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Abstract – The wave turbulence theory predicts that a conservative system of nonlinear waves
can exhibit a process of condensation, which originates in the singularity of the Rayleigh-Jeans
equilibrium distribution of classical waves. Considering light propagation in a multimode fiber,
we show that light condensation is driven by an energy flow toward the higher-order modes, and a
bi-directional redistribution of the wave-action (or power) to the fundamental mode and to higher-
order modes. The analysis of the near-field intensity distribution provides experimental evidence
of this mechanism. The kinetic equation also shows that the wave-action and energy flows can be
inverted through a thermalization toward a negative temperature equilibrium state, in which the
high-order modes are more populated than low-order modes. In addition, a Bogoliubov stability
analysis reveals that the condensate state is stable.

focus  article perspective Copyright c© 2021 EPLA

Introduction. – Bose-Einstein condensation (BEC)
has been predicted and experimentally reported in gen-
uine quantum systems, such as quantum degenerate gases
of ultracold atoms [1], exciton polaritons [2], magnons [3]
and photons [4,5]. On the other hand, several studies
based on the wave turbulence theory [6–10] predict that
nonlinear waves can also exhibit a phenomenon of con-
densation [7,8,11–25]. Although the physics of quantum
gases and wave condensation are different, the underly-
ing mathematical origin of the condensation process is
similar because of the common low-energy divergence of
the equilibrium Bose distribution for quantum particles
and the equilibrium Rayleigh-Jeans (RJ) distribution for
waves [8,12]. Other forms of condensation processes have
been discussed for optical cavity systems, whose nonequi-
librium forced-dissipative features [2,26–31] lead to differ-
ent forms of universal properties [32].

(a)Contribution to the Focus Issue Turbulent Regimes in Bose-
Einstein Condensates edited by Alessandra Lanotte, Iacopo
Carusotto and Alberto Bramati.
(b)E-mail: Antonio.Picozzi@u-bourgogne.fr (corresponding

author)

Full 3D quantum thermalization and condensation with
optical waves in a conservative cavity-less free propagation
geometry has been predicted in [33], but has also been an-
ticipated to require prohibitive large propagation lengths.
Reducing to an effective 2D geometry using monochro-
matic classical light helps observing condensation effects,
but still requires propagation lengths that challenge exper-
imental feasibility [25]. Actually, thermalization to the RJ
equilibrium is not even properly defined when the optical
beam propagates in a bulk medium because of the ultravi-
olet catastrophe inherent to classical optical waves. This
issue can be circumvented by considering a waveguide con-
figuration, whose finite number of modes regularizes the
ultra-violet catastrophe and also substantially increases
the rate of thermalization [17,19]. In this respect, a re-
markable phenomenon of spatial beam self-organization,
termed “beam self-cleaning”, has been recently discov-
ered in (graded-index) multimode fibers (MMF) [34–37].
Recent works suggested that this phenomenon of beam
self-cleaning can be interpreted as a consequence of a
wave thermalization and condensation process [38–42].
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In particular, a wave turbulence kinetic equation (KE)
describing this effect has been derived in [38,39]. This
thermalization process has been experimentally demon-
strated in a recent work [43], where the condensate frac-
tion across the transition to condensation has been found
in agreement with the RJ equilibrium theory.

Our aim in this article is to provide more physical in-
sights into the experimental results reported in [43]. We
recall in this respect that wave condensation is usually un-
derstood as an inverse turbulence cascade that increases
the level of nonlinearity at large scales (i.e., low wave-
numbers), up to a breaking point of the weak turbulence
theory [8]. In the focusing regime of our experiment, such
a nonlinear breaking point is usually regularized by the
(Benjamin-Feir) modulational instability, which leads to
the generation of coherent soliton-like structures (“soli-
ton condensation”) [8,18,44–46]. At variance with this
strongly nonlinear process that occurs far from thermal
equilibrium, in our experiments the transition to conden-
sation is driven by the thermalization to the RJ equilib-
rium in the weakly nonlinear regime. More precisely, we
show that the process of condensation is characterized by
a flow of the energy toward the higher-order modes, and
a bi-directional redistribution of the wave-action (or op-
tical power, or particle number in a corpuscular picture),
from intermediate modes to both the fundamental and the
higher-order modes.

