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Abstract – The magnetoresistance theory of the edge state of a two-dimensional topological
insulator is developed. The magnetic field violates the time reversal invariance. Magnetoresistance
arises due to the energy gap opened by a magnetic field. The combined action of impurities and
magnetic field causes the backscattering of edge electrons. Although impurities are necessary for
scattering, a sufficiently strong interaction with impurities leads to backscattering suppression.

Copyright c© 2021 EPLA

Introduction. – The edge states of 2D topological in-
sulators is one of the most inspiring problems of modern
solid state physics. It was shown that these states possess
the so-called topological protection, preventing an elec-
tron from backscattering. At the moment there is a large
and rapidly growing number of publications on this issue
(see, e.g., [1–4]). The study of the edge states conductance
of the two-dimensional topological insulator assumes their
topological protection. This makes backscattering prohib-
ited or extremely weak. Therefore, one-dimensional states
are collisionless and the conductance of electrons on them
is e2/h.

There were some attempts to realize the mechanisms
violating the time reversibility and, therefore, causing
backscattering. In particular, refs. [5,6] ascribe backscat-
tering to the transitions between the edges with an op-
posite direction of the travel of same-spin electrons. The
transitions between the opposite edges of a TI strip were
considered also in ref. [7].

The present paper was stimulated by the experimen-
tal finding [8] of the strong magnetoresistence of the edge
state electron conductance. The important experimental
fact that has to be explained is the presence of magne-
toresistance, as well as its gigantic value and fluctuations
with the Fermi level. Unusual is the sensitivity of 1D edge
states to the magnetic field, which is absent in other 1D
systems. The results of [8] cannot be explained by means
of interedge transitions [7] due to a large TI strip width
value in the experimental conditions.

(a)E-mail: brag@isp.nsc.ru (corresponding author)

The model is based on the one-dimensional Hamiltonian

H = σzvp+ V (x) +Hnd =
(
vp+ V (x) Δ1

Δ∗
1 −vp+ V (x)

)
.

(1)

Here p and v are the electron momentum and velocity, σi

are the Pauli matrices, and V (x) is the impurity potential.
Hamiltonian (1) is the simplest one that violates the time
reversal invariance in the magnetic field and leads to the
gap 2|Δ1| at p = 0.

The gap in the electron spectrum of the 2D topological
insulator arises in the magnetic field B via the off-diagonal
Zeeman Hamiltonian [9]

Hnd =
μB

2
gijσiBj . (2)

Here μB is the Bohr magneton. Within the 4 × 4 kp
Bernevig-Hue-Zhang Hamiltonian for the grown (0, 0, 1)
CdTe-HgTe-CdTe structure, the non-zero g-factor compo-
nents are

gxx =
1
2
(g||

e − g
||
h),

gyy =
1
2
(g||

e + g
||
h)

−δ√
δ2 + γ2

,

gyz =
2m0A2

h̄2

−δγ
(δ2 + γ2)3/2

.

(3)

Component gzz can be excluded by the gauge transfor-
mation. Parameters A = 3.6 eV Å, B = −68 eV Å

2
,

γ = 5 meV, g||
e = −20, and g

||
h = 0 are the standard
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parameters of the bulk HgTe Hamiltonian [10]. The cal-
culations using ref. [9] data yield gxx = −10, gyy = −8.9,
and gyz = 135.

We see that the value of gyz essentially exceeds those
of gxx and gyy. Taking into account that these compo-
nents are incorporated into the final result quadratically,
we conclude that the sensitivity of the conductivity to the
out-of-plane magnetic field is much stronger than that to
the in-plane magnetic field.

If Bz = 0, then Δ1 = gμBB = μB(gxxBx + igyyBy) for
the (0,0,1) orientation. Here μB is the Bohr magneton, gxx

and gyy are the g-factor components in the specimen plane,
g = gxx cos θ + igyy sin θ, where θ is the angle between B
and the edge direction (0x).

The gap is

2|Δ1| = μB

√
g2

xxB
2
x + g2

yyB
2
y .

At a weak in-plane magnetic field the gap is negligible.
However, the presence of the off-diagonal part Hnd in
the Hamiltonian (1), together with the impurity poten-
tial, leads the electrons to backscattering. The potential
itself does not cause any transitions between the states.

