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Abstract – Gibbons and Hawking (Phys. Rev. D, 15 (1977) 2738) have shown that the horizon of
de Sitter space emits radiation in the same way as the event horizon of the black hole. But actual
cosmological horizons are not event horizons, except in de Sitter space. Nevertheless, this paper
proves Gibbons’ and Hawking’s radiation formula as an exact result for any flat space expanding
with strictly positive Hubble parameter. The paper gives visual and intuitive insight into why
this is the case. The paper also indicates how cosmological horizons are related to the dynamical
Casimir effect, which makes experimental tests with laboratory analogues possible.
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Introduction. – Horizons are known [1] to turn quan-
tum fluctuations into radiation. The event horizon [2] of
a black hole radiates [3]. The causal horizon [2] of acceler-
ated observers is predicted to radiate [4–7]. What about
cosmological horizons [8], will they radiate as well? Gib-
bons and Hawking have shown [9] that exponentially ex-
panding flat space —de Sitter space [10]— emits thermal
radiation with temperature

kBT =
h̄H

2π
, (1)

where kB denotes Boltzmann’s constant, h̄ the reduced
Planck constant and H the Hubble parameter [11]

H =
ȧ

a
(2)

that is constant if the expansion factor a grows expo-
nentially with cosmological time t. This regime of ex-
ponential growth is believed to be the asymptotic limit
of the expanding universe. The actual expansion [12] is
non-exponential with varying Hubble parameterH [13,14].
Will Gibbons’ and Hawking’s result (1) remain valid?
This question appears far from being trivial if we con-

sider what cosmological horizons are and what they are
not [14]. Imagine an arbitrary point co-moving with the
universe. According to Hubble’s law [8] the rest of the
universe appears to withdraw from this point with a ve-
locity that grows as H� with proper distance �. At some

(a)E-mail: ulf.leonhardt@weizmann.ac.il (corresponding au-
thor)

distance �H the expansion velocity H�H reaches the speed
of light c. The sphere with radius �H around the point
is called the Hubble sphere and its surface the cosmologi-
cal horizon. One would expect that no light from beyond
that sphere would ever enter it (and reach the point in
its center) but this is not true [14]. According to the
cosmological standard model1 all galaxies with redshifts
z > 1.6 lie beyond our horizon, and yet they are visible.
Not to mention the Cosmic Microwave Background that
originates from z ∼ 103. Figure 1 shows how this is pos-
sible. The figure also illustrates that the asymptotic de
Sitter horizon does prevent light from entering its Hubble
sphere. The de Sitter horizon is an event horizon [2] which
justifies Gibbons’ and Hawking’s theory [9], but the actual
cosmological horizon is not. So will it radiate? And if it
does what is its temperature?

The answer to this question is not entirely academic,
despite the temperature of eq. (1) being in the range
of 10−29 K for the present Hubble parameter [15,16]. It
turns out [17] that the Gibbons-Hawking effect is essen-
tial for establishing the correct order of magnitude of the
cosmological constant Λ from the Lifshitz theory of vac-
uum fluctuations [18,19]. Furthermore, Λ responds to
changes in the inverse Gibbons-Hawking temperature with
time, which may resolve [20] one of the major puzzles
in contemporary astrophysics [21], the tension between

1We use the standard ΛCDM model with parameters inferred
from measurements of the Cosmic Microwave Background: H2 =
H2

0 (ΩRa−4 + ΩMa−3 + ΩΛ) with time in units of 1/H0 and ΩR =
0.925× 10−4, ΩM = 0.3153± 0.0073, ΩΛ = 0.6847± 0.0073.
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the present Hubble parameter inferred from the early [15]
or the late [16] cosmic evolution. The literature dis-
agrees whether eq. (1) holds in general with arguments
in favor [2,17,22] or against [23,24]. Reference [17] uses
a fluid-mechanical analogue [25–29] to establish eq. (1)
for arbitrary cosmic expansion. Here I prove eq. (1)
without analogues as an exact result for any H(t) > 0
(and conformally invariant quantum fields in a classical
Friedmann-Lemâıtre-Robertson-Walker metric with zero
spatial curvature).

