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Abstract – Scales are a path breaking evolutionary adaptation that accompanied vertebrate evo-
lution for the past 500 million years. Inherently lightweight with diverse shapes, sizes, materials,
and distribution, they provide remarkable architecture-material enhancement, typical of metama-
terials. Here we provide a perspective on mechanical behavior of fish scale inspired structures
and explain the origins of some of their striking mechanical properties that include directional
nonlinearity, interlocking behavior, and multiple penetration modes. We outline and explain the
progress in understanding the complexities of these structures in global and local deformation
modes and conclude by offering future perspectives and challenges.

perspective Copyright c© 2021 EPLA

An ancient inspiration. – Fishes are primitive ani-
mals, appearing early during the Cambrian explosion of
life forms about 500 million years ago [1–3]. Although the
first fishes likely did not possess scales [3], they appeared
soon [1] and eventually made their way forward to reptiles
such as snakes and alligators, and mammals [4,5]. Natural
scales are lightweight, stiff, and multifunctional [6,7]. Pro-
tection, locomotion, thermal regulation, and camouflag-
ing have been attributed to scales [2,8,9]. From a physical
standpoint, their lightweight structure, stiffness tunability,
and damage tolerance are of great interest for designing
bio-inspired advanced materials. Scales endow unusual
properties to the underlying substrate by two pathways
—via unusual parent (scale) material properties, and the
complexity of organization and mutual engagement.

Properties of the parent scale material have been in-
tensely scrutinized over the last decades. Scanning Elec-
tron Microscopy and X-Ray diffraction studies of naturally
occurring scales show that they are essentially complex
composites with intricate microstructures [10–13], to pro-
vide high strength and toughness against indentation
through enhanced energy dissipation before failure [14]
and excellent balance between strength and flexibility [11].
These mechanical properties are strongly dependent on
hygroscopic states and loading rates [15,16]. In con-
trast to scale material behavior, scales’ organization and
engagement can also produce emergent multifunction-
ality. Overlapping or discrete arrangements of scales
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Fig. 1: (a) Natural fish scales, adapted under CC BY
2.0 [17,18]. (b) Overlapping partially embedded biomimetic
scale system fabricated by gluing 3D-printed scales into pre-
fabricated grooves of a VPS elastomer [19–22]. (c) Non-
overlapping scale system on a soft substrate, fabricated by
gluing laser engraved glass on substrate [23]. (d) Fully em-
bedded scale system fabricated by embedding ABS plates into
rubber substrate [24].

guarantee flexible locomotion and protection, fig. 1(a),
by enhancing drag reduction and regulating body undula-
tions [2,25]. On land, scales in snakes help in locomotion
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by manipulating friction [26]. Scales aid in protection
against penetration by dispersing localized forces such as
bites across greater areas via scale contact for damage mit-
igation [27–29]. Different overlap patterns, e.g., stacked,
linear overlapped, and staggered overlap, influence these
behaviors [24,30].

Such enhanced survivability have made scales, and their
geometric forms, universally prevalent in the animal king-
dom. Yet the scales themselves and their organization are
diverse, responding to the predators, environment, and
the biology of the organism itself. Even within the organ-
isms, they can vary in material, shape, size, arrangement
and color depending on the functionality [11,13,31,32].
Thus, interest in scales architecture arose early in
history.

Among these applications was the direct mimicry of the
scaled integuments for producing lamellar and scaled ar-
mors in the mediaeval and ancient times [12,33]. In spite of
this early interest, little was known about the fundamental
mechanics behind superior performance, which resulted
in similar designs reappearing over years. Only recently
has greater scrutiny ensued, buoyed by rapid advances in
3D printing and the need for novel soft structural materi-
als for tailored protection [11–13,34,35], and in wearables
and robotics [36,37]. Here, the focus has been on cre-
ating novel mechanical behavior from the sliding and in-
terlocking of scales, which leads to unusual combinations
of force-displacement nonlinearity, anisotropy, penetra-
tion and structural damping [19–22,38–44]. Such unusual
behavior originate from scales geometrical arrangements,
rather than directly from the parent materials. This dis-
tinctly geometric or topological characteristic puts these
biomimetic structures in the class of a fast developing fron-
tier of synthetic materials called metamaterials.

