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1 Facultad de Ingenieŕıa, Ciencia y Tecnoloǵıa, Universidad Bernardo O’Higgins - Santiago, Chile
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Abstract – We provide a new regular black hole solution in (2+1) dimensions with the presence
of matter fields in the energy momentum tensor. The inclusion of our proposed energy density
plus a negative cosmological constant allows that the solution can have both flat as de Sitter or
Anti-de Sitter core. This latter is a proper characteristic of our solution, because other models
of regular black holes have only a single type of core. Since the first law of thermodynamics for
regular black holes is modified by the presence of the matter fields, we provide a new version
of the first law, where a local definition of the variation of energy is defined, and where the
entropy and temperature are consistent with the ones previously known in the literature. At the
hypothetical limit when the horizon radius r+ → ∞ the usual first law dM = TdS is recovered.
The effectiveness of the formalism used to compute the mass of our regular black holes in (2 + 1)
dimensions suggests the potential applicability of this method to calculate the mass of other models
of regular black holes in d ≥ 4 dimensions.

editor’s  choice Copyright c© 2021 EPLA

Introduction. – The recent detection of gravita-
tional waves through the collision of two rotating black
holes [1,2], together with the also recent assignment of
the Nobel Prize, have positioned the black holes as one of
the most interesting and intriguing objects in gravitation.
In this connection, the fact that the black holes, due to
quantum fluctuations, emit as black bodies, where their
temperature is related to their surface gravity [3], shows
that in these objects the geometry and thermodynamics
are directly connected.

The Schwarzschild black hole has a central singularity
where the laws of physics cease to operate. From the clas-
sical point of view, Bardeen in ref. [4] proposed the first
model of regular black holes (RBHs). In this model the
singularity is avoided by changing the mass parameter in
the Schwarzschild solution by a radial mass function such
that near the origin the function behaves as f ≈ 1 − Cr2,
i.e., the solution has a de Sitter core. After this, several
models of regular black holes have been constructed, where
the Einstein field equations are coupled to non-linear elec-
tromagnetic sources. Examples of this can lead to RBHs
with de Sitter core [5] or flat core [6,7].

Furthermore, it is possible to construct RBHs solutions
including matter fields in the energy momentum tensor.

(a)E-mail: milko.estrada@gmail.com (corresponding author)

Examples of this are the models of refs. [8,9]. These
models are solutions of General Relativity and have de
Sitter core. We can see a review of these types of RBHs
in ref. [10]. Other models of RBHs based on the presence
of matter fields in the energy momentum tensor for higher
curvature theories, with a de Siter core, can be found in
refs. [11–13].

It is well known that the first law of thermodynamics is
modified for RBHs due to the presence of matter fields in
the energy momentum tensor. In ref. [14] a way of writing
the first law was shown including a correction factor, which
corresponds to an integration of the radial coordinate up
to infinity. However, the first law of thermodynamics for
RBHs is still an open question of physical interest.

On the other hand, models of gravity in (2 + 1) dimen-
sions have drawn high attention in the last years, due to
the simplicity of its equations of motion. These models can
be viewed as toy models, with the hope that its results can
help the understanding of (3+1)- and higher-dimensional
models of gravity [15]. Models of black holes in (2+1) di-
mensions also have been widely studied in the last years.
The BTZ model [16,17] is a vacuum black hole solu-
tion of the Einstein field equations in (2 + 1) dimensions,
which has been studied to find some conceptual issues in
quantum gravity, string theory and AdS/CFT correspon-
dence [18]. In this solution the curvature invariants are
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regular everywhere. Regular black holes in (2 + 1) dimen-
sions coupled to a non-linear electrodynamics were stud-
ied in refs. [19,20]. Nevertheless, in the literature there are
also solutions in (2 + 1) dimensions with a central singu-
larity, as for example the solutions of ref. [21] for Massive
Gravity [22], or the solution given in [23]. See refs. [24–26]
for a generalization of the BTZ model with other fields and
refs. [27,28] for an interesting higher-dimensional general-
ization of BTZ and geodesic analysis. We can see more
recent studies in refs. [29–34].