Visualization. – For simplicity, and in agreement with
astronomical observation [30], space is assumed to be flat
with time-dependent length scale, the expansion factor
a(t) > 0. Space-time is not flat; the space-time metric
reads

ds2 = c2dt2 − a2 dr2 (3)

and has, for non-zero H, non-zero Riemann curvature2.
In conformal time

τ =

∫
dt

a
(4)

the metric (3) reduces to ds2 = a2(c2dτ2 − dr2). Light
rays (ds = 0) thus propagate in conformal time τ and co-
moving space r like in flat Minkowski space —along the
diagonals in a (cτ, r) space-time diagram (fig. 1).

Consider radially incident rays. They encounter the cos-
mological horizon at r = c/(aH), because there the time
derivative of the proper distance ar reaches c. The horizon
separates the stream of incident light into light falling in
and light staying outside, if the horizon is light-like itself,
which is only the case for de Sitter space where H = const.
Only the de Sitter horizon (fig. 1) is an event horizon. Oth-
erwise light is able to cross the cosmological horizon. For
light reaching us at present time we find for the parameters
of the cosmological standard model (see footnote 1) that
the crossing has occurred at redshift [13] z = a − 1 ≈ 1.6
mentioned in the introduction. So the light from galax-
ies with larger redshifts and the Cosmic Microwave Back-
ground (with z ∼ 103 [15]) reaches us from beyond the
cosmological horizon.

Consider now the opposite situation: light-like parti-
cles emitted from a point taken as the coordinate origin.
The surface they can reach is called the particle horizon
(fig. 1). The particle horizon coincides with the cosmo-
logical horizon if H is proportional to a−2. This is the
equation of state of the radiation-dominated universe [13].
So, fittingly, in the radiation-dominated era [13] the par-
ticle horizon is also the cosmological horizon.

Figure 1 has illustrated the horizons in a space-time
diagram of conformal time τ and co-moving radius r where
light propagates as in Minkowski space. Alternatively, one
can also compensate for the spatial expansion factor a in a

2From eq. (16) follows that the curvature scalar R �= 0 unless
H = 0 (empty space) or ∂tH−1 = 2 (radiation-dominated universe).
But even in the latter case the energy-momentum tensor and hence
the Ricci tensor does not vanish.

Event horizon
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Fig. 1: Horizons. Radial space-time diagram showing the entire
history of the universe (see footnote 1) in (finite) conformal
time τ and at co-moving radius r from a point placed at the
coordinate origin (length unit: horizon at present time. The
cosmological horizon (red) separates the inside (white) from the
outside (gray) of the Hubble sphere. Light propagates along
the diagonals of the space-time diagram, as in Minkowski space,
and freely crosses the cosmological horizon, unless the horizon
becomes light-like as in the final stage of cosmic evolution when
the universe approaches de Sitter space. In the early stage the
universe is radiation-dominated and the cosmological horizon
coincides with the particle horizon.

diagram of cosmological time t and proper distance � = ar
(fig. 2). Consider the coordinates [17]

x = ar. (5)

One obtains from the line element (3) the metric

ds2 = c2dt2 − (dx−Hx dt)2. (6)

The null-geodesics in the {t,x} coordinates thus move
with velocities

v =
dx

dt
= c+ u, (7)
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Fig. 2: Moving medium. Viewed in the radial space-time dia-
gram of cosmological time t and proper distance x the universe
appears to light like a fluid expanding with velocity Hx in
agreement with Hubble’s law (units as in fig. 1). At the cos-
mological horizon (red) the flow reaches the speed of light. The
figure shows the same rays as in fig. 1. The rays are incident in
the region (gray) outside the horizon, but dragged outward by
the medium until the Hubble parameter H has fallen such that
they may enter the Hubble sphere (white). At the cosmological
horizon the rays are vertical in the space-time diagram: light
stands still, although only for a fleeting moment. In de Sitter
space, when H = const, this moment would last forever.

with |c| = c and
u = Hx. (8)

Consequently, in {t,x} coordinates light propagates with
c, but perceives the expanding universe as a moving
medium3 with outward flow u growing in speed with
proper distance as H� (Hubble’s law) [17]. At the cos-
mological horizon the medium reaches the speed of light.
Figure 2 shows how incident light rays get to a momentary
halt at the horizon. For exponentially expanding space,
the proper distance to the horizon, c/H, remains constant,
and so light is trapped there forever. For the actual ex-
pansion of the universe, however, the proper distance to
the horizon increases —the cosmological horizon appears

