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Abstract – We experimentally demonstrate critical collective behavior in a system of active
colloidal particles (APs), achieved through variations of their mutual interactions using feedback
control. At the transition between a swarm and a swirl we observe an explicit bifurcation dynamics
of the rotational order parameter and a critical slowing down, i.e., a growth of the relaxation time
by almost one order of magnitude. Additional signatures of critical dynamics, including hysteresis
in presence of symmetry-breaking particle interactions, and a maximum of the susceptibility, are
measured and characterized in terms of a theoretical model which is based purely on the time-
reversal symmetry of the order parameter.
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Introduction. – Many animals self-organize into
groups to gain benefits regarding foraging, mating, pro-
tection against predators and other functional properties.
To respond to changes within their environment, however,
they should also be able to vary their collective dynamics.
Consequently, complex systems often exhibit distinct dy-
namical states which are separated by bifurcation points.
Near such critical points, the system’s properties change
dramatically, leading to an enhanced sensitivity and re-
sponse to external perturbations while maintaining ro-
bustness through collective behavior. Indeed, evidence
for the operation of living groups near a critical point is
provided by studies with starling flocks [1–4], schooling
fish [5], groups of insects [6–9], and even yeast cells [10].
In these systems, typical hallmarks for critical behavior
such as scale-free spatial correlations, dynamical instabil-
ities and a maximum in the susceptibility have been ob-
served. However, because communication channels and
interactions in living systems are often unclear and even

(a)E-mail: clemens.bechinger@uni-konstanz.de (corresponding
author)

more difficult to change, evidence of critical behavior is
essentially based on the properties of groups as a func-
tion of their spatial extension and density. Currently it
is not clear whether collective states can also be maneu-
vered to a critical point merely by adjusting the behavior
of individuals.

Active colloidal particles (APs) provide an intriguing
testbed for investigating collective behavior since they
closely mimic many features of living systems [11–14].
More recently, special attention has been given to sys-
tems of APs that are able to replicate interactions sim-
ilar to those found in living systems, including mutual
alignment and attraction but also collision avoidance with
neighbors, which results in the spontaneous formation of
swarms, flocks and swirls [15–18]. Notably, interaction
rules can be continuously varied in such systems. Here
we demonstrate that critical behavior in our system can
be achieved in a controlled fashion by altering dynami-
cal interaction rules while keeping other factors such as
density and noise strength unchanged. At the bifurcation
from swarming to swirling we also observe the emergence
of critical slowing down. Additionally, we show that the
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Fig. 1: Transition from swarming to swirling. (a) Sketch of the interaction rule which is followed by each AP. An AP (red) aims
to propel itself in a direction (green arrows) which deviates by a fixed angle ±Δ to the left (dashed green arrow) or right (solid
green arrow) relative to the center of mass (COM, black line). The left/right decision depends on the mean orientation 〈û〉i

of its neighbors (blue). (b)–(d) Experimental snapshots superimposed on particle trajectories, demonstrating the continuous
transition from a swarm to a swirl achieved by setting the deviation angle to Δ = 0◦, 22.5◦ and 45◦, respectively. The scale bar
corresponds to 30 μm.

rotational order parameter OR follows a hysteresis loop
when the symmetry of particle interactions is broken. This
allows us to directly measure the system’s response to per-
turbations, i.e., the susceptibility, which has a maximum
at the critical point. The observed signatures of critical
dynamics are in agreement with a theoretical model which
only considers the time-reversal symmetry of OR being
obeyed in our system, but is independent of the absolute
size and dynamics of single particles. Our results indi-
cate that the collective dynamics in living or responsive
systems can be tuned by modifying interactions between
constituents. This can be viewed in analogy to critical be-
havior achieved by changing control parameters (e.g., tem-
perature, pressure, density, etc.) or interaction strengths
in various physical systems, which suggests that similar
collective behavior may be found in many other systems
with comparable symmetries.

Methods. – Light-sensitive APs are fabricated from
transparent silica particles with diameter σ = 6.3 μm, and
coated on one side with a 80 nm light absorbing carbon
cap. They are suspended in a water-lutidine mixture con-
tained in a thin sample cell whose temperature is kept
below the fluid’s lower demixing point at about 34 ◦C.
Upon light illumination, the caps are selectively heated,
which leads to a two-dimensional self-propelled, i.e., ac-
tive, AP motion due to fluid flows relative to the APs’
surfaces [19,20]. Individual translational and orientational
interactions between APs are achieved by tuning the in-
tensity and displacement (relative to the cap center) of the
laser focus which is scanned across all particles whose posi-
tions are determined and continuously updated via image
analysis in real time. For details we refer to [17]. This al-
lows particles to stop, move forward or turn to the left and
right, depending on a chosen interaction rule with their
neighbors [16,17,21]. Because these rules are executed in
a real environment, AP motion is not deterministic (sim-
ilar to living systems) but strongly affected by (thermal)
fluctuations, avoidance of particle collisions, and hetero-
geneities of the motional behavior.