Modal nonlinear Schrödinger equation. – We con-
sider the (2D+1) nonlinear Schrödinger equation (NLSE)
accounting for the polarization degree of freedom, which
is known to describe the transverse spatial evolution of
an optical beam in a waveguide modelled by a confining
potential V (r) (with r = (x, y)) [19]. Following the exper-
iments of beam cleaning, we consider a parabolic shaped
potential V (r) modelling a graded-index MMF, with the
mode eigenvalues βp = β0(px + py + 1) (the index p la-
bels the two integers (px, py) that specify a mode), where
β0 = 1/(nck0r

2
o) with k0 = 2π/λ, ro the radius of the fun-

damental mode, λ the laser wavelength, and nc the core
refractive index. By expanding the random wave into the
normalized Hermite-Gauss modes (up(r)) of the MMF,
the modal NLSE for the evolutions of the vector modal
components ap = (ap,x, ap,y)T reads [38,39]

i∂zap = βpap + Dp(z)ap − γPp(a), (1)

where the nonlinear terms read Pp(a) =
∑

l,m,n

Splmn

(
1
3aT

l ama∗
n+ 2

3a†
namal

)
, Splmn denoting the overlap

among the modes —note that S0000 = 1 [39]. To explain
the experiments of beam-cleaning, it is important to intro-
duce the impact of a structural disorder, which is known
to affect light propagation in MMFs due to inherent im-
perfections and external perturbations [47]. We consider
in (1) the dominant contribution of weak disorder. In
its most general form that conserves the wave-action N =∑

p |ap|2, the Hermitian matrices Dp(z) are expanded into

the Pauli matrices σj , Dp(z) =
∑3

j=0 νp,j(z)σj, where
σ0 is the identity matrix and νp,j(z) are independent and
identically distributed real-valued random processes, with
variance σ2 and correlation length 	c. Introducing the pa-
rameter Δβ = σ2	c, the characteristic length scale of dis-
order is Ld = 1/Δβ [39]. Finally note that since the dis-
order is (“time”-) z-dependent, our system is of different
nature than those studying the interplay of thermalization
and Anderson localization [24].

Kinetic equation. – It is important to recall that our
experiments are carried out in the weakly nonlinear regime
Llin ∼ 1/β0 � Lnl ∼ 1/(γN) [43], and that linear prop-
agation effects dominate disorder effects, Llin � Ld (or
Δβ � β0). A consequence of this latter separation of
spatial scales, turbulence in MMFs is described by a dis-
crete wave turbulence approach [38,39], which means that
only exact resonances contribute to the KE, while quasi-
resonances can be neglected [8]. Indeed, assuming that
disorder effects dominate nonlinear effects Ld � Lnl (or
Δβ � 1/Lnl), we have derived a discrete wave turbulence
KE that describes the nonequilibrium evolution of the av-
eraged modal components np(z) = 〈|ap|2(z)〉 during the
propagation through the fiber [38,39]:

∂znp(z) =
γ2

6Δβ

∑
l,m,n

|Slmnp|2δK(Δωlmnp)Mlmnp(n)

+
4γ2

9Δβ

∑
l

|slp(n)|2δK(Δωlp)(nl − np), (2)

with slp(n) =
∑

m′ Slm′m′pnm′ , and Mlmnp(n) =
nlnmnp + nlnmnn − nnnpnm − nnnpnl and Δωlp = βl −
βp. The term δK(Δωlmnp) denotes the four-wave fre-
quency resonance Δωlmnp = βl + βm − βn − βp, with
δK(Δωlmnp) = 1 if Δωlmnp = 0, and zero otherwise. The
presence of Δβ in the KE is responsible for a signifi-
cant acceleration of the rate of thermalization (by a factor
∼ β0/Δβ) that is mediated by the structural disorder of
the MMF, see [38].