3Note that the addition theorem of velocities in eq. (7) is non-
relativistic, which is typical for analogues of gravity [25–29].

to move outwards (fig. 2). Light trapped for a fleeting
moment there gets released and moves on. Nevertheless,
this moment of light standing still will suffice for Gibbons-
Hawking radiation.
To see this, consider a specific but arbitrary moment in

time labelled by the conformal time τ0 with the expansion
factor a0 and Hubble parameter H0. Imagine a light wave
of constant frequency ω′ in frames co-moving with the
Hubble flow (8). Such waves may exist as mathematical
objects, regardless whether one subscribes to their fluid-
mechanical interpretation, and we may regard all incident
light waves as superpositions of them. The co-moving fre-
quency ω′ is related to ω, the frequency with respect to
cosmological time, by the Doppler formula4

ω′ =

(
1− H|x|

c

)
ω. (9)

Expressed in terms of the co-moving radius r we thus re-
quire

ω|τ0 =
ω′

1− a0H0 r/c
, ω′ = const. (10)

The frequency ω is related to the phase ϕ as ω = −∂tϕ.
As the wave propagates in conformal time and co-moving
radius like in Minkowski space (fig. 1) the phase of an
incident radial wave must depend on r + cτ . We thus
obtain by integration

ϕ =
ω′

H0
ln
∣∣∣1 + a0H0

(
τ0 − τ − r

c

)∣∣∣ . (11)

Consider now the wave number k = ∂rϕ. Inside the region
with r/c + τ − τ0 < (a0H0)

−1 that coincides with the
Hubble sphere at τ = τ0 the wave number k is negative,
whereas outside this region k > 0. Purely incident waves
must have entirely negative spatial Fourier components
and hence negative wave numbers. Therefore we must
require that the wave vanishes for r/c+τ−τ0 > (a0H0)

−1.
This does not mean that the wave ends at the cosmological
horizon throughout its history (fig. 3). The edge of the
wave coincides with the horizon only at τ = τ0. As we can
decompose all radially incident waves inside the temporary
horizon at τ0 in terms of waves of constant but different
co-moving frequencies ω′, all waves reaching the origin are
superpositions of waves with an edge.
The quantum vacuum, however, is not confined by such

edges, for the following simple reason [17]: The universe
is homogeneous and isotropic on cosmological scales [31]
and so must be the vacuum. One can move the coor-
dinate origin to any spatial point, but the vacuum must
remain invariant. This would be impossible if the quan-
tum vacuum were confined by wave edges around a given
point. From this follows that the radiation incident on
any point must not be in the vacuum state. Cosmolog-
ical horizons radiate. To work out the details takes a
calculation.

4The Doppler formula (9) follows from the transformation t = t′,
r = x/a for waves with phase ϕ and ω = −∂tϕ, k = ∂rϕ, ω′ = −∂′

tϕ
with k = ω/c.
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Fig. 3: Wave of constant co-moving frequency. Contour lines of
the phase (eq. (11) for τ − τ0 + r/c < (a0H0)

−1) shown in the
space-time diagram of conformal time and co-moving radius
for τ0 = −0.5 (units as in fig. 1). The contour lines represent
light rays incident from outside (gray) the Hubble sphere and
crossing to the inside (white) at the cosmological horizon. For
τ ≥ τ0 they are confined within the Hubble sphere. At τ = τ0+
(a0H0)

−1 the last ray reaches the origin. All incident radiation
confined within the Hubble sphere at τ0 can be represented as
superposition of these waves with different constant co-moving
frequencies.

Calculation. –

The model. Consider a simple model for massless
bosons such as the photons of the electromagnetic field: a
conformally invariant, massless scalar field [32] described
by the mode decomposition

Â =
∑
k

(
Akâk +A∗

kâ
†
k

)
, (12)

where the mode functions Ak obey the wave equation [32]

1√−g
∂μ

√
−g gμν∂νA+

R

6
A = 0 (13)

in terms of the metric tensor gαβ , its determinant g and
inverse gμν , while R denotes the curvature scalar [11]. The
mode operators â and â† shall obey the Bose commuta-
tion relations. This simple model captures the essence
of conformally invariant bosonic fields experiencing the
Gibbons-Hawking effect while avoiding technicalities as-
sociated with their polarization and internal structure.
For the Bose commutation relation to hold for the mode

operators, the mode functions are required [33] to be or-
thonormal with respect to the scalar product [32]