Mechanical metamaterials and emergence. –
Mechanical metamaterials typically consist of periodic
assemblies of multiple elements or composites, which
exhibit incredible property combinations distinct from
their parent materials [45,46]. These include nega-
tive Poisson’s ratio [47–49], tailorable elasticity [19–21],
shape morphing [46,50,51], unprecedented damage and
fracture tolerances [34,52], acoustic and photonic band
gaps [53,54], tailored anisotropy and abnormal penetra-
tion resistance [23,24,28,55]. The origins of these phe-
nomena are tied to the idea of emergence. Emergence is a
phenomena where the overall properties of a system at the
macroscopic scale are different from the microscopic scale
due to the collective interactions of elements constituting
the system [56]. Although synthetically conceived, some
of the best examples of using geometry and topology to
enhance properties are found in the natural world. Devoid
of advanced parent materials that humans have mastered,
other organisms are forced to improve mechanical prop-
erties using topological routes in response to evolutionary
pressures over millions of years [13,57]. Thus, it is com-
mon to see complex patterns in natural structures such as

honeycombs [54,58], fish scales [19–22,38–44], and nacre
structure [59,60].

This makes bioinspiration a natural path to develop
metamaterials. For instance, bioinspired honeycombs can
provide unusual hardening and auxetic behavior controlled
by the structure’s geometry [54,58]. Hierarchical structure
and instability induced by compression can further tune
their band gaps [54]. Similarly the structure of nacre has
been utilized to provide strain hardening, high toughness
and impact resistance [59,60]. Biomimetic scales are in
the same vein where emergence occurs due to the intricate
mutual scales sliding kinematics. Such substrates exhibit
complex strain stiffening, interlocking stages, anisotropy,
and strange dissipation behavior, even in the deformation
range where the scales and the substrates individually do
not exhibit them, as characteristics of emergent behavior.

Biomimetic scale metamaterial fabrication. –
Scales have been adopted to make primarily two types
of biomimetic structures. The first type is an exoskele-
tal architecture, which includes both the overlapping
architecture, where a soft substrate is covered with par-
tially embedded overlapping scales, fig. 1(b) [19–21,43],
as well as the non-overlapping or segmented architecture,
fig. 1(c) [23]. One fabrication strategy is to glue 3D
printed stiff plates [19–21,43], or steel sheets [43], into
prefabricated grooves of a Vinylpolysiloxane (VPS) elas-
tomer [19–21,43], or 3D printed flexible material [43].
Other strategies comprise multi-material 3D printing [61],
laser engraving of alumina strip for scales and stretch-
and-release fabrication method [62], and sewing cellulose
acetate butyrate (CAB) scales on a polypropylene mesh
using cotton thread [63].

Other strategies include sequential molding and cast-
ing [64–67]. Similar strategies and along with laser
engraving can be used for fabricating segmented sam-
ples architecture [23]. Topologically interlocked materi-
als (TIMs) [68] is also another approach which uses either
building blocks of various shapes or craving the interfaces
of interlocking elements from the bulk of glass panel using
focused laser beam [69–71]. In the second type of archi-
tecture, scales are fully embedded inside the matrix to
form composite imbricated stiff inclusions into a thick soft
substrate, fig. 1(d) [24]. This architecture can be manufac-
tured using a multi-material 3D printer [72], or embedding
3D printed Acrylonitrile butadiene styrene (ABS) plates
into a rubber substrate [24]. In spite of these differences
in architecture, these metamaterials share many typical
behaviors.