The backscattering time τ is the most important pa-
rameter of the electron transport at the edge states both
in classical and localization regimes. The purpose of the
present paper is to obtain τ in the presence of magnetic
field.

Magneto-induced backscattering. – The self-
functions of the Hamiltonian (1) corresponding to the en-
ergies ε± = ±vp at B = 0 are

ψ+ =
1√
L

(
1
0

)
eipx+i

∫
dxV (x)/v,

ψ− =
1√
L

(
0
1

)
eipx−i

∫
dxV (x)/v.

The backscattering amplitude is determined by the first-
order perturbation on the non-diagonal part of the Hamil-
tonian Hnd ∝ Δ1, i.e., the matrix element between the
|ψ−p,−σ〉 and |ψp,σ〉 states of the same energy εp,σ:

A = 〈ψ−p,−|Hnd|ψp,+〉

=
Δ1

L

∫ L

−L

exp
(

2ipx+
2i
v

∫
V (x) dx

)
dx.

Weak impurity potential. The perturbation the-
ory. – In the first order with regard to potential V (x) we
find:

A = 2i〈ψ−p,−|Hnd|ψp,+〉 =
2iΔ1

Lpv
Ṽ (2p),

Ṽ (p) =
∫ ∞

−∞
V (x)eipxdx.

Consider the electron scattering at the impurity poten-
tial V (r) =

∑
n u(r − rn), where rn is the n-th impurity

position and u(r − rn) is its potential. The probability of
backscattering has to be averaged over the random impu-
rity positions in the 2D layer, so that

1/τ =
L

v
〈|A|2〉. (4)

The 2D Fourier transform of the Coulomb impurity is

u(q) =
2πe2

κq
.

Therefore,

〈|V (qx)|2〉 = ni

∫
dqy
2π

u2(q) = 2π2ni
e4

qxκ2
, q2 = q2x + q2y.

Here ni is the impurity density. For the backscattering
probability we find

1/τ0 =
8π2e4ni|Δ1|2
h̄κ2(vpF )3

=
8e4ni|Δ1|2
h̄4κ2v3πn3

e

, (5)

where ne is the 1D electron density.
Let us estimate the value of τ0 for out-of-plane magnetic

field Bz = 1 T. Utilizing parameters v = 4.2 ·107 cm/s [11]
ne = 106 cm−1, ni = 1011 cm−2, and κ = 20, we obtain
τ0 = 0.2 ·10−9 s. However, τ0 = 36.5 ·10−9 for the in-plane
magnetic field Bz = By = 0, and Bx = 1 T.

The probability (5) essentially increases at a small elec-
tron density. Therefore, screening of the Coulomb poten-
tial by the gate has to be taken into account. Then

u(q) =
2πe2

κq
(1 − e−2qd). (6)

Here d is the distance to the gate. The last factor in
eq. (6) limits the impurity matrix elements to small q val-
ues. Therefore, for the 1/τ value, we obtain:

1
τ

=
8π2e4ni|Δ1|2
h̄κ2(vpF )3

φ(pFd), (7)

where

φ(y) =
2
π

∫ ∞

0

(1 − e−4y cosh t)2

cosh t
dt,

φ(y) ≈ 16y ln 2/π at y � 1 and φ(y) → 1 at y → ∞.
Thus, screening reduces the divergence of the 1/τ value
at a small electron density: τ ∝ n2

e, instead of τ ∝ n3
e for

ne → 0.
It should be noted that the expressions obtained in this

section hold only for small impurity potentials. This con-
firms the applicability of the perturbation theory for this
potential as well as for the gap value.

Strong impurity potential. – The conductivity of an
electron gas with a quadratic spectrum is too complicated
if it is considered beyond the frames of the perturbation
theory. This is not the case for the 1D electron gas with
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Fig. 1: 1/τ (in units of 1/τ∗ = 2(gμBB)2d/(vh̄2)) vs. s and β
(shown at the curves).

a linear spectrum because this problem has an exact solu-
tion [12]. This allows us to obtain the result at ne → 0.