(A1, A2) =
ic

h̄

∫ (
A∗

1 ∂
0A2 −A2 ∂

0A∗
1

)√
−g dV (14)

that, as a consequence of the wave equation (13), does not
depend on time.
Specifically, the quantum field Â shall evolve in a space-

time geometry with metric (3) expressed in spherical co-
ordinates:

ds2 = c2dt2 − a2(dr2 + r2dθ2 + r2 sin2 θ dφ2) (15)

with curvature scalar [11]

R = − 6

c2

(
Ḣ + 2H2

)
(16)

and
√−g = a3r2 sin θ. We express the mode functions in

terms of the spherical harmonics Ylm as

A = a(t)Al(t, r)Ylm(θ, φ) (17)

and arrive from eqs. (13) and (15)–(17) at the equation of
the partial waves Al:

∂2
τAl = c2

(
∂2
r +

2

r
∂r

)
Al −

c2

r2
l(l + 1)Al (18)

expressed in terms of conformal time τ defined in eq. (4).
In flat Minkowski space one gets exactly the same wave
equation. So not only do null geodesics propagate in con-
formal time and co-moving space as in Minkowski space,
the full quantum field Â does it as well. This is a con-
sequence of its conformal invariance [32]. For guidance
and intuition, consider first the case l = 0 of purely radial
propagation, before proceeding to the general l ≥ 0.

Radial propagation. Put l = 0. In this case the general
solution of the radial wave equation (18) takes the familiar
d’Alembert form

A0 =
1

r
[f+(r + cτ) + f−(r − cτ)] (19)

with the functions f± describing incoming (+) and outgo-
ing (−) waves. Consider in particular

A0 =
A
r
(η ∓ ρ)

iν+1
(20)

with constant A, the dimensionless variables

η = 1 +H0a0(τ0 − τ), ρ =
H0a0
c

r (21)
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and the dimensionless constant

ν =
ω′

H0
. (22)

The radial wave given by eqs. (20)–(22) with the minus
sign in eq. (20) has the phase profile (11) of a wave with
constant co-moving frequency discussed in the previous
section and illustrated in fig. 3. There we argued that for
being strictly ingoing the wave needs to be confined in the
region ρ < η (fig. 3).

After the incident wave focuses at the origin it is re-
flected there and leaves as an outgoing wave. We thus
write for the propagation of the incident mode:

A+ =
A
r

(
Θ(η − ρ) (η − ρ)

iν+1 − (η + ρ)
iν+1

)
. (23)

The minus sign between the incoming and the outgoing
term ensures that A+ does not diverge at the origin. In-
stead, it forms there a diffraction-limited spot [34]. There
is one more subtlety to consider: eq. (23) holds only for
η ≥ 0. At η = 0 the incident wave runs out and van-
ishes for η < 0 (fig. 3). No further light can by reflected;
the edge of the last reflected wave moves as ρ = −η with
falling η given by eq. (21). We indicate this by writing a
Θ(η + ρ) in front of the reflected wave for η < 0:

A+ = −A
r
Θ(η + ρ) (η + ρ)

iν+1
. (24)

Now imagine a wave A− of constant co-moving fre-
quency that stays outside ρ > η. Here, according to
eq. (10), the co-moving frequency ω′ has the opposite sign
of the frequency with respect to cosmological time, ω. For
having a wave oscillating with positive frequencies ω the
co-moving frequency needs to be negative, and so does
the parameter ν in eq. (22). We thus complex-conjugate
the solution of eq. (20) and define A− as

A− =
A
r
Θ(ρ− η) (ρ− η)

−iν+1
. (25)

Like eq. (23) this equation is only valid for η > 0 and
hence τ − τ0 < (a0H0)

−1. At later times A− reaches the
origin and is reflected there:

A− =
A
r

(
(ρ− η)−iν+1 −Θ(−η − ρ) (−η − ρ)

−iν+1
)
(26)

for η < 0. The need for complex conjugation in the def-
inition of A− also becomes evident from normalizing A−
with respect to the scalar product defined in eq. (14). We
recall that the scalar product does not depend on time
and evaluate it at η = 0 where we get

