift and
relate it to the soliton’s depth Δn (hence its speed v),
and proceed in the following way. Consider a single soli-
ton at the condensate centre. As mentioned earlier, a sin-
gle soliton in a harmonically trapped condensate oscillates
around the trap’s minimum at frequency ω/

√
2 with an

amplitude depending on the soliton depth Δn. We let
the system evolve in time for t = 500, averaging density
spectra taken for every 0.5 time units. The total time of
the simulation equates to a few oscillations of the soliton
on the trap, a timescale achievable in experiments (us-
ing the trapping parameters of the experiment of Weller
et al. [17], this corresponds to a timescale of 20–30 ms).
We verify that the the resulting time-averaged spectrum
does not change in time. Figure 2(b) shows that the ad-
dition of a soliton drastically shifts the density spectrum

10-1 100
10-10

10-8

10-6

10-4

10-2

100

Fig. 1: The density spectra ñ of the ground state (blue) and
of its Thomas-Fermi approximation (red) vs. wave number k;
the wave numbers corresponding to the healing length (green)
and the Thomas-Fermi radius (black) are marked as vertical
dashed lines.
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Fig. 2: (a) The density of a condensate with a soliton with a
depth Δn = 0.9 inserted at the centre; (b) the scaled spectra
ñ/ñ0 of a ground-state condensate (yellow) and of a condensate
containing a soliton of depth Δn = 0.1 (red) and a soliton of
depth Δn = 0.9 (blue), with ni marked by horizontal black
line. The corresponding intercept wave number kis are also
marked by vertical dashed lines.

to larger wave numbers (compare the blue curve with the
red and yellow curves). For the sake of making compar-
isons, the density spectra ñ(k) we present are rescaled by
ñ0, defined as ñ for k → 0. To quantify the shift of den-
sity spectrum to larger wave numbers arising from the
presence of solitons, we define the relative spectral shift
Δki = ki/k

(0)
i ; here ki, which we refer to as the intercept

wave number, is the wave number corresponding to the
value ñi = 10−5ñ0 in the presence of the soliton, and k

(0)
i

is the intercept wave number of the ground state. For the
ground state with ω = 0.02, k

(0)
i = 1.22. Comparing Δki

obtained for a variety of soliton depths from 0.1 to 0.9 we
observe the following power law relation between soliton
depth and relative spectral shift of the density:

Δki ∼ Δnα, (6)
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Fig. 3: The spectral shift Δki for different soliton depths Δn on
a logarithmic scale (main figure) and linear scale (inset: same
ranges as the main figure).

with α = 0.55 (see fig. 3). Clearly, the deeper the soliton
the larger the spectral shift. We have verified that this
result does not depend on the precise definition of ni. We
have also checked that eq. (6) is valid for a variety of har-
monically trapped condensates, as long as these conden-
sates are deeply in the Thomas-Fermi regime. Rescaling
n0 from 1, and hence altering the norm of the system,
we have verified that the norm of the condensate does
not affect the spectral shift. If we look at systems with
ω 
= 0.02, we find that for ω � 1, the same relation (albeit
with a different power law) is present. When ω → 1, we
see that it begins to falter; the condensate itself begins
to have structure on the same lengthscales as the dark
solitons.

Two solitons. – The strong dependence of the spec-
tral shift on the depth of a single soliton moving within the
condensate enables us to determine the depth, and hence
speed, of the soliton existing in the system. The next
logical step is to assess how multiple solitons affect the
density spectrum, whether a spectral shift is still observ-
able, and finally whether it can be related to the number
or the depths of the solitons.

For two solitons of equal depth, the power law relation-
ship between the soliton’s depth and the relative spectral
shift (eq. (6)) holds true. The combination of two solitons
of two different speeds, as presented in fig. 4(a), exhibits
a more complicated spectral signature. Figure 4(b) shows
results for two solitons. We immediately see that Δki de-
pends mainly on the deepest soliton (the shallower soliton
having only a minor effect). Although direct determina-
tion of the depths (and hence speed) is not possible from
the spectra, the concentric nature of the results presented
in fig. 4(b) shows that if we know the shift, we can easily
narrow down the depths to a range of results.