To derive the KE (2) we made use of the conventional
assumption of Gaussian statistics to achieve a closure of
the infinite hierarchy of the moments equations [6], a fea-
ture which is justified by the weakly nonlinear regime of
our experiments. In the absence of the confining potential
(V (r) = 0), the wave turbulence KE can be derived under
a weaker assumption than Gaussian statistics, namely the
random phase and amplitude (RPA) approximation [8]. In
the presence of the confining potential (V (r) �= 0), we have
shown that the Gaussian approximation gives the same
result as the RPA for the coupling among non-degenerate
modes, while differences appear for the degenerate modes,
which only marginally affect the rate of thermalization.

Numerical simulations: energy and wave-action
flows. – The KE conserves the wave-action N =

∑
p np

and the “energy” E =
∑

p βpnp —note that we call E
“energy” because it refers to the linear contribution to
the Hamiltonian (E is in units of W · m−1), while we call
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Fig. 1: Numerical simulation of the modal NLSE (1) ((a), (b)),
and KE (2) ((c), (d)): evolutions of the wave-action ñg

((a), (c)), and energy Ẽg ((b), (d)), for gmax = 15 groups of
non-degenerate modes. The dashed black lines in (a) and (c)
denote the RJ power-law ñeq

g ∼ 1/g. The thermalization is
featured by an energy flow toward the higher-order modes and
a wave-action flow toward the fundamental and higher-order
modes. Evolutions of n0(z) (e) and n4(z) (f) obtained from
the NLSE (1) simulation (red line) and the KE (2) (dashed
blue line): the modal components thermalize to the theoreti-
cal equilibrium value predicted by the RJ theory (the dashed
black line denotes neq

0 /N = 0.6). Parameters: N = 47.5 kW,
�c = 0.019 m, 2π/σ = 0.26 m.

N “wave-action” by following the wave turbulence termi-
nology [6] (N is in units of W). In a particle picture, np

and N have the meaning of population of the p mode and
of total particle number.

The KE (2) exhibits a H-theorem of entropy growth
(∂zS ≥ 0) for the nonequilibrium entropy S(z) =∑

p log(np(z)), which describes an irreversible evolution
to the RJ equilibrium distribution neq

p = T/(βp − μ) that
realizes the maximum of entropy. Note that both colli-
sion terms of the KE (2) vanish when np = neq

p . Then
we have N = T

∑
p(βp − μ)−1 and E = T

∑
p βp/(βp − μ)

and we recall that there is a one-to-one relation between
the equilibrium parameters (μ, T ) and the initial condi-
tions (N, E) [12,19,48] —note in particular that T is not
determined by a thermostat (T is in units of W · m−1).

This irreversible process of thermalization toward the
RJ distribution is illustrated in figs. 1(a), (c), which re-
ports numerical simulations of the modal NLS eq. (1)
and corresponding KE (2) starting from the same ini-
tial mode distribution (with independent random phases

for the modes of the NLSE). During the propagation,
np essentially flows toward the fundamental mode (in-
verse cascade), while a small fraction of np flows toward
the higher-order modes. For convenience we have re-
ported in fig. 1 the average wave-action ñg within each
group of degenerate modes, where g = 0, . . . , gmax − 1 in-
dexes the mode group (in fig. 1 gmax = 15 for a total
M = gmax(gmax + 1)/2 = 120 modes). The RJ power-
law ñg ∼ 1/g is verified by the simulation of the KE and
NLSE —due to the large computation times, we are un-
able to perform an average over the realizations of NLSE
simulations, which explains the noisy distribution ñg in
fig. 1(a), (b).