Motivated by perception models that successfully re-
produce behaviors in schooling fish [22,23], the following
interaction rule is applied: Each AP aims to move towards
the center of mass (COM) of the group but with an an-
gular deviation Δ to the left (+) or the right (−). The
choice of the sign of Δ depends on the mean swimming
direction (polarization) 〈u〉i of its neighbors within a dis-
tance Ro = 25 μm ≈ 4σ (fig. 1(a)). To achieve alignment
with neighbors, each AP selects that sign of Δ which is
closer to 〈u〉i. To minimize particle collisions, they turn
away from each other when their clearance, i.e., surface-to-
surface distance is below 0.25σ. The number of particles
was kept constant to N = 48 in all our experiments.

Landau-type description and bifurcation. – The
collective behavior of the APs strongly depends on the
value of the deviation angle Δ, which can be freely var-
ied in our experiments (figs. 1(b)–(d)). At small Δ, the
motion of APs is essentially towards the group center; this
leads to a disordered cohesive swarm. Increasing Δ in-
creases tangential components of the AP motion, which
leads to the formation of swirls with a random sense of
rotation. To quantify the rotational component of the
particle motion, we define the rotational order parameter
OR = 1

N

∑N
i=1(r̂i × ûi) · ez, which is proportional to the

angular momentum, and measures the in-plane circular
motion of the entire group. Here, r̂i denotes the unit vec-
tor from the group center to the i-th AP, ez the unit vector
perpendicular to the sample plane and ûi the orientation
of the AP, respectively. Although OR does not resolve the
motion of individual APs, in the following we show that it
correctly describes the distinct dynamical states (swarms
and swirls) observed in our experiments.

Because OR is a stochastic quantity which, in the ab-
sence of a symmetry-breaking external field, has odd time-
reversal symmetry (i.e., OR changes its sign under the
operation of time-reversal), its equation of motion has the
general form

∂

∂t
OR = −aOR − bO3

R + O(O5
R) + η(t), (1)
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Fig. 2: Dynamics of the rotational order parameter. (a) Time derivative of the rotational order parameter dOR/dt obtained
from experiments (symbols) and for different values of Δ. For each value of OR, the symbols show the mean of all occurrences
and the grey scale corresponds to statistics of data (increasing from white to black). Red solid lines are a fit to eq. (1) with a
and b as free fitting parameters. (b), (c): dependence of a and b on Δ. Error bars correspond to the 95% confidence bounds of
the fit. Red lines indicate a linear decrease of a(Δ) for Δ ≤ 45◦ and b(Δ) = const for Δ > 30◦. For Δ � ΔC the value of a
begins to saturate, as the bonds of −1 ≤ OR ≤ 1 are not captured by our minimal model. (d) Bifurcation in the steady state
solution 〈OR〉∗ = ±Re (

√−a/b). The red line corresponds to the values of a and b obtained from the red lines in (b), (c).

where we neglect terms of higher than cubic order. In the
spirit of Landau, we have added terms permissible by the
symmetries [24]. The noise η has zero mean, and can be
considered Gaussian to first approximation: 〈η(t)〉 = 0,
〈η(t)η(t′)〉 = 2kBTeffδ(t − t′). Here the noise strength
is set by an effective temperature Teff , and kB is Boltz-
mann’s constant. The minus signs are chosen such that
∂
∂tOR = −∂V (OR)

∂OR
+ η(t), where we have defined the po-

tential V (OR) = a
2O2

R + b
4O4

R.
The Langevin equation above is the simplest stochas-

tic model to describe the non-trivial dynamics of the ro-
tational order parameter. As a simple order parameter
description, it does not have the complexity of spatially re-
solved Landau-Ginzburg–type field theories [24,25] which
have also been extensively applied to flocking [26].

Figure 2(a) shows the experimentally obtained time
derivative of the order parameter dOR/dt for different
values of Δ. The grey scale of the data points marks
the frequency of occurrence of each value in our exper-
iments. Fitting the data to eq. (1) (red lines), we find
excellent agreement with our experiments, which allows
us to extract a and b explicitly (figs. 2(b), (c)). An imme-
diate consequence of eq. (1) is a bifurcation of the average
steady state order parameter 〈OR〉∗ = ±Re (

√−a/b) at
the critical point Δc, where a(Δc) ≈ 0. In our system,
this condition is met at Δc ≈ 28◦. Indeed, this bifurca-
tion is observed in the data, as shown in fig. 2(d). This

is a first indication of critical slowing down because the
timescale τ = a−1 diverges if a → 0. Figures 2(b), (c)
also show that for Δ � 40◦, a(Δ) ∝ Δ − Δc, while b(Δ)
is essentially constant. This scaling is reminiscent of the
behavior of the expansion coefficients in Landau-type po-
tentials near the critical point, where a generically van-
ishes in linear fashion [24]. For sufficiently large values of
Δ, a(Δ) saturates because the measured OR is bounded
between −1 and 1; this aspect, which is not captured by
the simple Landau-type potential assumed above, would
require the inclusion of higher-order terms.