Mechanics of global deformation modes — bend-
ing and twisting. – Bending and twisting are the most
important deformation modes for slender structures. In a
plain beam, the moment-curvature and torque-twist char-
acteristics remain linear for small deflections, reflecting
the linear elastic behavior of the parent materials. This
behavior changes when scales are integrated into the struc-
ture. Here samples are partially embedded with scales on
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Fig. 2: (a) Isolated RVE with free body diagram for biomimetic
scaled substrate under bending load [19]. (b) Phase map for
bending case shows the relation between local bending angle
ψ and scales inclination angle θ [19,41]. (c) Isolated RVE for
biomimetic scaled substrate under twisting load [21]. (d) Phase
map for twisting case represent the relation between local twist-
ing angle ϕ and scales inclination angle θ [21,44]. Solid lines
indicate frictionless and dotted lines show frictional cases.

one side of substrate to highlight the differential proper-
ties, with and without scales engagement, fig. 1(b). As the
substrate deforms, scales begin engaging and their mutual
sliding gives rise to geometrically dictated nonlinearity.

The nature and origin of the nonlinearity can be best
introduced in bending [19,38]. The substrate bent shape
can be envisaged as circular arc of a beam, fig. 2(a). As-
suming periodic scale engagement, a representative vol-
ume element (RVE) can be isolated, fig. 2(a). One can
assume rigid scales if they are sufficiently stiff. The RVE
geometry, fig. 2(a), reveals two kinematic variables —the
local angular deflection of the scales θ, and the substrate
angular change ψ (related to curvature κ). These variables
can be interrelated by imposing periodicity [19,41]:

ηψ cosψ/2 − sin(θ + ψ/2) = 0. (1)

Here, ψ = κd and η = l/d, where d, l are the scales’
spacing and exposed length respectively [19,41]. This re-
lationship can be plotted for varied η generating a kine-
matic mechanisms map, fig. 2(b). This map indicates that
the system performance spans three kinematic regimes
of operations including linear (before the scale engage-
ment), nonlinear stiffening, and finally a kinematically
locked configuration. Note that this locked configuration

is independent of friction and of purely kinematic origin.
Realistically speaking, near this locked state, the internal
forces would rise substantially, leading to a transition from
substrate deformation to scale deformation, which is sig-
nificantly stiffer. The moment-curvature response for this
system can be derived by a micro-macro energy balance
(Hill-Mandel condition) [73]. Thus, the total applied work
on the beam can be written as W = LB

∫ κ

0 Mdκ, where
LB is the substrate length, M is the applied moment, and
κ is the substrate curvature. This work is absorbed by
the beam and scales leading to W = 1

2EBILBκ
2 + Escales,

where EB and I are the Young’s modulus and the second
moment of area of the beam, respectively. Also, Escales

is the energy from scales rotation on the substrate. As-
suming a torsional spring to capture this rotational stiff-
ness, Escales = 1

2NKB(θ− θ0)2, where N = LB/d, θ0, and
KB = 1.75EBD

2(L/D)0.66 are the number of scales, ini-
tial scale’s inclination, and scales torsional stiffness of the
scale-substrate joint, respectively. Here, D and L are the
scale’s thickness and scale’s embedded length [19]. Plug-
ging in θ = θ(ψ) from eq. (1), we get the bending moment
response from work–energy balance as follows:

M(κ) = EBIκ+KB(θ − θ0)
∂θ

∂ψ
H(κ− κe). (2)

Here κe andH(κ−κe) are the engagement curvature and
Heaviside step function to track engagement, respectively.
This relationship shows that after scales engagement, the
moment response of the structure displays nonlinear stiff-
ening, as seen in fig. 3(b) for the frictionless case denoted
by μ = 0. In the above relationships, key simplifica-
tions arise in estimating the rotational stiffness of the
scale-substrate joint, substrate material nonlinearity, scale
rigidity assumption, scale distribution uniformity, and ref-
erence and post-engagement periodicity. This can raise
concerns about the universality of results.

However, extensive follow-up studies relaxing these re-
strictive simplifications have confirmed the surprisingly ro-
bust nature of the overall nonlinear strain stiffening and
locking behavior [20,42,43]. More interestingly, the bend-
ing of 2D plate-like substrates also exhibits these behav-
iors [38–40]. For these studies, similar energy balance
procedures were used to obtain the moment-curvature re-
lationships, which revealed that scale-covered structures
also exhibit strain stiffening and distinct anisotropic re-
sponse along the two generators of the surface [38–40].