These results are corroborated by the modal distri-
bution of the energy, which exhibits a flow toward the
higher-order modes (direct cascade). In this example, we
considered a relatively small value of the conserved energy
E, which is below the critical value of the transition to con-
densation Ec 	 Emin

√
M/2, where Emin = Nβ0 denotes

the minimum energy when all the “particles” N populate
the fundamental mode. Note that the finite number of
modes M regularizes the ultraviolet catastrophe of classi-
cal waves. In the condensed state, μ → β−

0 [43], so that the
waves that started from an initial state with an excess en-
ergy in the low-energy modes, eventually tend to an equi-
librium state displaying an energy equipartition among
the modes Ep = (βp − β0)np ∼ T (or Ẽg = β0gñg ∼ T ),
as illustrated in fig. 1(b)–(d). Then RJ thermalization
is characterized by a macroscopic population of the fun-
damental mode, as illustrated in fig. 1(e), where the con-
densate fraction relaxes toward the theoretical equilibrium
value neq

0 /N 	 0.6. Note that the good agreement between
NLSE and KE simulations in fig. 1 is obtained without us-
ing adjustable parameters.

One may question whether the above energy and wave-
action flows can be described theoretically by means of
the Zakharov-Kolmogorov spectra of turbulence [6]. While
these nonequilibrium stationary solutions are sustained by
the addition of a permanent forcing and damping at dif-
ferent scales in the system, they may be identified in the
transient evolution of a purely conservative system, be-
fore reaching the RJ equilibrium [8,18]. Note, however,
that our KE (2) differs from the conventional wave turbu-
lence KE in two respects: i) It involves the tensor |Splmn|2
instead of the Dirac δ-function over the wave-vectors, be-
cause the potential V (r) breaks momentum conservation;
ii) our KE is discrete in frequencies. This latter property
does not allow the application of the standard Zakharov
conformal transformation to derive nonequilibrium sta-
tionary solutions featured by a non-vanishing flux of the
conserved energy and wave-action. This appears consis-
tent with the numerical simulations, which do not evidence
the formation of a nonequilibrium power-law spectrum in
the transient evolution that precedes the equilibrium RJ
spectrum.
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Fig. 2: (a)–(c): experimental intensities distributions averaged
over the realizations at the input (blue), and the output (red) of
the MMF. (d)–(f): corresponding numerical simulations of the
NLSE (1), see the text for parameters. The condensate fraction
is neq

0 /N = 0.6 (1st line); neq
0 /N = 0.4 (2nd line); neq

0 /N = 0.2
(3rd line). The dashed green lines report the theoretical RJ
intensity distribution Ieq(r) from eq. (3) without using any
adjustable parameter. The intensities are plotted as a function
of the angle-averaged distance r = |r|. The insets show the
2D output intensity distributions with the same color bar (the
circle denotes the MMF’s core).

Experimental results. – We performed experiments
in a MMF with the experimental setup of ref. [43].
We used a 12 m long graded-index MMF that guides
M = 120 modes (gmax = 15) with a core radius R = 26 μm
characterized by a parabolic-shape transverse refractive
index. The originality with respect to the experiments
of beam cleaning [34,35,37,40] relies on the fact that the
laser beam (Nd:YAG, N = 7 kW at λ = 1.06 μm) is passed
through a diffuser to generate a speckle beam before in-
jection into the MMF. In the experiments we measure N
and E from the near-field and far-field measurements of
the intensity distributions, see ref. [43]. By moving the dif-
fuser we obtain different realizations of the speckle beams.
At variance with [40], we can then study the transition to
condensation by decreasing the energy E (“temperature”)
while keeping constant the power (“particle number”).
Here, we focus the analysis on the near-field intensity.
Note that, because of the parabolic-shape potential V (r),
the average near-field and far-field intensity representa-
tions are equivalent to each other [43].

