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Abstract – We study the polaron problem of an impurity immersed in a dissipative spin-orbit
coupled Fermi gas via a non-self-consistent T -matrix method. We first propose an experimental
scheme to realize a spin-orbit coupled Fermi bath with dissipation, and show that such a system
can be described by a non-Hermitian Hamiltonian that contains an imaginary spin-flip term and
an imaginary constant shift term. We find that the non-Hermiticity will change the single-particle
dispersion of the bath gas, and modify the properties of attractive and repulsive polarons such
as energy, quasi-particle residue, effective mass, and decay rate. We also investigate the Thou-
less criteria corresponding to the instability of the polaron-molecule transition, which suggests a
molecule state is more facilitated with stronger bath dissipation. Finally, we consider the case
with finite impurity density and calculate the interaction between polarons. Our result extends
the study of polaron physics to non-Hermitian systems and may be realized in future experiments.

Copyright c© 2021 EPLA

Introduction. – Recently, the non-Hermitian system
has attracted widespread attention of theorists and exper-
imentalists. The non-Hermitian usually originates from
the driven or dissipative processes induced by a bath,
such as gain or loss of particle and energy from the en-
vironment. In principle, a strict approach to capture the
whole characters of a driven and dissipative open sys-
tem is to adopt the Lindblad equation. However, if we
only consider short-time evolution where quantum jumps
can be neglected, an effective non-Hermitian Hamilto-
nian can be approximately used to describe such systems.
Non-Hermitian classical physics has been applied in many
fields, for example, light propagating and scattering in
a complex medium [1,2], the friction of mechanical sys-
tem [3], integrating resistor in an electrical circuit [4], and
biological physics [5,6].

Thanks to the recent developments in quantum tech-
nologies, non-Hermitian quantum physics plays a key role
in understanding a vast number of novel phenomena in
quantum open systems. One important example is the
exciton-polariton system in quantum wells embedded in
an optical micro-cavity. The leakage of photons from the
cavity and the decay of exciton via radiative and non-
radiative processes make the platform a natural quantum

(a)E-mail: wzhangl@ruc.edu.cn (corresponding author)

open system [7–9]. Ultracold quantum gases of atoms offer
another highly controllable physical system to implement
many non-Hermitian Hamiltonians with laser-induced
one-body [10–12] and two-body [13,14] dissipation. Based
on the experiment improvements, extensive theoretical
works have analyzed non-Hermitian band theory [15],
non-Hermitian bulk-boundary correspondence [16], non-
Hermitian skin mode effect [17], topological phase
transition [18], novel magnetism [19], new linear re-
sponse theory [20], non-Hermitian semimetal [21,22] and
dissipation-facilitated molecule [23].

The concept of polaron was originally proposed by
Landau and Pekar, and further elaborated by Fröhlich
and Feynman to describe the dressing effect of phonons
on a Bloch electron. In contrast to an Anderson im-
purity, the impurity in polaron physics can move in the
bath. Depending on the statistics obeyed by the bath, the
polaron can be classified as Bose polaron and Fermi po-
laron, which have been both realized in experiment [24–34]
and analyzed theoretically via various methods. For
Fermi polaron, Bishop [35] used the perturbative expan-
sion with the interaction parameter kF as to investigate
the repulsive polaron energy. A variational approach with
particle-hole excitations [36,37] is then proposed and ex-
tensively employed to treat the many-body effect in Fermi
baths in different dimensionalities [38–42], with spin-orbit

30004-p1

https://orcid.org/0000-0002-8373-8961


J. Zhou and W. Zhang

coupling [43], near a narrow Feshbach resonance [44,45],
and for an orbital Feshbach resonance [46,47]. To fur-
ther consider polaron decay, the diagrammatic many-body
method is implemented to give the polaron self-energy
with ladder diagram approximation [48,49]. The fixed-
node quantum Monte Carlo (QMC) algorithm [50–52],
the imaginary lattice quantum Monte Carlo (ILMC) [53],
the functional renormalization group [54], and the non-
Gaussian variational method [55] have also been adopted
to analyze this topic. However, impurity in a dissipa-
tive bath has not been studied so far to the best of our
knowledge.
In this work, we consider an experimentally feasible non-