Thus, it is undoubtedly interesting the search of new
black hole solutions in (2 + 1) dimensions with matter
fields in the energy momentum tensor and the study of its
thermodynamics properties. In this work we will provide
a new model of energy density in (2+1) dimensions, which
will lead to a new regular black hole solution. Furthermore
we will propose a structure for the first law of thermody-
namics for RBHs and compute the mass of the solution
using a definition of conserved charge appeared recently
in the literature [35,36]. Furthermore we will study the
stability of our solution.

(2+1) Einstein field equations. – The Einstein field
equation are given by

Gμ
ν + Λδμ

ν = 8πḠT μ
ν , (1)

where the cosmological constant is equal to Λ = − 1
l2

. The
Newton constant, in the natural system of units, has units
of length [Ḡ] = �. For simplicity, we consider arbitrarily
that this constant has a magnitude equal to 1. The energy
momentum tensor describing a perfect fluid, is given by

T μ
ν = diag(−ρ, pr, pθ). (2)

We shall study the following spherically symmetric
space-time:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ. (3)

This form of the metric has the following consequence
on the energy momentum tensor through the Einstein field
equations:

ρ = −pr. (4)

So, for the line element (3), the (t, t) and (r, r) compo-
nent of the Einstein field equations are

1
2r

df

dr
+ Λ = −8πρ. (5)

On the other hand, from the conservation law, ∇μT μν =
0, one gets

pθ = r
d
dr

pr + pr. (6)

We will chose the following ansatz:

f(r) = 1 − 8Ḡm(r) − Λr2. (7)

Next, replacing the ansatz (7) into eq. (5), one arrives at

d
dr

m(r) = 2πrρ(r). (8)

The new model. – The mass function for the (2 + 1)
case is defined as

m(r) = 2π

∫ r

0

xρ(x)dx. (9)

As was mentioned above, in this work we will provide a
new RBH solution based on the inclusion of matter field in
the energy momentum tensor. For this, we will propose a
new model of energy density. In order to have a well-posed
physical situation, the energy density model that we will
choose follows the requirements described in ref. [12]:

– The energy density must be positive and continuously
differentiable to avoid singularities.

– The energy density must have a finite single maxi-
mum at the origin. The finiteness of ρ(0) forbids the
presence of a central singularity.

– In order to guarantee a well-defined asymptotic be-
havior, the energy density must be a decreasing radial
function and must vanish at infinity. Furthermore,
the mass function must reach its finite maximum
value at infinity, i.e.,

lim
r→∞ ρ = 0, (10)

lim
r→∞ m(r) = const. (11)

Thus, we propose the following model for energy
density:

ρ =
2LM2

π(2LM + r2)2
, (12)

and replacing into eq. (9) we obtain the mass function

m(r) =
Mr2

2LM + r2
, (13)

where L is a positive constant of units [L] = �3. This con-
stant must be positive to ensure that ρ(0) = 1/(2πL) > 0.
The parameter M is the so-called mass parameter, in units
of [M ] = �−1. This constant must also be positive to en-
sure the absence of singularities in the energy density.

Considering the previous analysis, the mass function has
units [m(r)] = �−1 and since [Ḡ] = �, the factor Ḡm(r) is
dimensionless, where the magnitude of Ḡ is equal to the
unity.

This model could be viewed as an extension in (2 + 1)
dimensions of the higher-dimensional model of ref. [12],
which, for the (3+1)-dimensional case, coincides with the
Hayward metric [9].

For the Hayward metric in (3+1) dimensions, when the
energy density is of the order of the Planck units near the
origin, the formation of a de Sitter core is associated with
quantum fluctuations. These models are known as Planck
Stars [37,38]. In ref. [39], using radio astronomy data, it is
conjectured that Planck Stars represent a speculative but
realistic possibility to test quantum gravity effects. Thus,
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if our energy density were of the order of the Planck units
near the origin, our model could serve as a toy model to
study these ideas in a future work due to the simplicity
of the equations of motion in (2 + 1) dimensions. As we
shall see below, the inclusion of a negative cosmological
constant not only provides the formation of a dS core,
but also provides the formation of a flat/AdS core. This
latter feature could be analyzed for Planck Stars models
elsewhere. It is worth mentioning that the formation of a
flat or AdS core is a new feature for RBHs without non-
linear electromagnetic sources.