We report in fig. 2 (left column) the experimental re-
sults of the near-field intensity distributions averaged over
∼50 realizations for three different values of the energies
E, which correspond to an equilibrium condensate frac-
tion of neq

0 /N = 0.6, 0.4, 0.2. We report the “output”
intensity distributions recorded at 12 m (red lines), and the
“input” intensities recorded after 20 cm of propagation in
the MMF (representing the “initial conditions” [38], blue

lines). The output intensities are compared to the theoret-
ical RJ intensity distributions Ieq(r) (dashed green lines).
It is important to stress that the good agreement between
the experiments and the theory in fig. 2 (left column) is
obtained without any adjustable parameter : The experi-
mentally measured values (E, N) determine a unique pair
(μ, T ), which in turn determines neq

p = T/(βp−μ) and thus
the RJ equilibrium intensity distribution (dashed green
lines in fig. 2):

Ieq(r) =
∑

p

neq
p u2

p(r). (3)

We do not have access to a measurement of the power np

within each individual mode p in the experiments. How-
ever, for large values of px = py, the asymptotic forms
for the Hermite-Gauss functions show that the normalized
mode up(r) is essentially supported in r ≤ √

2gro with
g = px + py [49], i.e., there is a correspondence between
the radius r and the mode number g. The bi-directional
wave-action flows toward the fundamental mode and the
higher-order modes (r 	 R) is clearly visible for a strong
condensation, see fig. 2(a) for neq

0 /N = 0.6. By increas-
ing the energy E (i.e., decreasing neq

0 /N), the amount
of incoherence (randomness) of the launched beam also
increases and then populates the higher-order modes, so
that only the inverse wave-action flow toward the funda-
mental mode is clearly visible, see fig. 2(c). Note that, as
recently demonstrated experimentally [50], a self-cleaned
optical beam exhibits a high degree of phase coherence.

The numerical simulations of the modal NLSE (1) qual-
itatively reproduce the behavior observed experimentally.
This is illustrated in fig. 2 (right column), where an aver-
age over the propagation has been considered from 12 m
to 22 m so as to smooth the output intensity profiles
(red lines). Although the parameters that character-
ize the disorder are not precisely known, we considered
in fig. 2 plausible experimental values 	c = 0.3 m and
2π/σ = 2.14 m [47]. For these parameters disorder no
longer dominates nonlinear effects (Ld ∼ Lnl), and strictly
speaking the KE (2) is no longer valid [39]. However, the
scaling predicted by the KE, namely that thermalization
is accelerated by decreasing the disorder (see the param-
eter Δβ in the denominator of (2)) is responsible for a
fast process of condensation for the small disorder consid-
ered in fig. 2. This is apparent by comparing the simula-
tions in fig. 1 (propagated over ∼ 100 m) and fig. 2 (over
L = 12 m). In spite of the acceleration of thermalization,
we had to increase the power up to 22 kW in the simu-
lations to get a good agreement between NLSE simula-
tions and the experimental results in fig. 2. An improved
quantitative agreement would require a spatio-temporal
extension of the model (1) so as to account for the pulsed
laser regime considered in the experiments.

Stability of the condensate. – The description of
wave condensation in the absence of a trapping potential
(i.e., in the homogeneous case V (r) = 0) is known to
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require a Bogoliubov approach, which shows that the con-
densate fraction neq

0 /N strongly depends on the nonlinear-
ity γ [11,12]. Here we show that the Bogoliubov approach
is irrelevant to describe the weakly nonlinear regime of our
experiment.

The structural disorder considered in the modal
NLSE (1) enforces the random phase dynamics among
the modes. As described by the KE (2), the disorder
then has a stabilizing effect on the process of conden-
sation in the regime Ld � Lnl. However, as discussed
above through the simulations of fig. 2, the disorder does
not dominate nonlinear effects in the experiments. In the
following we show that the condensate is stable against
the focusing nonlinearity even in the absence of disor-
der effects. Then we neglect the impact of polarization
disorder and set Dp = 0, ap → ap in eq. (1). We as-
sume that the fundamental mode is strongly occupied
(|a0| � |am|, m �= 0) and consider the weakly nonlin-
ear regime ε = Llin/Lnl = γN/β0 � 1. The linearized
equations read