Hermitian Fermi bath with spin-orbit coupling, and in-
vestigate the properties of a moving impurity immersed
in this dissipative background via a non-self-consistent
T -matrix method and effective Hamiltonian approxima-
tion. This non-self-consistent method is proved to be
equivalent to the Chevy ansatz method [36] which is used
extensively to study polaron states in various configura-
tions, and is considered to be a good approximation in
the weak dissipation regime where the quasi-particle prop-
erty is not drastically altered. In particular, we obtain
the polaron energy of both attractive and repulsive po-
laron, and characterize their properties by calculating the
quasi-particle residue, the effective mass, and the two-
body decay rate. To connect with experiment, we calcu-
late the detectable spectrum function of the impurity atom
to show the signal variation. We also discuss the Thouless
criterion [56] of pairing instability for attractive polaron
branch, which suggests that a molecule state is more favor-
able in the strong dissipation regime. Finally, we extend
our discussion to the case of finite impurity density. We
calculate the variation of inter-polaron interaction energy
with bath dissipation, which suggests the possibility of us-
ing dissipation as an extra controllable method in experi-
ment. These results provide additional information about
polaron physics in a dissipative bath, which is under lively
investigation in various systems [57–59].

Dissipative fermi bath with spin-orbit coupling.
– A dissipative spin-orbit coupled Fermi bath can be real-
ized by a four-state scheme with three ground-state energy
levels |gi〉 and an excited state |e〉 as shown in fig. 1. Two
Raman lasers Ω1 and Ω2 shining along the x-direction with
wave vector k0 couple |g1〉 and |g2〉 to the excited state |e〉,
with respective detuning δ1 and δ2. The excited state has
a large decay rate Γ to the third state |g3〉. In order to
describe the dissipative model, we introduce two Lindblad
operators S± with the specific form shown in the Sup-
plementary Material Supplementarymaterial.pdf (SM).
Using the basis ΦT = {|g1〉, |g2〉, |g3〉, |e〉}, the Raman cou-
pling Hamiltonian is given by

HRaman =

⎛
⎜⎜⎝

−δ/2 0 0 Ω∗
1

0 δ/2 0 Ω∗
2

0 0 0 0
Ω1 Ω2 0 Δ

⎞
⎟⎟⎠ . (1)

Fig. 1: Four-energy level configuration of the experimental
realization of the dissipative bath with synthetic spin-orbit
coupling.

Here, we define δ = δ1−δ2 and Δ = (δ1+δ2)/2 to simplify
the notation. The Lindblad equation for density matrix
ρs then takes the form

dρs
dt

= −i[HRaman, ρs] + Γ

[
S−ρsS

+ − 1

2

{
S+S−, ρs

}]
,

(2)
where [·, ·] and {·, ·} denote commutation and anti-
commutation operations, respectively.
By getting the evolution of the elements of density ma-

trix and adiabatically eliminating the excited state (details
are shown in the SM), we obtain the effective Hamiltonian
of the spin-orbit coupled bath

Heff
bath =

(k+ k0exσz)
2

2m
− Ωxσx − iΓx(σx + Î). (3)

Here, we set the Raman coupling parameters Ω1 = Ω2 =
Ω to simplify the model, and use Ωx = |Ω|2/Δ and
Γx = Γ|Ω|2/Δ2 to denote the spin-flip strength and single-
particle dissipation, respectively. In the following dis-
cussion, we refer to the ground levels |g1〉 and |g2〉 as
pseudo-spin |↑〉 and |↓〉, respectively. We further assume
the interaction between the ground states |gi〉 is negligible,
and the single-particle Hamiltonian can be diagonalized to
reach the energy dispersion of the background

εk± =
h̄2(k2 + k20)

2m
− iΓx ±

√(
h̄2kxk0

m

)2

+ (Ωx − iΓx)2.