The solution is:

f(r) = 1 − Λr2 − 8Ḡm(r) = 1 +
r2

l2
− 8Mr2

2LM + r2
. (14)

For this solution, the Ricci and Kretschmann invariants
are given by

R = − 6
l2

+
48M

2LM + r2
− 112Mr2

(2LM + r2)2
+

64Mr4

(2LM + r2)3
,

(15)

K =
(

2
l2

− 16M

2LM + r2
+

80Mr2

(2LM + r2)2
− 64Mr4

(2LM + r2)3

)2

+2
(

2
l2

− 16M

2LM + r2
+

16Mr2

(2LM + r2)2

)2

. (16)

We consider as regular when the curvature invariants
are free of singularities. In our case both Ricci and
Kretschmann do not diverge at r = 0 nor other values
of r due to the fact that L > 0 and M > 0.

Behavior near the origin. From eq. (14) it is evident
that this function behaves near the origin as

f
∣∣
r≈0

≈ 1 +
(

1
l2

− 4
L

)
r2, (17)

thus, we can define the effective radius (l̃):

1
l̃

=
(

1
l2

− 4
L

)
. (18)

– For 1
l2 = 4

L the behavior near the origin corresponds
to a flat space-time. Regular solutions with a flat core
have been studied for (3 + 1) dimensions with a non-
linear electromagnetic source in refs. [6,7]. However,
for the (2 + 1) case, with a nonzero energy density,
this behavior is a proper feature of our solution.

– For 1
l2 < 4

L the behavior near the origin corresponds
to a dS space-time. Several models of regular black
holes share this feature [9,11–13,37,38]. In this case
eq. (18) represents an effective dS radius.

– For 1
l2 > 4

L the behavior near the origin corre-
sponds to an AdS space-time. So, in our model
this possibility could be valid, which differs from
most of the RBHs models. Due to the simplicity

of the (2 + 1) models, the physical consequences
of this particular feature could be tested elsewhere.
In this case eq. (18) represents an effective AdS
radius.

Thus, our model of energy density added to a negative
cosmological constant allows that the solution can have
both flat as de Sitter or Anti-de Sitter core, depending on
the values of the l and L. This latter is a proper char-
acteristic of our solution, because other models of regular
black holes have only a single type of core.

Thermodynamic analysis. –

Conserved charges. Recently, in refs. [35,36] a new
definition of conserved charges has appeared. In [35] the
energy and momentum can be computed by integrating a
covariantly conserved current Jμ = T μ

ν ξν in a volume inte-
gral. It is worth to mention that the definition of ref. [35]
is reduced to the definition of conserved energy of ref. [36]
for a Killing vector ξμ = −δμ

0 . Following [35], the energy
is defined as

E =
∫

dd−1x
√−gJ0 =

∫
dd−1x

√−gT 0
ν ξν , (19)

where ξν is a Killing vector and d is the number of
dimensions.

It is worth mentioning that this definition is diffeo-
invariant. Furthermore the current is covariantly con-
served due to ∇μT μ

ν = 0 and ∇μξν + ∇νξμ = 0.
Following [35], we choose ξμ = −δμ

0 . Evaluating our
solution into eq. (19) we have

E = −2π

∫ ∞

0

rdrT 0
0 = 2π

∫ ∞

0

rdrρ(r) = lim
r→∞ m(r) = M.

(20)
Thus, the parameter M represents the total energy of the
black hole. On the other hand, the obtained mass M coin-
cides with the value of the vacuum BTZ solution computed
in ref. [40] using another definition of conserved charges.