∂za0 = −iβ0a0 + iγ|a0|2a0

+iγ
∑
p�=0

sp0(2|a0|2ap + a2
0a

∗
p),

∂zam = −iβmam + iγsm0|a0|2a0

+iγ
∑
p�=0

smp(2|a0|2ap + a2
0a

∗
p),

where smn = Smn00. Writing smn = wmxnxwmyny , we
have

wmxnx =
(−1)

mx−nx
2

2mx+nx
√

mx!nx!
(mx + nx)!
(mx+nx

2 )!
, (4)

when mx and nx have the same parity, and wmxnx = 0
otherwise (idem for wmyny ). We look for a particular so-
lution of the form a0 =

√
n0e

−iβ̄0z, where β̄0 will be de-
fined later, and am = dme−iβ̄0z with β̄m = βm − β̄0 (dm

real-valued). The ansatz is solution if

−β̄0n
1/2
0 = −β0n

1/2
0 + γn

3/2
0 + 3γn0

∑
p�=0

sp0dp,

β̄mdm = +γsm0n
3/2
0 + 3γn0

∑
p�=0

smpdp, m �= 0.

Therefore the vector d is solution of the linear system
(I − K)d = y, with the elements of y given by ym =
γn

3/2
0 sm0/β̄m and the matrix K = (Kmp) given by Kmp =

3γn0smp/β̄m for m �= p and 0 otherwise. The matrix I−K
is invertible if supm

∑
p |Kmp| < 1, which is verified since

ε � 1. Therefore there is a unique vector solution that
is d = (I − K)−1y. By considering only the leading-order
corrections O(ε2β0), we have dm = γn

3/2
0 sm0/(βm − β0),

β̄0 = β0 − γn0, β̄m = βm − β0 + γn0, and the nonlinear
fundamental mode is of the form

ū0(r, z) =
√

n0e
−iβ̄0z

⎛
⎝u0(r) +

∑
m �=0

γn0sm0

βm − β0
um(r)

⎞
⎠.

The field then consists of the superposition of the strong
condensate in the (slightly distorted) mode ū0 and the
incoherent mode fluctuations am �=0, that can be written
in terms of ãm(z) = am(z)eiβ̄0z:

∂zãm = −iβ̄mãm + iγn0

∑
p�=0

smp(2ãp + ã∗
p). (5)

The stability analysis of this system is carried out by
computing the matrix eigenvalues, which reveals that all
eigenvalues are purely imaginary for ε � 1, i.e., the
condensate is stable. Note that for mx, my � 1, we
have sm0 	 1/[

√
π(mxmy)1/42(mx+my)/2] and smm 	

4/[π(mxmy)1/2], so that sm0 exhibit a rapid decay to
zero as compared to smm. Then assuming smm � smp

(p �= m), the eigenvalues are obtained in analytical form
with the Bogoliubov dispersion relation

β̄B
m =

√
(β̄m − 3γn0smm)(β̄m − γn0smm). (6)

Considering the weakly nonlinear regime of the experi-
ment ε = γN/β0 < 10−3, β̄B

m is real and β̄B
m 	 β̄m 	

βm − β0, i.e., the Bogoliubov dispersion relation of am(z)
in the presence of the condensate (

√
n0 � |am|) is well

approximated by the linear expression βB
m 	 βm. In other

words, the Bogoliubov nonlinear renormalization of the
dispersion relation is negligible. A scale-by-scale analy-
sis of NLSE simulations reveals that even the strongly
condensed mode p = 0 evolves in the weakly nonlin-
ear regime [38], which confirms the validity of the KE
in the regime where the fundamental mode is highly
populated.

Perspectives on negative temperatures. – We
have seen that light condensation in MMFs is driven
by a flow of energy toward the higher-order modes and
a bi-directional redistribution of the wave-action. This
thermalization process exhibits properties similar to those
identified numerically in the absence of a confining poten-
tial, see, e.g., [25]. However, the main difference is that
condensation in a MMF is described by a weakly non-
linear and discrete wave turbulence approach where the
structural disorder accelerates the process of thermaliza-
tion over a relatively small number of modes (M 	 120),
see the KE (2).