(4)
The phase diagram of the energy dispersion is shown in
fig. 2 with spin-orbit coupling parameter (k0/kF )

2 = 0.5
with kF being the Fermi wave vector of the bath. In the
following, we choose the natural unit h̄ = m = 1, and set
the Fermi energy EF as the energy unit. Three types of
energy dispersion are observed by varying the parameters,
including single-well, double-well, and triple-well struc-
tures. The triple-well type can be further divided into
two sub-categories by comparing the relative depths of the
central and side energy minima. In the following discus-
sion, we fix the Raman coupling Ωx = EF such that the
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Fig. 2: Phase diagram of the single-particle dispersion. Three
types of dispersion structures can by identified on this diagram,
which features, respectively, a single-well (SW), a double-well
(DW) and two triple-well (TW-I and TW-II) configurations.
In this plot, we set (k0/kF )

2 = 0.5.

single-particle dispersion takes the single-well structure for
all dissipation rates.

Then, we define the Matsubara Green’s function of the

bath G
(0)
σσ′ = −〈L|TτCkσ(τ)C

†
kσ′(0)|R〉, where 〈L| and |R〉

are the left and right eigenvectors of the non-Hermitian
Hamiltonian, C and C† are the fermionic operators, and
Tτ is the time-ordering operator. This non-Hermitian
Green’s function can also be written in the following ma-
trix form:

G(0)(k, iωn) =

(
G

(0)
↑↑ (k, iωn) G

(0)
↑↓ (k, iωn)

G
(0)
↓↑ (k, iωn) G

(0)
↓↓ (k, iωn)

)
, (5)

where the matrix elements are given by k,

G
(0)
↑↑ (k, iωn) =

ψL
k+↑ψ

R
k+↑

iωn − εk+
+

ψL
k−↑ψ

R
k−↑

iωn − εk−
,

G
(0)
↑↓ (k, iωn) =

ψL
k+↑ψ

R
k+↓

iωn − εk+
+

ψL
k−↑ψ

R
k−↓

iωn − εk−
,

G
(0)
↓↑ (k, iωn) =

ψL
k+↓ψ

R
k+↑

iωn − εk+
+

ψL
k−↓ψ

R
k−↑

iωn − εk−
,

G
(0)
↓↓ (k, iωn) =

ψL
k+↓ψ

R
k+↓

iωn − εk+
+

ψL
k−↓ψ

R
k−↓

iωn − εk−
. (6)

In the expressions above, ψλ
kνσ is the transformation be-

tween the dressed-particle operator in the helix space and
the original operator in the spin space, which is explained
in detail in the SM.

Properties of the polaron state. – In this section,
we consider a single impurity immersed in the dissipa-
tive Fermi bath with spin-orbit coupling as introduced in
the previous section. The impurity is assumed to inter-
act with one of the two ground levels (say, e.g., the |↑〉
state) with a tunable strength by crossing a wide Fesh-
bach resonance. The interaction Hamiltonian takes the

s-wave contact potential form

Hint =
U

V

∑
kk′q

C†
q/2+k↑Cq/2−k′↑b

†
q/2−kbq/2+k′ , (7)

where Ck↑ is the annihilation operator of the spin-up
fermion, bk is the annihilation operator of the impurity,
and V is the quantization volume. We then use the many-
body T -matrix theory to solve for the self-energy of the
impurity. By keeping all the ladder-type diagrams, the
self-energy at temperature T is given as

Σtot(k, iωn) = kBT
∑
q,iΩn

G
(0)
↑↑ (q− k, iΩn − iωn)Γ(q, iΩn),

(8)

where the vertex function Γ can be written through the
Bethe-Slapeter equation as

Γ(q, iΩn)
−1=

1

U

+ kBT
∑
k,iω

G(0)(k, iω)G
(0)
↑↑ (q− k, iΩn − iω). (9)

Here, the free Green’s function of the impurity takes the
form G(0)(k, iω) = 1/(iω − εIk) with impurity dispersion
εIk. Note that the vertex function has two parts which
are contributed by the two helicity bands of the spin-orbit
coupled Fermi background.
At zero temperature, after summing up the Matsubara

frequency, the retarded self-energy is given by

ΣR
tot(k, iΩn)=

1

V

∑
q

[
Θ(−εq+)Φ+↑Γ

R(q+ k, εq++ ω+)