So, the mass of the black hole in (2 + 1) dimen-
sions is computed without adding boundary terms as in
refs. [40,41]. The effectiveness of this formalism for com-
puting the mass of our (2 + 1) RBHs model could make
us think about using this formalism for computing the
mass of other models of regular black holes in d ≥ 4 di-
mensions, where the energy density also fulfills the condi-
tions mentioned before. Some examples of these models
are [8,9,12,37,38].

The first law of thermodynamic in (2 + 1) dimensions
with matter fields. It is well known that the first law
of thermodynamics is modified for RBHs due to the pres-
ence of matter fields in the energy momentum tensor. Fol-
lowing [42,43] we define the thermodynamics pressure as
p = − Λ

8π . In order to propose a structure for the first
law of thermodynamics for RBHs, we will use the condi-
tions f(r+, M, p) = 0 and δf(r+, M, p) = 0, which can
be viewed as constraints on the evolution along the space
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parameters [11,33]. Thus, from the condition

0 =
∂f

∂r+
dr+ +

∂f

∂M
dM +

∂f

∂p
dp, (21)

it is straightforward to check that for the present solu-
tion (14), the first law takes the form:

∂m

∂M
dM =

(
1
4π

f ′∣∣
r=r+

)
d

(πr+

2

)
+ (πr2

+)dp. (22)

The above equation can be rewritten as

du = TdS + V dp, (23)

where the temperature and entropy are easily computed as

T =
1
4π

f ′∣∣
r=r+

, (24)

S =
πr+

2
, (25)

V = πr2
+, (26)

where our definition of volume coincides with [42].
One can notice that p, the pressure, has units of [p] =

�−2, eq. (14). Likewise, one can check that the factor
[Ḡm] = �0 is dimensionless and [S] = �1. Following Euler’s
theorem [44], one can construct the Smarr formula:

TS − 2pV = 0, (27)

which coincides with the vacuum (2+1) solution of ref. [42]
for the non-rotating case. In a future work, the case where
the constant L is a thermodynamics parameter could be
studied.

It is direct to check that the temperature for our
model (14) is

T =
2
r+

m(r+) − 2
r+

− 8
dm

dr

∣∣∣
r=r+

. (28)

On the other hand, the heat capacity at constant pres-
sure is computed as

Cp = T
dS

dT

∣∣∣∣
p=cte

= T
dS

dr+

(
dT

dr+

)−1 ∣∣∣∣
p=cte

. (29)

In the vacuum case, the first law is of the form dM =
TdS, where M is the energy of the system. However in
our case the left side of the first law is modified in order to
obtain the correct value of the entropy due to the presence
of matter fields in the energy momentum tensor. So, in
our case, the term on the left side, du, corresponds to a
local definition of the variation of the energy.

The modification of the first law for regular black holes
was studied in ref. [14], without our constraint in the
space of parameters, by including a correction factor which
corresponds to an integration of the radial coordinate
up to infinity. Unlike this latter reference, in our case,

both terms, du and dS, are local variables defined at the
horizon.

It is easy to check that the factor dm/dM in eq. (23)
is always positive, and thus, the sign of the variation of
du always coincides with the sign of the variation of the
total energy dM . Furthermore, at infinity it is fulfilled
that lim

r→∞ dm/dM = 1, therefore the variation of the local
and total energy are similar at the asymptotical region.
Thus, at the hypothetical limit when the horizon radius
r+ → ∞, the usual first law dM = TdS is recovered.

In a future work, following [45], we could test a possible
relation between l and L to study the ensemble depen-
dency problem.

Stability of our solutions. In fig. 1 the behavior of the
mass parameter (top panel), temperature (middle panel)
and heat capacity (bottom panel) are shown. It is direct
to check that this behavior is generic for other values of
the parameter l.

The equation (14) can take the form f(r) = 0, which
taking arbitrarily fixed l and L, can have zero roots, two
roots or one root, depending on the value of the mass
parameter M .

In the top panel of fig. 1, following the analysis of
refs. [11,46], we plot the mass parameter M(R), where
r = R corresponds to the root of the equation f(r) = 0.
R can take the values r− and r+, which correspond to
the internal horizon and the black hole horizon, respec-
tively. There is a critical value of the mass parameter
M∗ = M(r∗), which corresponds to the minimum value
on the curve, and where there is an extremal black hole.
At this point the internal horizon r− and the black hole
horizon r+ coincide, i.e., r∗ = r− = r+. For M < M∗
the solution does not have horizons and for M > M∗ the
solution has both internal and black hole horizon.