Critical slowing down. – The presence of a bifur-
cation implies a timescale τ = a−1 which should diverge
near the critical point Δc. Direct evidence for critical
slowing down is provided by investigating the dynamics
of OR, which should strongly depend on the proximity of
Δ to Δc. Signatures of such dynamical regimes typically
appear in autocorrelation functions, as have been observed
for natural swarms [27]. Figures 3(a), (b) show the auto-
correlation function of OR below the critical point (i.e.,
Δ < Δc), and the corresponding timescales arising from
a double-exponential fit to the data, respectively. In gen-
eral, the decay of the autocorrelation in our experiments
is well described by two timescales. At Δ ∼= 0◦ the auto-
correlation function of the rotational order parameter OR

is mainly governed by a short timescale τ1 ≈ 10 s. This
timescale is observed independently of the value of Δ, and
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Fig. 3: Autocorrelation of the rotational order parameter near the critical point. (a) Normalized autocorrelation of the rotational
order parameter C(OR) = 〈OR(t) ·OR(t+Δt)〉 for different values of Δ (solid lines). Dashed lines correspond to a superposition
of two exponential decays of the form A1 exp(−Δt/τ1) + A2 exp(−Δt/τ2), where A1, A2, τ1 and τ2 are used as free fitting
parameters. (b) Dependence of the timescales τ1, τ2 on the deviation angle Δ, color coded by the respective fitted amplitude
A1, A2. In the vicinity of the critical point τ2 rises and becomes the dominant timescale of the dynamics. Error bars correspond
to the 95% confidence interval of the fitting parameter.

is attributed to the single particle dynamics within the
group, which is largely determined by the attraction to the
group’s center and nearest neighbor repulsion that avoids
particle collisions. Upon approaching Δc, however, an ad-
ditional time scale τ2 appears, which eventually dominates
the dynamics of OR near Δc. This collective timescale
shows clear evidence for critical slowing down, as it in-
creases from around 200 s up to 1800 s close to the bifurca-
tion. Proximity to the critical point therefore significantly
affects relaxation of order parameter correlations, leading
to enhanced collective behavior of the swarm. While, at
first glance, long relaxation times may appear to be detri-
mental, they can provide the system with longer collective
response and processing times than those available at the
single particle level [28]. Above the bifurcation, where the
potential has two minima, the collective dynamics is gov-
erned by noise-activated transitions between clockwise and
counterclockwise rotating swirls. This dynamics, however,
is difficult to resolve due to rotational reversals becoming
increasingly unlikely as Δ is increased.

Hysteresis. – As shown above, the dynamical col-
lective behavior of APs displays striking similarities
with the Landau model of magnetism. This correspon-
dence is further supported by breaking the clockwise-
counterclockwise symmetry of swirls in analogy to biasing
the spin orientation in a magnet by application of an exter-
nal magnetic field. Such an asymmetry can be introduced
by adding a slight preference to the particles’ decision to
swim to the left or the right of the center. Formally, this
is achieved by making the particle’s left/right decision de-
pendent on 〈ũ〉i = 〈û〉i−h(r̂i×ez), where h quantifies the
strength of the symmetry breaking and h < 0 (h > 0) cor-
responds to a preference for clockwise (counterclockwise)
swirl rotation.

Figures 4(a)–(f) show the influence of h on the order pa-
rameter for different values of the deviation angle Δ. The

data points correspond to the measured mean value of OR

in the final state, after h was initially set to +∞ (blue)
and −∞ (red) and then suddenly reduced to a finite value
of h. While for Δ < Δc the value of OR is independent
of the initial state (figs. 4(a), (b)), a pronounced hystere-
sis is observed for Δ > Δc (figs. 4(c)–(f)), as expected.
The data has been fitted with a function analogous to the
mean-field solution of the Ising model [29],