There is no straightforward way to generalize bending
to twisting, due to the out of plane deformations. In fact,
early studies on the bending and the torsional response
of the 2D scaled system seemed to indicate no significant
nonlinear stiffening [39]. However, the role of scale inclina-
tion turned out to be of critical importance. These stud-
ies assumed straight scales, similar to the bending case,
fig. 1(b) (top). The lack of torsional strain-stiffening was
due to the scales being parallel to the torsion axis [21],
which requires excessive torsion for scales engagement.
Thus, torsional strain-stiffening may emerge if scales are
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Fig. 3: (a) Non-dimensionalized friction force vs. curvature for
different friction coefficients under bending [41]. (b) Moment-
curvature for various friction coefficients in bending [41].
(c) Non-dimensionalized friction force vs. twist rate for differ-
ent friction coefficients for twisting case [44]. (d) Torque-twist
rate for various friction coefficients in the twisting case [44].

suitably oblique, fig. 1(b) (bottom). This was confirmed
in recent works focusing on oblique scales under twist-
ing [21,44]. Here, two angles α and θ capture the oblique
orientation, fig. 2(c). Quantifying the kinematics of out
of plane deformation requires new non-dimensional geo-
metric parameters, including the overlap ratio η = l/d,
dimensionless scale width β = b/d, and dimensionless sub-
strate thickness λ = h/2d. Using periodicity assumption
on twisting, a complex kinematic expression emerges, as
follows:

(cosϕ− 1)(β sin 2α sin θ + ηcos2α sin 2θ + 2λ cos 2α cos θ)
+2 sinα sinϕ(η + λ sin θ) − 2 cosα cosϕ sin θ
+2 cosα sinϕ cos θ(β − sinα) = 0. (3)

This equation can again be used to generate a kinematic
mechanisms map, fig. 2(d), where the oblique angle α is
fixed at 45◦. Once again three distinct regimes emerge
—linear, nonlinear, and kinematic locking, fig. 2(d). Using
energy balance like bending case, a nonlinear torque-twist
relationship can be derived. Although the relationship is
now considerably more complicated than the bending case,
it can be written in a simplified form, as follows [21]:

T (Φ) = CfCwGBIΦ +Kθ(θ − θ0)
∂θ

∂ϕ
H(Φ − Φe). (4)

Here, T is the toque, Φ is the twist rate (Φ = ϕ/d), Φe is
the engagement twist, GB is beam shear modulus, and Cw

is the warping coefficient for the non-circular cross section.
The factor Cf is required which accounts for the additional
appreciable stiffness gain that arise due to embedded parts
of the scales. Kθ = 3.62EBD

2(L/D)1.55 is the appropriate
torsional stiffness for a scale with unit width [21]. The
strain-stiffening in the torque-twist relationship is shown
in fig. 3(d) for the frictionless case denoted by μ = 0.

In addition to overlapping exoskeletal architecture, in-
vestigations on the fully embedded designs also indicate
distinct strain-stiffening behavior in bending [24,72,74].
However, material compression between fully embedded
scales is the governing mechanism. Inclusions provide non-
linear stiffening, dependent on the volume fraction of stiff
scales right from the beginning of the loading [24,72,74].

Dissipation behavior —friction locks and emer-
gent viscosity. – For exoskeletal architecture, friction
between the sliding scales is of critical significance. The
locking curvature is a kinematic idealization. In reality,
normal forces start rising sharply as this configuration is
approached. For rough surfaces, if Coulomb friction force
is assumed between scales, it would also see a sharp rise
leading to very high increase in the tangential forces. This
can prevent further sliding, advancing locking curvatures.
This hypothesis has been confirmed and quantified in de-
tail for both bending and twisting deformations [41,44].

For simplicity, bending is again used to exemplify the
analysis. In this case, using the same RVE concept intro-
duced earlier, a force balance can be carried out with fric-
tion force ffr = μN , whereN is the normal force and μ > 0
is the coefficient of friction, fig. 2(a). This leads to fric-
tional force dependence on curvature, shown in fig. 3(a).
Here friction force is normalized by KB/l, and subscript e
indicates engagement values. Clearly, the frictional force
is singular in nature, indicating a point of ‘frictional lock’,
beyond which the scales cannot move. This lock is found
to occur earlier than the frictionless kinematic lock. Jux-
taposing this on the kinematic mechanism maps, we get a
progressively advancing locking envelope with increasing
μ, as shown in fig. 2(b) with dotted lines.