Many solitons. – We have established that in a two-
soliton system the spectral shift is mostly affected by
the deepest soliton. However, the methods of creating
solitons, as discussed in the introduction, can often lead
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0.8
2 3 4 5

(a) (b)

Fig. 4: (a) The density profile, n(x), of condensate with two
solitons with depths Δn1 = 0.75 and Δn2 = 0.5, respectively;
(b) the spectral shift Δki (values on the colorbar) obtained for
a range of values of Δn1 and Δn2.
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(b)(a)

Fig. 5: (a) Density of a condensate with N = 9 solitons: one
soliton has depth Δn1 = 0.7 and the other eight solitons have
depth ΔnN−1 = 0.3, (b) the resulting spectral shift Δki as a
function of ΔnN−1 for varying Δn1, with Δn1/2 marked with
vertical lines in their corresponding colours.

to a train of solitons. To make better contact with ex-
periments, in this section we describe the spectral shift
caused by a relatively large number, N , of solitons. We
choose N = 9, with the first soliton of depth Δn1 and
the other eight of the same depth ΔnN−1, as shown by
fig. 5(a). Figure 5 further supports the previous finding
that the deepest soliton contributes the most to the shift
of spectrum, hence a higher value of Δki. The spectral
shifts shown in the figure display the same dependence on
solitons’ depth displayed in fig. 4: that is Δki only be-
gins to change when ΔnN−1 is comparable to Δn1. More
precisely, Δki is noticeably affected only when ΔnN−1 is
roughly half the value of Δn1 (marked with vertical lines
in fig. 5(b)).

Effects of perturbations. – All results described
in the previous sections refer to solitons imprinted into
the ground state. In many experiments, because of the
method used to generate them, solitons coexist with sound
waves. The following density engineering method allows
us to mimic this more realistic situation numerically. We
apply a Gaussian potential of width σ and amplitude A
for a time T , before instantaneously removing it. This
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Fig. 6: (a) The density of a condensate after being excited by
a pulsed Gaussian potential with A = 1; note the creation of
two main deep solitons (here with Δn � 0.53) together with
sound waves. For comparison, (b) shows two solitons of the
same depth Δn = 0.53 imprinted into a ground state.
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Fig. 7: (a) The depth Δn of the leading solitons created by a
Gaussian pulse with amplitude A; (b) comparison between the
spectral shifts Δki arising from two solitons in the presence of
sound waves (see fig. 6(a)) (blue) and two solitons of the same
depth imprinted in the ground state (red).

pulsed Gaussian potential has the form

V (x, t) =

⎧⎪⎨
⎪⎩

1
2
ω2x2 + A exp (−x2/σ2), for t ≤ T ,

1
2
ω2x2, for t > T .

(7)

This mimics the creation of solitons via density engineer-
ing methods and causes a density dip to form at the cen-
tre of the condensate. When removed, both solitons and
sound waves are generated during the collapse inwards of
the two sides, as shown in fig. 6(a). We measure the depth
of the two main solitons created in order to imprint them
into a ground state for comparison (fig. 6(b)). We choose
σ = 2, T = 5 and vary the amplitude, A, of the central
Gaussian pulse. The larger the amplitude A, the deeper
the leading solitons created (see fig. 7(a)). In fig. 7(b),
we compare the relative spectral shifts Δki resulting from
solitons which are imprinted in the ground state (red line)
and density engineered (blue line). We see immediately
that although the spectral shifts Δki in the two systems
are not equal, the relationship between the soliton depths
and the intercept wave numbers still holds, regardless of
the presence of sound waves.

When A → 0, no solitons are created. Notice the rapid
change of the spectral shift for very small amplitudes A
(fig. 7(b)); these small spectral shifts correspond to sys-
tems with no detectable soliton. The relation between
the amplitude and the intercept wave number ki begins to
level out roughly at A = 0.2, corresponding to two solitons
of depth Δn = 0.07. We conclude that sound waves can
shift the density spectrum, but the shift is small compared
by the larger shift induced by solitons.

Conclusion. – We have presented a method for accu-
rately ascertaining the depth (and hence the speed) of a
single soliton in a harmonically trapped condensate from
the density spectrum alone. We have also shown that, in
a system with multiple dark solitons, the spectral shift is
mainly determined by the deepest soliton.

The analysis of the spectral shift which we have pre-
sented here for 1D systems may potentially be applied to
3D turbulent systems. A spectral shift of the momen-
tum of the condensate has indeed already been reported
in an experiment with a turbulent 3D condensate [79].
While 1D phase defects are solitons whose width depends
on its speed, the phase defects present in 3D system are
vortices. Since multiply charged vortices are unstable in
most cases, the width of the vortex cores is constant (al-
though, in a harmonically trapped condensate, this width
increases near the edge). Therefore it may be possible to
relate the measured spectral shift to the number or the
length of vortices present in the system, thus providing a
quantitative measure of the intensity of the turbulence in
the condensate.
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G. and Bongs K., Phys. Rev. Lett., 119 (2017) 150403.
[21] Chai X., Lao D., Fujimoto K. Hamazaki R., Ueda

M. and Raman C., Phys. Rev. Lett., 125 (2020)
030402.

[22] Farolfi A., Trypogeorgos D., Mordini C., Lam-

poresi G. and Ferrari G., Phys. Rev. Lett., 125 (2020)
030401.

[23] Fritsch A. R., Lu, M., Reid G. H., Piñeiro A. M.
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