OR(h) = A tanh(BOR + Ch), (2)

which describes our data well as seen by the solid red and
blue curves in figs. 4(a)–(f). The free fit parameters A
and B correspond to the saturation value of OR in the
limit h → ∞ and the depth of the hysteresis loop. As
the noise in our system is expected to be independent of
Δ, the scaling of h, which corresponds to the curvature
of the function, has been fixed to C = 8, yielding best
agreement for all curves. It should be noted that eq. (2)
describes the solution in the static T = 0 case and predicts
an instantaneous jump at the turning point of the implicit
function OR(h). It is known that this description fails to
fully describe an Ising model with finite noise, where hys-
teresis is always a dynamic feature and not present as a
static solution. Therefore, only the range from the ini-
tialized h to the turning point was taken into account to
fit parameters, i.e., only data points where OR(h) > 0 for
hinitial = ∞ and OR(h) < 0 for hinitial = −∞, respectively,
were fitted. The data points Odata

R selected by these cri-
teria are displayed as solid markers in fig. 4. Fitting of
the parameters was performed by numerically calculating
minA,B

∑ |A tanh(BOdata
R + Chdata)|2.

The hysteresis curves also enable us to directly calculate
the group’s susceptibility which is given by χ = dOR

dh |h=0.
After numerically solving for OR,0 = OR(A, B, h = 0),
we obtain the susceptibility χ = 2AC/(1 − 2AB +
cosh(2BOR,0)). With the parameters obtained from the
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Fig. 4: Hysteresis and susceptibility. (a)–(f) Dependence of 〈OR〉 on the parameter h for different values of Δ. After the group’s
initial state is prepared with h = ∞ (blue) or h = −∞ (red), h is suddenly changed to a finite value. For Δ < Δc, the final state
is independent of the initial state ((a), (b)), while for Δ > Δc hysteresis is observed ((c)–(f)). Symbols correspond to different
measurements, and the solid lines to a fit of the solid symbols to eq. (2) with free fitting parameters A, B. Dashed grey lines
are guides to the eye indicating the hysteretic jumps of OR. (g) Susceptibility χ evaluated from the slope of the fitted curves
at h = 0. The error bars (shown as grey band) correspond to the 70% confidence intervals of A and B.

fit, we find a clear maximum whose position is consistent
with the location of the bifurcation point. We remark that
the susceptibility here is obtained from a direct response
measurement, and not from equilibrium properties via the
fluctuation-dissipation theorem; the latter is typically used
for the analysis of χ in living systems [5].

Discussion. – Our experiments support a generic rela-
tionship between collective dynamical states and a critical
point in a system of roughly 50 APs. Despite the finite size
of particle groups, the system exhibits a clear dynamical
bifurcation and critical slowing at the transition between
a swarm and a swirl. We emphasize that the form of col-
lective behavior observed in our system is absent when Ro

is comparable with the spatial extension of swirls. For the
parameters used in this work this corresponds to N ≤ 15.
In that regime, the dynamics is complex and cannot be
captured by a simple model. Upon increasing the par-
ticle number somewhat, swirls and flocks emerge. It is
remarkable that at these sizes, this system also exhibits
clear bifurcation behavior which is captured very well by
a simple coarse-grained model in which a “microscopic”
quantity has been averaged over all constituents. Impor-
tantly, the system’s proximity to the critical point is var-
ied by mere changes of mutual interactions between APs
which are similar to interactions typically considered in
models of living systems. While there seems to be broad
consensus in the literature regarding the advantages for bi-
ological systems operating close to a “critical point”, most
biological systems are of finite size and therefore not nec-
essarily amenable to a proper field-theoretic description in
the infinite size limit. Our work demonstrates that several
advantages of a “critical point” remain (and can be classi-
fied in terms of the more basic concept of a bifurcation of
a homogeneous order parameter) in a system consisting of
a large but finite number of entities with well-controlled

interactions. In general, we expect such critical behav-
ior to persist even when interaction rules are not identical
for all APs, but vary slightly within the group, reflect-
ing natural distributions of behaviors in living systems.
This notion is motivated by observations in Ising-type
systems, where the critical point is not removed by the
presence of certain defects or types of disorder [30,31].
Contrary to infinite systems, where the algebraic diver-
gence of the susceptibility and collective relaxation time
allows one to precisely estimate the position of a criti-
cal point, such dependence does not necessarily hold for
finite-sized groups [32]. Even under such conditions, how-
ever, the proximity to a critical point may be announced
by generic early warning signals as they are suggested to
occur in critical systems [33,34]. At larger system sizes,
it may be necessary to invoke field theories for a spatially
resolved coarse-grained description.
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hardt C., Volpe G. and Volpe G., Rev. Mod. Phys.,
88 (2016) 045006.

[13] Cates M. E., Rep. Prog. Phys., 75 (2012) 042601.
[14] Ginot F., Theurkauff I., Detcheverry F., Ybert

C. and Cottin-Bizonne C., Nat. Commun., 9 (2018)
696.

[15] Khadka U., Holubec V., Yang H. and Cichos F., Nat.
Commun., 9 (2018) 3864.
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