This behavior is also universal, with singularity in fric-
tional force in twisting, fig. 3(c), where normalized by
Kθ/l. This leads to similarly advancing locking, seen in
the dotted lines in fig. 2(d). Although the architecture-
dissipation relationships are considerably more compli-
cated than the frictionless case, friction can be included
using extended energy balance for bending [41,44]:

M(κ) = EBIκ+
(
KB(θ − θ0)

∂θ

∂ψ
+ ffr

dr
dψ

)
H(κ− κe).

(5)
Here, κe is the engagement curvature value, and dr is

the relative differential displacement in the direction of
sliding, shown in fig. 2(a) for the bending case. Analogous
relationship exists for the torque-twist relationship [44].
For both the bending and the twisting case, increasing
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damping [22].

the coefficient of friction leads to an increase in nonlin-
ear strain-stiffening in a scaled system, fig. 3(b) and (d).
This increase in strain-stiffening is tailorable with respect
to the geometric parameters of the system [41,44]. Thus,
friction can enhance resistive forces due to additional in-
ternal forces but also restricts the range of motion by
advancing lock. Therefore, increasing μ may not neces-
sarily increase the total dissipative work in a deforma-
tion cycle. This is shown in fig. 4(a), as the relative
energy dissipation (RED) for the bending case, which
is the ratio of frictional or dissipative work calculated
as wfr = 1

d

∫ κlock

κe
ffrdr, to the total work calculated as

wsys = wfr + 1
2EIκlock

2 + 1
2

KB

d (θlock − θ0)2 for different
values of μ, and η [41]. Here, the substrate is considered
as linear elastic material and the scales are rigid. Also,
additional dissipation could come from material sources
such as plasticity, viscoelasticity, Mullins effects in rub-
ber, etc. [75]. Here for the bending case as shown in
fig. 4(a), dissipation is maximized only at intermediate
μ in bending.

Interestingly, unlike elasticity, this dual nature of fric-
tion is not always universal. For twisting, another
behavior has been observed, where RED monotonically
increases with μ, without sensitivity to η [44].

In addition, the role of friction is not completely un-
derstood in the dynamic regimes. Oscillatory motion is
important for locomotion, swimming, and structural vi-
brations. For the case of bending, assuming a dynamic
excitation and neglecting any material viscoelasticity, but
including only Coulomb friction, a time dependent load-
displacement relationship can be derived by using the ex-
tended Hamilton’s principle. Typically, Coulomb friction
leads to the linear damping behavior of free vibration [76].
However, in biomimetic scale metamaterials, the moving
lines of contact during motion give rise to an exponential
decay of free vibration, similar to a viscous dashpot [22],
fig. 4(b). We call this counterintuitive phenomenon vis-
cous emergence, which arises purely due to metamaterial

effect and not from any rate-dependent material or drag
assumptions. This dynamic behavior is still not identical
to a typical viscous dashpot. Traditional viscous damped
oscillations decay till motion eventually stops. In con-
trast, in the biomimetic system, the decay will not lead to
a complete stop, but only to the point where deflection is
small enough to disengage the scales [22]. At this point,
the system returns to a frictionless conservative system.
Thus, in spite of only dry friction, the structure is capable
of showing both viscous emergence as well as conservative
response. The extent of these behaviors are determined by
both the geometry and interfacial properties of the system.

Penetration and contact response. – Geometri-
cal effects made possible by segmentation, overlap, and
scales interaction can enhance mechanical properties be-
yond what is possible for monolithic materials at small
or large strains. Here, failure mechanisms and elastic re-
sponse are of interest. The penetration resistance of nat-
ural scales systems confirm the contributions of both the
microstructure of the scales themselves as well as their
organization [14,28]. Metamaterials inspired by these de-
signs are investigated by applying indentation loading to
scales attached to a soft elastic substrate [27–29,61,62,72]
or by performing ballistic impact simulations or experi-
ments [77–79]. In general, the puncture resistance of seg-
mented systems, fig. 1(c), is significantly greater than a
continuous glass plate attached to a soft substrate [23].