In the middle panel of fig. 1, we note that the tempera-
ture is vanishing just in the extremal black hole. This does
not have a linear dependence on r+ as the spinless BTZ
solution [47] and its dependence on r+ also differ from the
rotating BTZ solution [16].

In the bottom panel of fig. 1, the heat capacity is dis-
played, which is always positive, therefore the solution is
always stable. Its behavior also differs from the BTZ solu-
tion whose heat capacity is constant for the static case [47].

Discussion and conclusions. – We have obtained a
new regular black hole solution in (2+1) dimensions with
the presence of matter fields in the energy momentum ten-
sor. For this, we have proposed a new model of energy
density following the requirements described in ref. [12].
This energy density has a finite value at the center, avoid-
ing the formation of a central singularity.

Our solution differs from the BTZ-like geometry of
ref. [48], because in our solution the mass function is
present, unlike in this reference, where only the con-
stant mass parameter is present. Furthermore, in ref. [48]
the BTZ horizon is characterized for small values of the
mass and cosmological constant. In our model the energy
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Fig. 1: Top panel: the mass parameter. Middle panel: the
temperature. Bottom panel: the heat capacity. All these plots
were obtained by considering l = L = Ḡ = 1.

density tends to zero at infinity, eq. (10), this differs from
the model of ref. [49], where the energy density diverges
at infinity. Furthermore, our solution differs from ref. [50],
which is based on the matching between the internal ge-
ometry obtained by means the Gravitational Decoupling
algorithm and the external BTZ geometry.

The inclusion of our type of energy density plus a neg-
ative cosmological constant allows that the solution can
have both flat as de Sitter or Anti-de Sitter core, depend-
ing on the values of the l and L. This latter is a proper

characteristic of our solution, because other models of reg-
ular black holes have only a single type of core.

Regular solutions with a flat core have been studied in
(3+1) dimensions with a non-linear electromagnetic source
in refs. [6,7]. However, for the (2+1) case, with a nonzero
energy density, the flat core is a proper feature of our so-
lution. In (3 + 1) dimensions, regular black hole solutions
with a dS core have been widely studied in the literature.
Our model with a dS core could be viewed as a (2+1) ex-
tension of the Hayward metric. Since the Hayward model
has been used to test quantum gravity effects [39], our
model could serve to study these effects elsewhere, due to
the simplicity of the equations of motion in (2+1) dimen-
sions. Furthermore our solution admits a core with AdS
structure, which is not a studied feature so far.

Using the recently definition of conserved charges of
refs. [35,36] we have computed the total energy of our
regular black hole solution, which is equal to the mass
parameter M . The effectiveness of the definition used for
computing the mass of our (2+1) regular black hole model
suggests that this formalism could be used to compute the
mass of other models of regular black holes in d ≥ 4 dimen-
sions with the presence of matter in the energy momentum
tensor, as for example the models of refs. [8,9,12,37,38].

The structure of the first law of thermodynamic for
regular black holes is modified by the presence of mat-
ter fields in the energy momentum tensor [14]. So, we
have provided a new version of the first law of thermody-
namic (23), where a local definition of the variation of the
energy is defined, namely du, and, where the values of en-
tropy and temperature are consistent with the previously
known ones [16]. We have showed that the sign of the
local variation of the energy du always coincides with the
sign of variation of the total energy dM . Furthermore, at
the hypothetical limit when the horizon radius r+ → ∞
the usual first law dM = TdS is recovered.

∗ ∗ ∗

FT-O acknowledges financial support by CONICYTPF
CHA/DOCTORADO-NACIONAL/2019-21190856 pro-
ject ANT-1756 at Universidad de Antofagasta, Chile.
FT-O thanks the PhD program Doctorado en F́ısica
mención en F́ısica Matemática de la Universidad de
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