An interesting consequence of the finite number of
modes with an upper energy bound (Emax = β0gmaxN)
is that the system can exhibit negative temperature equi-
librium states, T < 0 [41,51,52]. The condition neq

p =
T/(βp − μ) > 0 then requires μ > max(βp) = gmaxβ0
and the equilibrium distribution is characterized by an
inverted modal population (ñeq

g+1 > ñeq
g ) for an energy

E > Et = N〈βp〉 = Emin(2gmax + 1)/3, where 〈βp〉 is
the arithmetic mean of the eigenvalues. The denomina-
tor of the RJ equilibrium now vanishes for μ → gmaxβ0.
Accordingly, ñg essentially flows toward the highest en-
ergy level, i.e., highest mode group g = 14, while the en-
ergy Ẽg = β0gñg flows toward the low-order modes. This
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Fig. 3: Simulation of the KE (2) showing RJ thermalization
toward a negative temperature equilibrium state: ñg essentially
flows to the last group of degenerate modes (highest energy
level g = gmax − 1) (a), while the energy Ẽg flows to the low-
order modes (b). The inset shows that F̃g = β0(g−gmax+1)ñg

relaxes toward an equipartition among the modes, F̃g � T < 0
(red line), as predicted by the RJ equilibrium distribution (N =
47.5 kW, �c = 0.3 m, 2π/σ = 2.1 m, gmax = 15). (c) μ/β0−1 vs.
E/Emin: note the asymptotic behaviors μ → β−

0 for E → Emin,
and μ → gmaxβ

+
0 for E → Emax. The horizontal dashed line

denotes μ = gmaxβ0 and the vertical one E = Et. (d) Seq vs.
E/Emin showing 1/T = (∂Seq/∂E)M,N < 0 for E > Et. The
green circle denotes Seq

max = −M log M at E = Et. (e) T/Emin

vs. E/Emin: the divergences T = ±∞ for E = E∓
t are removed

by plotting Emin/T vs. E/Emin (f).

process of thermalization toward a negative temperature
equilibrium is demonstrated by the numerical simulation
of the KE (2) in fig. 3. For such a negative tempera-
ture equilibrium, the role of energy equipartition is played
by the quantity Fp = (βp − gmaxβ0)np 	 T < 0 (or
F̃g = β0(g − gmax + 1)ñg 	 T < 0), which is equally
distributed among the modes (inset of fig. 3). Here we
considered a high value of the energy (E/Emin 	 14) so
as to get a macroscopic population of the highest mode
group ñgmax−1 � ñg. Note that there is no phase coherence
amongst such a group of degenerate modes, which suggests
an analogy with the notion of turbulent crystal [53].

We finally complete the study with the thermodynamic
properties of the system. We start from the equilib-
rium entropy S̃eq =

∑
p log(neq

p ) —note that at equilib-
rium it coincides with the previous nonequilibrium entropy
verifying the H-theorem. It proves convenient to shift the
entropy by a constant Seq = S̃eq − M log N , so that by
using T = N/

∑
p(βp − μ)−1, we can write

Seq(μ) = −
∑

p

log(βp − μ) − M log

(∑
p

1
βp − μ

)
, (7)

E(μ)
Emin

=

∑
p

βp

βp−μ∑
p

β0
βp−μ

, (8)

T (μ)
Emin

=
1∑

p
β0

βp−μ

. (9)

The evolution of μ vs. E is reported in fig. 3(c) from
eq. (8). It evidences that μ → β−

0 for E → Emin, and
μ → gmaxβ

+
0 for E → Emax: In both cases the denomi-

nator of the RJ distribution vanishes, which leads to the
macroscopic population of the lowest mode (g = 0) and
the highest mode group (g = 15), respectively.

The parametric plot with respect to μ of (7) and (8)
gives Seq(E) in fig. 3(d); while the corresponding para-
metric plot of (8) and (9) gives T vs. E in fig. 3(e).
Note the concavity of the entropy with respect of the en-
ergy as required by a self-consistent thermodynamic the-
ory. Negative temperatures equilibrium states arise for
E > Et, where the entropy decreases by increasing the
energy, T = (∂E/∂Seq)M,N < 0. Note that such negative
temperature states (E > Et) are actually “hotter” than
those at positive temperature (E < Et), as the energy will
spontaneously flow from negative to positive temperature
when the systems are put in contact.