(A1, A2) =
8πA2H0ν

h̄

∫ ∞

0

ρi(ν1−ν2)+1dρ (27)

for ν1 ∼ ν2 ∼ ν (the scalar product vanishes if ν1 �= ν2
for otherwise it would be time-dependent). We substitute

exp(−ξ) for ρ and obtain the standard integral of the delta
function:

(A1, A2) =
(4π)2A2H0ν

h̄
δ(ν1 − ν2). (28)

The norm is positive, as required, and it would be negative
without the complex conjugation in the definition of A−.
For A+ we also evaluate the scalar product at η = 0 and
obtain exactly the same norm.
We have thus established two sets of modes with pa-

rameter ν, one (A+) describing radiation incident from
inside ρ < η and the other (A−) incident radiation staying
outside. Similar to the closely related Rindler modes [1]
these modes form a complete orthonormal set for incident
radiation.
Next we follow Damour’s and Ruffini’s elegant argu-

ment [35] and note that the quantum vacuum occupies
modes that are analytic in ρ− η (or ρ+ η). In particular,
they must not vanish for ρ < η or ρ > η. It is easy to con-
struct analytic Avac± from the A± of eqs. (23) and (25):

Avac± = A± cosh ζ +A∗
∓ sinh ζ (29)

with
tanh ζ = e−πν . (30)

The Bogoliubov transformation (29) preserves the or-
thonormality of the mode functions and the Bose com-
mutation relations of the associated mode operators [33]

âvac± = â± cosh ζ − â†∓ sinh ζ. (31)

Defining the vacuum state |0〉 as the eigenstate of the âvac±
with eigenvalue zero gives [33]

|0〉 = 1√
Z

∞∑
n=0

e−nπν |n〉+|n〉− (32)

in terms of the particle number states |n〉± of the modes
A± and with Z−1 = 1 − e−2πν . The state described in
eq. (32) is an Einstein-Podolski-Rosen state (a two-mode
squeezed vacuum) [33], the strongest entangled state for
a given mean energy [36]. Indeed, we see from eq. (32)
that the A± modes are strongly correlated: a particle of
frequency ω′ detected at τ0 at the origin is accompanied
by a partner particle in mode A−. The partner may also
appear at the origin after the A− mode comes in when
the conformal time τ0+(a0H0)

−1 has elapsed, which may
take a rather long cosmological time.
The reduced quantum state for the A+ mode is de-

scribed by the density operator

ρ̂ = tr{|0〉〈0|}− =
1

Z

∞∑
n=0

e−n(2πν)|n〉+〈n|+. (33)

This is a thermal state [33], because we can understand
e−n(2πν) as the Boltzmann factor e−En/(kBT ) for the ener-
gies En = h̄nω and the temperature T given by

2πν =
h̄ω

kBT
. (34)
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When reduced to one of the two entangled modes, all
Einstein-Podolski-Rosen states appear as thermal states.
What makes the state created by horizons special is the
fact that the temperature T is the same throughout the
spectrum [1]. In our case, this is because ν is proportional
to ω according to definition (22) and eq. (10) at r = 0.
The proportionality factor gives Gibbons’ and Hawking’s
formula (1) for any H0 and hence for any H(t) > 0.

General propagation. Radial propagation is sufficient
for describing the field captured by a single point (with
coordinate origin set to this point). Yet the field energy
at this point depends on derivatives of the field amplitudes
and hence on multipole moments, and so do other corre-
lation functions. It is therefore necessary to consider the
general case of arbitrary angular momentum l. Inspired
by the radial case of l = 0, we seek the solution of the
wave equation (18) as

Al =
Al

r
(η ∓ ρ)iν+1pl(±z) (35)

with
z = −η

ρ
(36)

and find

pl(z) =
(iν)!

(iν − l)!
2F1

(
−l, l + 1,−iν,

1− z

2

)
(37)

in terms of Gauss’ hypergeometric function [37]. The pref-
actor is chosen for later convenience. From the hyperge-
ometric series follows that the pl(z) are polynomials of
order l in z, with the first two given by

p0(z) = 1 , p1(z) = 1 + iν − z. (38)

We use eq. 3.4.(6) of ref. [37] to express eq. (37) in terms of
Legendre functions and deduce from eq. 3.8.(12) of ref. [37]
the recurrence relation

pl+2(z)+(2l+3)z pl+1(z)+(l−iν)(l+2+iν) pl(z). (39)