Additionally, these segmented scaled systems are capa-
ble of sustaining damage in different sections and main-
taining functionality, unlike a monolithic glass plate that
could completely shatter [29]. Several failure modes have
been identified, including substrate material shearing [24],
scale bending [24], scale puncture [28,32], and scale frac-
ture [23]. However, in segmented systems, the most no-
table is the tilting failure mode [23,29,30], fig. 5(a). This
failure mode occurs when scales rotate excessively during
contact, allowing the indenter to slip through the gaps
and penetrate the underlying substrate material. This
mode is consistent regardless of the strength of the scale
materials, and depends on the scale stability [23,29,30,57]
as the scales resist rotation. It has been found that the
tilting mechanism is more prevalent with decreasing scale
size [23,29] and substrate stiffness [29], fig. 5(a).

The engagement of scales dramatically increases the
scale stability, with the contacting surfaces providing sup-
port [30,57] as well as friction between scale and inden-
ter [62]. However, the friction between scales does not
seem to provide additional benefits to the system [28].
This highlights the synergistic importance of material
and geometry in determining the behavior of these sys-
tems including scale overlap, scale angle and volume
fraction [55,62,63]. Some overlapping architectures can
disperse the loads over much larger areas [28,63], even af-
ter a partial puncture, reducing damage to the underlying
substrate [28]. The anisotropy of the contact area depends
on the indenter radius, relative to the scale length [55].
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The energy dissipation of a partially embedded system
has shown a significant increase via the addition of surface
grit and elastic cover, which delays the scales disengage-
ment, maintains contact with the indenter tip and pulls
on the surrounding scales through the indentation [66]. In
a partially embedded systems, the effective contact area
increases beyond the radius of the indenter [55], and in-
creasing the load continues to increase the redistribution
of strain through a greater portion of the sample until
scale failure [38,55].

It has also been found that contact stiffness increases
with scale density and decreasing interface rotational stiff-
ness [38,55]. For fully embedded scales, fig. 1(b), flexible
scales deform around a blunt indenter, increasing the stiff-
ness and acting locally as a composite material [24]. The
scale overlap and initial scale angle of a fully embedded
system have been varied to determine the governing vari-
ables in the failure modes of the system [24]. The flexi-
bility and protective properties of embedded systems have
also been found to be tunable by altering the geometric
properties and distribution of the scales [24,55,72]. For
instance, low initial scale angle and high volume fraction
display greatly reduced flexibility [72], fig. 5(b).

Conclusions and future perspectives. – In spite of
intense scrutiny for their mechanical behavior, even now
relatively little is known about the mechanics and dynam-
ics of more general 2D systems such as plate- and shell-
type metamaterials, heterogeneous scales distribution or
the synergetic behavior under combined loads. Such com-
plexities can give rise to new and potentially unanticipated
emergent behaviors. For these developments, several ex-
isting challenges need addressing. These metamaterials
often test the limits of commercial FE software due to the
large number of contact pairs and significant contact non-
linearity. Thus, major advances in computer models and
multiscale modeling are necessary. The scale separation
in this case is between scales length and structure length
scale (e.g., m to cm). The time scales of structure and
scales although assumed similar so far can also differ in the

case of high frequency or sharp local transients. Thus, the
models can be applied in the mesoscale length scale for few
neighboring RVEs and in macroscale for the whole struc-
ture. In addition to current paradigms, potentially novel
behaviors can be accessed by using phase change materi-
als in biomimetic scales, which can provide unprecedented
on-demand functional programmability. Currently, very
little is known of the time dependent behavior of such
dynamically changing scales systems. For these struc-
tures, fabrication techniques need to advance consider-
ably. Lastly, natural scales are inherently multifunctional.
Multiphysics interactions such as coupling between fluids,
heat and the nonlinear structural response are still un-
explored. Preliminary work on exploiting optical prop-
erties [51] shows dramatic color changes through angular
manipulations of scales. Studies on thermal or electromag-
netic behavior have not been undertaken yet, representing
a key future frontier.
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