Consider the problem of a small gap and arbitrary im-
purity potential. Assume the random impurity potential
obeys the Gaussian distribution. This is correct if |u(r −
rn| � vpF . Then, in the Gaussian approximation from
eq. (4), we obtain

〈|A|2〉 = L−2|Δ1|2
∫ ∫

exp
[
2ip(x− x′)

− 4
v2

∫ ∫ x

x′
dx1dx2W (x1 − x2)

]
dxdx′,

where

W (x−x′) ≡
∫ ∞

−∞
dk(2π)−1e−ik(x−x′)W̃ (k) = 〈V (x)V (x′)〉

is the potential correlation function. Its Fourier transform
is

W̃ (k) =
4π2e4

κ2
ni
φ(kd/2)

k
.

Then using eq. (4) we obtain

1
τ

= 2(d/v)|Δ1|2 (8)

×
∫ ∞

−∞
dz cos(sz) exp

(
−β

∫
dy
y3
φ(y/2) sin2(yz)

)
,

s = 4pFd/h̄, β =
2πe4

κ2v2h̄2nid
2.

The dependence of 1/τ vs. s is presented in fig. 1. At
Bz = 1 T and d = 10−6 cm τ∗ ≈ 0.2 · 10−11 s. We have
restored h̄ in the last expression. The 1/τ quantity has
linear dependence on β at small β values (or at a small
impurity density, in agreement with eqs. (5), (7)). At large
β this dependence has an exponential decrease. This de-
crease results from the random potential, which increases
the local Fermi momentum and, consequently, reduces the
scattering.

Electron transport on the edge states. – In the
classical approach the edge conductivity of an infinite sam-
ple at a low temperature is expressed via the backscatter-
ing time τ by the Drude expression

σ =
e2τv

π
. (9)

The classical approach requires the absence of the phase
coherence at a finite temperature (similar problem was
considered in connection with the TI strip [7]). The phase
coherence violates the applicability of the classical ap-
proach. The dephasing occurs due to non-elastic processes
(e.g., electron-phonon interaction) when an electron, trav-
eling at the distance vτ forward and backward, randomly
changes the phase to an opposite one. Dephasing origi-
nates from the the phonon field fluctuations in the absence
of transitions between the electron branches and may not
include backscattering. Hence, at a small magnetic field
and finite temperature, the backscattering can be weaker
than the dephasing. That restores the classical approach.

This means that the conductivity obeys the Drude ex-
pression (9). At zero temperature, however, the dephasing
is switched out. In this case the edge states become local-
ized. Therefore, we need to consider the conductance G of
a finite sample with a length L. Without backscattering
the zero temperature conductance of the edge state G is
equal to the conductance quantum G0 = e2/h indepen-
dently of the edge length.

The presence of backscattering leads to the localization
of the edge states and, therefore, to the exponential drop of
the conductance, if the edge length exceeds the backscat-
tering length: lnG/G0 ∝ −L/vτ ; or lnG/G0 ∝ −B2

in agreement with the obtained τ behavior. Then the
τ dependence on the magnetic field results in the magne-
toconductivity of an infinite sample as well as magneto-
conductance of a finite sample. They are characterized by
negative quadratic dependencies on a low magnetic field.

Discussions. – Thus, we found that the magnetic field
results in the elastic backscattering of the edge states elec-
trons with the linear spectrum. At zero temperature this
scattering leads to the localization in an infinite system.
In the system of finite size L the zero-temperature con-
ductance G exponentially decays with the ratio of L to
the back scattering length vτ . The dependence τ ∝ B2

yields a similar dependence of logG.
At non-zero temperature the finite conductivity of infi-

nite system is established due to dephasing processes. At
low B the dephasing time is shorter than τ . In this case
the conductivity is proportional to B−2.

It is shown that the probability of backscattering in-
creases with the impurity concentration at a low con-
centration followed by a decrease at a high impurity
concentration.

Note that our results are correct, if only the Fermi level
is far apart from the gap |EF | � |Δ1|. This is necessary
to justify the expansion over the magnetic field.
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We have found that the out-of-plane magnetic field is
much more effective for magnetoresistance than the in-
plane one. However, this result has been obtained in
the Bernevig-Hueghes-Zhang model with the interface-
induced mixing of the electron and heavy hole states. It
can be revised in a more general model.

Another note concerns the non-magnetic backscatter-
ing mechanisms. It is shown in [13] that in a TI with a
smooth edge the overlapping of linear topology-protected
edge states with Dirac gapped branches leads to elas-
tic backscattering. In this case, the magneto-induced
backscattering complements the latter in the energy do-
mains where these kinds of scattering coexist.

∗ ∗ ∗
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