+Θ(−εq−)Φ−↑Γ
R(q+ k, εq−+ ω+)

]
. (10)

Here, Φ+↑ = ψL
q+↑ψ

R
q+↑, Φ−↑ = ψL

q−↑ψ
R
q−↑, and Θ(x) is

the Heaviside step function as the zero-temperature limit
of the Fermi-Dirac function. Owing to the non-Hermiticity
of the spin-orbit coupled bath, there is an imaginary part
in the dispersion εk±. However, we only consider the real
part of the dispersion energy in the step function, because
the imaginary part is connected with the life time of the
dressed particle and only shows oscillation behaviors in
the distribution function. We adopt a non-self-consistent
“G0G0” theory in the calculation which has been proved
equivalent to the variational wave function approach [36].
Once the self-energy is obtained, we can get the quasi-

particle properties of the impurity from the retarded im-
purity Green’s function

GR
I (k, ω

+) =
1

ω − (εk − μI)− ΣR
tot(k, ω + iη+) + iη+

,

(11)
where εk is the impurity dispersion, and μI is the corre-
sponding chemical potential. In fact, within the quasi-
particle approximation, the retarded impurity Green’s
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Fig. 3: Polaron energy of the (a) attractive branch Eatt
P and

(b) repulsive branch Erep
P . Lines in all panels are plotted with

Γx/EF = 0.2 (blue), 0.5 (red), and 0.8 (green). We choose
(k0/kF )

2 = 0.5 and Ωx/EF = 1.

function can also be expressed with quasi-particle ratio
Z, effective mass m∗

eff and two-body decay rate γ. Con-
sidering the symmetry of the dispersion of the spin-orbit
coupled bath, the dressed impurity would have two effec-
tive masses m∗

x and m∗
y = m∗

z = m∗
||. Thus, in the low-

energy and long-wavelength limit, the retarded impurity
Green’s function takes the form

GR
I (k, ω

+) =

Z

ω − h̄2k2||/2m
∗
|| − h̄2k2x/2m

∗
x + μI − EP + iγ/2

, (12)

where k2|| = k2y + k2z . Compared with the two forms of
retarded Green’s functions, the energy of the polaron state
can be determined as

EP = ReΣR
tot(k = 0, EP − μI), (13)

and the quasi-particle properties are characterized by

Z =
1

1− ∂ReΣR
tot

∂ω

, (14)

m

m∗
||
=

1 + ∂ReΣtot

∂ε||

1− ∂ReΣR
tot

∂ω

, (15)

Fig. 4: (a) Effective mass along the kx (solid) and k|| (dotted)
directions of the attractive polaron state. (b) Quasi-particle
residue (solid) and two-body decay rate (dotted) of the at-
tractive polaron state. Lines in all panels are plotted with
Γx/EF = 0.2 (blue), 0.5 (red), and 0.8 (green). Parameters
are chosen to be same as in fig. 3.

m

m∗
x

=
1 +

∂ReΣR
tot

∂εx

1− ∂ReΣR
tot

∂ω

, (16)

γ = −2ZImΣR
tot, (17)

In the expressions above, ε|| and εx are impurity disper-
sions along k|| and kx, respectively.

In fig. 3 and fig. 4, we show the energy, effective mass,
quasi-particle residue, and two-body decay rate for po-
laron states with different bath dissipation strength. As
depicted in figs. 3(a) and (b), the polaron energy increases
with dissipation strength for the attractive polaron branch
and decreases for the repulsive branch. The dependence
is negligible in the deep Bardeen-Cooper-Schrieffer (BCS)
limit for the attractive branch, and also in the Bose-
Einstein condensate (BEC) limit for the repulsive branch,
but becomes sizable around the unitary region. Owing to
the presence of the one-dimensional spin-orbit coupling,
the effective mass of the attractive polaron state acquires
an anisotropy with different m∗