Remark in fig. 3(e) that the equilibrium state corre-
sponding to T = 0+ (T = 0−) refers to a population dis-
tribution concentrated in the lowest (highest) mode with
E = Emin (E = Emax). Accordingly, the states T = 0+

and T = 0− are fundamentally different from each other,
whereas there is almost no difference between the states
T = +∞ and T = −∞ for E 	 Et. This latter equilibrium
state for E = Et corresponds to an equipartition of the
wave-action among all the modes neq

p = const, and it refers
to the most disordered state with Seq

max = −M log M [43],
see the green circle in fig. 3(c). The apparent paradoxi-
cal divergence of T = ±∞ around this homogeneous state
neq

p =const disappears if one considers the inverse of the
temperature as the appropriate parameter (just as the La-
grange multiplier 1/T that arises naturally in statistical
mechanics). In this case 1/T vs. E exhibits a continuous
behaviour as shown in fig. 3(f).

Work is in progress to study experimentally the unusual
thermalization to negative temperature equilibrium states.
Given the large degeneracy of the condensate mode in this
case, this raises interesting question about the possibility
of having fragmented condensates [54].

∗ ∗ ∗

The authors thank C. Michel for fruitful discus-
sions. We acknowledge financial support from the French
ANR under Grant No. ANR-19-CE46-0007 (project
ICCI), iXcore research foundation, EIPHI Graduate
School (Contract No. ANR-17-EURE-0002), French pro-
gram “Investissement dAvenir,” Project No. ISITE-BFC-
299 (ANR-15 IDEX-0003); H2020 Marie Sklodowska-
Curie Actions (MSCA-COFUND) (MULTIPLY Project

14001-p6



Energy and wave-action flows underlying Rayleigh-Jeans thermalization of optical waves

No. 713694). IC acknowledges financial support from
the H2020-FETFLAG-2018-2020 project “PhoQuS” (No.
820392) and from the Provincia Autonoma di Trento.
Calculations were performed using HPC resources from
DNUM CCUB (Centre de Calcul, Université de Bour-
gogne).

REFERENCES

[1] Pitaevskii S. and Stringari L., Bose-Einstein Conden-
sation and Superfluidity (Oxford University Press) 2016.

[2] Carusotto I. and Ciuti C., Rev. Mod. Phys., 85 (2013)
299.

[3] Demokritov S. O. et al., Nature, 443 (2006) 430.
[4] Klaers J., Schmitt J., Vewinger F. and Weitz M.,

Nature, 468 (2010) 545.
[5] Weill R., Bekker A., Levit B. and Fischer B., Nat.

Commun., 10 (2019) 1.
[6] Zakharov V. E., L’vov V. S. and Falkovich G., Kol-

mogorov Spectra of Turbulence I (Springer, Berlin) 1992.
[7] Newell A. C., Nazarenko S. and Biven L., Physica

D, 152 (2001) 520.
[8] Nazarenko S., Wave Turbulence, Lect. Notes Phys.,

Vol. 825 (Springer) 2011.
[9] Newell A. C. and Rumpf B., Annu. Rev. Fluid Mech.,

43 (2011) 59.
[10] Shrira V. I. and Nazarenko S. (Editors), Advances in

Wave Turbulence, World Scientific Series on Nonlinear
Science Series A, Vol. 83 (World Scientific, Singapore)
2013.

[11] Zakharov V. E. and Nazarenko S. V., Physica D, 201
(2005) 203.

[12] Connaughton C., Josserand C., Picozzi A., Pomeau

Y. and Rica S., Phys. Rev. Lett., 95 (2005) 263901.
[13] Nazarenko S. and Onorato M., Physica D, 219

(2006) 1.
[14] Berloff N. G. and Youd A. J., Phys. Rev. Lett., 99

(2007) 145301.
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