Applying this relation with the initial values of eq. (38)
we can easily compute the pl(z). In particular, we obtain
for the constant term in the polynomials

pl(0) =

l∏
m=1

(2m− l + iν), for l > 0 (40)

and p0 = 1. These are all the mathematical preparations
needed for constructing and normalizing the mode func-
tions of the incident radiation.
In analogy to eqs. (23) and (24) we write for the mode

incident inside ρ < η the compact expression

A+ =
Al

r

(
Θ(η − ρ) (η − ρ)

iν+1
pl(z)

−(−1)l Θ(η + ρ) (η + ρ)
iν+1

pl(−z)
)
. (41)

The incoming wave is reflected with coefficient (−1)l for
the following reason. The highest singularity in pl(z) for

r → 0 is given by the highest term in z = −η/ρ, which
is proportional to zl in the l-th order polynomial pl(z).
Subtracting the ingoing and outgoing term with the dif-
ference (−1)l thus removes the leading singularity. It
also removes all other singularities, as there must exist
a regular solution as linear combination of the two fun-
damental solutions (35). The so-constructed mode func-
tion describes light that reaches the origin at η > 0 when
τ − τ0 < (a0H0)

−1.
The light outside the cosmological horizon at τ0 propa-

gates inwards as well. but reaches the origin at τ − τ0 >
(a0H0)

−1 when η < 0. We describe the corresponding
mode function as

A− =
Al

r

(
Θ(−η + ρ) (η + ρ)

−iν+1
pl(z)

−(−1)l Θ(−η − ρ) (−η − ρ)
−iν+1

pl(−z)
)

(42)

where we take the complex conjugates of the fundamental
solutions (35) for having a positive norm. The normaliza-
tion is best done at the time when η = 0 and hence z = 0.
We obtain for both A+ and A−

(A1, A2) =
(4π)2Al

2|pl(0)|2 H0ν

h̄
δ(ν1 − ν2) (43)

with the pl(0) given by eq. (40). We can thus proceed
exactly as in the previous subsection (without the need to
consider gray-body factors [1] as for the Hawking radiation
of black holes). We obtain also for general wave propaga-
tion the Einstein-Podolski-Rosen state of eq. (32) as the
vacuum state seen by the observer modes A±. An observer
co-moving with the universe would thus perceive the vac-
uum as a thermal state with Gibbons-Hawking tempera-
ture (1).

Conclusions. – Cosmological horizons radiate with
Gibbons-Hawking temperature (1) in a spatially flat ex-
panding universe with H(t) > 0. This paper has
proven this statement as an exact result for a Friedmann-
Lemâıtre-Robertson-Walker metric with zero spatial cur-
vature [13]. We may also imagine a contracting universe
with H(t) < 0 where the Hubble flow of eq. (8) points
inwards and grows in magnitude with growing proper dis-
tance. Also in this case a cosmological horizon is estab-
lished when the Hubble flow reaches the speed of light. We
can run the entire argument of the paper with H replaced
by |H| and arrive at eq. (1) with |H|. An interesting —and
different— scenario occurs whenH changes sign, in partic-
ular when H is oscillating (as in anti de Sitter space [38]).
In this case light may cross the cosmological horizon mul-
tiple times. Similar to black-hole lasing [39–41] each in-
teraction with the horizon may create radiation, but it
depends on the phase acquired between the interactions
whether the radiation is amplified or de-amplified.
While the “oscillating universe” is a purely theoretical

case in astrophysics, it is in fact the most realistic case for
laboratory analogues of cosmological horizons and their
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radiation, complementing and generalizing the analogue
of de Sitter space with a Bose-Einstein condensate [42].
The reason is that one can create periodic modulations
of the refractive index [43–46] that act like a periodically
modulated expansion factor in the space-time metric (3).
The Hubble constant is proportional to the modulation
frequency ω0. When ω0 is comparable with the radiation
frequency ω the effective temperature (1) becomes signif-
icant and detectable radiation is generated. This process
is closely related to the dynamical Casimir effect [44–46]
where a boundary is modulated (or the optical length to
a boundary). The radiation of de Sitter space has been
mapped to the radiation produced by an accelerated mir-
ror [47]. For these reasons, the Gibbons-Hawking radia-
tion of cosmological horizons may be regarded as a pure
and intriguing case within the wider area of the dynamical
Casimir effect [48–51].
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