x and m∗
||, as shown in

fig. 4(a). The two effective masses both increase monoton-
ically by crossing the Feshbach resonance from the BCS
side to the BEC side, implying that the dressing effect is
more significant on the impurity by the background with
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increasing interaction. On the other hand, the dissipation
tends to make the impurity less inert and reduce the ef-
fective masses in all directions. An interesting finding is
that for small dissipation, the polaron is easier to move
along the x-direction with m∗

x < m∗
||. But the anisotropy

inverses with increasing dissipation, showing a subtle com-
petition between dissipation and anisotropic energy dis-
persion induced by spin-orbit coupling.
In fig. 4(b), we plot the quasi-particle residue and two-

body decay rate of the attractive polaron state. Notice
that the impurity acquires larger quasi-particle residue
with increasing dissipation, indicating that the impurity
behaves more like an independent particle in that regime.
This observation is qualitatively consistent with the trends
shown in figs. 3(a) and 4(a). Finally, although the impu-
rity does not have a direct decay channel, a larger bath
dissipation will induce more severe decay of the attractive
polaron state. This increase of the polaron decay rate is
a direct result of the elevation of both the quasi-particle
residue Z and the imaginary part of retarded Green’s
function. Physically, it can be qualitatively understood
by noticing that when the damping magnitude Γx is in-
creased, the Fermi surface of the background would be
deformed to be more anisotropic, such that the surface
area and density of states are both enhanced. However,
we emphasize that our results are only restricted to weak
dissipation systems, where the non-self-consisitent method
we employed is considered to be valid. Another interest-
ing finding is that the decay rate γ is sensitively dependent
on the damping magnitude Γx on the strongly interacting
BEC regime, hence can be used as an experimental indi-
cator to reveal the effect induced by the lossy background
via radio-frequency spectroscopy [60].
Next, we investigate the polaron-molecule transition.

Owing to the strong attractive interaction in the BEC
regime, the impurity atom will be tightly bounded with
the bath fermion to form a dimer state. Such a transi-
tion point can be well described by the Thouless criterion
of pairing instability Γ−1(q = 0, iΩn = 0) = 0 for a non-
dissipative Fermi system. However, in the present configu-
ration of a dissipative bath, the Thouless criterion cannot
be fully satisfied due to the presence of an imaginary part
in the vertex function. Thus, we show in fig. 5(a) only the
real part of Γ−1(q = 0, iΩn = 0), and neglect its imagi-
nary part. We find that a larger bath dissipation tends to
push the polaron-molecule transition point from the deep
BEC limit towards the unitarity region, implying that the
molecule state is more favorable with stronger dissipation.
To make a direct connection with experiments, we

show in fig. 5(b) the spectrum function which can be
detected by spectroscopic measurement. Two peaks are
observed and can be attributed respectively to the at-
tractive and repulsive polaron states. By increasing the
dissipative strength from Γx/EF = 0.2 to Γx/EF = 0.8
with scattering length 1/askF = 0.5 and SOC strength
(k0/kF )

2 = 0.5, both peaks are shifted according to
the results of figs. 3(a) and (b), and are significantly

Fig. 5: (a) The Thouless criteria of the pairing instability for
different dissipative strength. In this scheme, the polaron-
molecule transition takes place at the point where Γ(0, 0)−1

reaches zero. (b) Spectrum function with different bath dissi-
pation for 1/askF = 0.5. Other parameters are chosen to be
same as in fig. 3.

extended with smaller intensity owing to the stronger
decay.

Interaction between attractive polarons. – In this
section, we consider the case of a finite impurity den-
sity to calculate the interaction between attractive po-
larons. Since the normal state of a highly imbalanced
Fermi mixture can be understood as a Fermi liquid at zero
temperature [61], the ground-state energy of this three
components Fermi gases can be written in the form of the
Landau-Pomeranchuk law as a function of the impurity
concentration x = nimp/nbath,

E = Ebath+f(Eb)x+g(m∗
||/m,m∗

x/m)x5/3+Fx2, (18)

where Ebath is the kinetic energy of the non-interacting
spin-orbit coupled bath. The second term comes from
the binding energy of the impurity quasi-particles in the
background Fermi sea, the third term corresponds to the
kinetic energy of the impurity atoms, and the last term
is defined as the energy arising from the polaron-polaron
interaction. The coefficient F of the last term thus la-
bels the interaction intensity which can be obtained by a
numerical fitting of the total energy.
With the Gibbs-Duhem relation ∂P/∂μB = nbath and

∂P/∂μI = nimp, we can obtain the grand-canonical equa-
tion of state

P =

∫ μB

min(Ek−)

nbath(μ)dμ+

∫ μI

0

nimp(μ)dμ. (19)

Here, P is the pressure of the system, min(Ek−) is the low-
est energy band of the dissipative spin-orbit coupled bath,
and μB and μI are the chemical potentials of the bath and
the impurity, respectively. We need to emphasize that μB

and μI are not the bare chemical potentials (Fermi en-
ergies) but include the contribution from the interaction.
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Fig. 6: Polaron-polaron interaction parameter F vs. scatter-
ing length with different dissipation strengths. Parameters are
chosen to be same as in fig. 3.

In order to get the total energy of the system, we convert
the equation of state to the canonical ensemble, and get
the relations of chemical potentials

nbath(μB) = nbath

(
1 + x

∂EP

∂μB

∣∣∣∣
μB=EBF

)
, (20)

μI = EP + EIF . (21)

Here, EBF = h̄2k2BF /2m and EIF = h̄2k2IF /2m. From the
first relation, we can have the renormalized bath chemi-
cal potential from the bare one (see the SM for details).
The second relation means that one has to cost a polaron
energy EP plus an impurity Fermi energy EIF to add an
impurity atom to the system with finite impurity concen-
tration. Then, we arrive at the canonical ensemble energy
function,

E = −
∑

i=B,I

PiVi +
∑

i=B,I

μiNi. (22)

Rearranging the total energy E in different powers of
x and fitting the coefficient of the x2 term, we can get
the polaron-polaron interacting parameter F vs. scat-
tering length with different dissipative strength Γx. As
illustrated in fig. 6, if the dissipative strength is small
(Γx/EF = 0.2), the parameter F increases first and then
decreases by crossing the Feshbach resonance from the
BCS to the BEC sides. However, if the dissipation is large
enough, e.g., Γx/EF = 0.5, F keeps increasing in the pa-
rameter region of scattering length considered here. We
also note that the polaron-polaron interaction is enhanced
by the dissipation within the entire parameter range shown
in fig. 6. This observation can be attributed to the fol-
lowing two reasons. First, the quasi-particle residue is in-
creased with dissipation as depicted in fig. 4(b), and hence
contribute positively to the interaction strength [59]. In
addition, the dissipative term of Γx induces anisotropy
into the Fermi background, which leads to a deformed
effective Fermi surface with a larger surface area and
enhanced density of states. The polaron-polaron interac-
tion can also be calculated by a combined theory of Lan-
dau Fermi liquid and microscopic self-consistent method,

which can also be applied to the repulsive branch. How-
ever, owing to the anisotropy induced by the spin-orbit
coupling, this method is very costly in numerics as dis-
cussed in the SM.

Conclusion and outlook. – In conclusion, we propose
an experimentally feasible realization of a non-Hermitian
spin-orbit coupled bath. Based on the effective Hamil-
tonian of the bath gases, we use non-self-consistent T -
matrix theory to solve the polaron problem in the weak
dissipation regime. We obtain the variation of the po-
laron energy and quasi-particle parameters with different
bath dissipation strength. Furthermore, we use Landau-
Pomeranchuk energy to describe the system energy in
the low impurity concentration [61], and investigate the
polaron-polaron interaction for different scattering lengths
and bath dissipations.
We also notice that Wasak et al. have used the Keldysh

Green’s function method to solve the dissipative polaron
and molecule states in the absence of spin-orbit cou-
pling [62]. However, in our system, there is no direct
dissipation for the impurity. The dissipation bath, there-
fore, provides a complex self-energy to the impurity atom,
which is similar to the finite temperature polaron or the re-
pulsive polaron states. So, we can omit the jump terms in
the Lindblad equation, and use an effective non-Hermitian
Hamiltonian and many-body T -matrix [48] to solve the
polaron problem.
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