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Abstract – We generalize Planck’s law for black-bodies, classically described by Maxwell-
Boltzmann distributions, to include space and astrophysical plasmas described by kappa distribu-
tions. This provides the spectral intensity of electromagnetic radiation emitted by black bodies in
thermal equilibrium with the surrounding and interacting plasmas. According to the generalized
concept of thermal equilibrium, systems with correlations among their particles’ velocities/energies
reside in stationary states described by kappa distributions associated with the thermodynamic
parameters of temperature and kappa index. Using these distributions, we derive the generalized
expressions of the i) mean energy of photon ensemble, ii) spectral intensity with respect to fre-
quency and wavelength, and iii) Stefan-Boltzmann law, characterized by the well-known fourth
power of temperature, but now multiplied by a new kappa-dependent factor. Finally, we discuss
the implications of these new developments for space and astrophysical plasmas.
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Introduction. – A black body is an idealized opaque
and non-reflective physical body, absorbing all incident
electromagnetic radiation, regardless of frequency. The
failure of classical physics to describe the black-body be-
havior helped establish the foundations of statistical and
quantum mechanics [1]. Further understanding, modifica-
tions, and generalizations of the physical properties may
lead to an improved black-body description. This paper
develops the formulation of the black body radiation, us-
ing the generalized framework of statistical mechanics and
thermodynamics that applies in space plasmas, as well as
other systems that reside in stationary states out of the
classical thermal equilibrium.

Black-body electromagnetic radiation is typically re-
ferred to as thermal, because it is emitted by a physical
body in thermal equilibrium with its environment. Specif-
ically, the relevant spectral intensity or radiance are de-
noted by Bν(T ) or Bλ(T ), respectively. These measure
the power, per solid angle, area normal to propagation,
and frequency ν or wavelength λ, of the black body in
thermal equilibrium at temperature T with the surround-
ing, interacting medium. Therefore, the physical the-
ory behind the study of the black body is encompassed
in thermodynamics and statistical mechanics, also called

(a)E-mail: glivadiotis@princeton.edu (corresponding author)

thermostatistics, which determines how a particle sys-
tem behaves when it resides in thermal equilibrium [2].
However, space plasmas rarely reach thermal equilibrium;
therefore, we ask: how would a black-body be properly de-
scribed when it interacts with non-equilibrium plasmas?

Any initial state of a system eventually evolves to the
stationary state of thermal equilibrium, where the en-
tropy is maximized. Thermal equilibrium is a special sta-
tionary state of particle systems, in which any flow of
heat (thermal conduction, thermal radiation) is in bal-
ance. It is associated with the definition of temperature,
by means of the zeroth law of thermodynamics: two ther-
modynamic systems that are each in thermal equilibrium
with a third are in thermal equilibrium with each other.
Equivalently, two systems (e.g., a system with its envi-
ronment) are in thermal equilibrium if they are stationary
while linked by a wall permeable only to heat exchange
(e.g., [3]). A classical system of particles, residing in the
special stationary state of thermal equilibrium, is associ-
ated with a temperature, a procedure called “thermaliza-
tion”, where particle velocities (or energies) are stabilized
into a Maxwell-Boltzmann distribution.

In recent decades, however, space plasma observations
and theoretical investigations have revealed that classi-
cal Maxwell-Boltzmann thermal equilibrium is not the
only stationary state of a system. Systems such as space
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plasmas generally reside in stationary states where par-
ticles’ velocities (or energies) are characterized by statis-
tical correlations rather than being independent, and are
temporarily stabilized into the kappa distributions instead
of the Maxwell-Boltzmann distribution. For physical sys-
tems residing in these stationary states that constitute the
generalized (also called nonthermal) thermal equilibrium,
the temperature and zeroth law of thermodynamics are
still meaningful, the kappa distributions formulate their
statistics, and correlations further characterize the parti-
cle’s velocities or energies. Starting from the zeroth law
of thermodynamics it has been shown that kappa distri-
butions constitute the most generalized form of particle
distributions associated with a temperature [4,5].

A variety of mechanisms are responsible for gen-
erating kappa distributions, including superstatistics
(e.g., [6–10]), radiation in plasmas [11], shock waves
(e.g., [12]), turbulence (e.g., [13–15]), effects of pickup
ions [4,16], acceleration mechanisms (e.g., [17]), polytropic
behavior [18–20], and Debye shielding and magnetic cou-
pling [21]. Such physical mechanisms connect particles
through long-range interactions, producing statistical cor-
relations among particles, and leading the system to be
stabilized into specific kappa distributions.

Kappa distributions are common and observed across
space and astrophysical plasmas, describing particles in
the heliosphere, from solar wind and planetary magne-
tospheres to the distant heliospheric boundaries and be-
yond, and even to interstellar and intergalactic plasmas,
and cosmology (see [22,23] and references therein). Half
a century ago, kappa distributions were empirically de-
rived as a suitable fitting model describing observations
of space and other plasma particle populations [24–26].
A breakthrough in the field came with the connection of
kappa distributions with the framework of nonextensive
statistical mechanics [27], by maximizing entropy under
the constraints of canonical ensemble [28–31]. There-
after, numerous theoretical developments and applica-
tions in space science were published, emphasizing the
importance of kappa distributions in describing space
thermodynamics.

Processes and concepts in space plasmas related to
statistical mechanics and/or thermodynamics need to be
studied under the framework of space thermodynamics,
namely, the theory of kappa distributions, the generalized
thermal equilibrium implied by the stationary states in
the presence of correlations, and their statistical frame-
work of nonextensive statistical mechanics. The purpose
of this paper is to examine the physics of black-body
radiation within this framework of kappa distributions
and generalized thermal equilibrium [5]. Next, we de-
velop the intensity of the black-body radiation in space
plasmas by following the formulation of the kappa dis-
tribution for discrete energy spectra and the statistics
of the black-body discrete energy spectrum. Finally, we
discuss implications of the new developments in space
and astrophysical plasmas. The supplementary material

Supplementarymaterial.pdf (SM) shows the derivation
of the near-Boltzmannian approximation.

Nonextensive statistical mechanics: brief
overview. – Nonextensive statistical mechanics is the
generalization of classical Boltzmann-Gibbs statistical
mechanics based on a mono-parameterized entropic
formulation and the concept of escort probabilities. This
entropy generalizes the classical Boltzmann entropic
formulation by means of a parameter q that recovers to
Boltzmann entropy for q = 1. Following the Gibbs path,
the Boltzmann entropy is maximized under the con-
straints of canonical ensemble, leading to the exponential
function of the Boltzmann distribution [32]; similarly, the
generalized entropy is maximized under the constraints
of canonical ensemble leading to the distribution function

p(ε; T ; q) ∼ [1 − (q − 1) · ε/(kBT )]
1

q−1 . (1)

The above paragraph summarizes the pioneer paper on
the topic published in 1988 by Tsallis [27]. The studies
that followed, however, showed that there were several
flaws with this formulation of the distribution. Briefly, it
was understood that the generalization of the classical to
the nonextensive statistical mechanics has to apply to both
the entropic formulation and the averaging. Namely, the
Boltzmann entropy is generalized to the Tsallis entropic
form, but also the probability distribution is generalized
under the concept of escort probability distribution P ∼
pq [33]. The result of these considerations [34] led to the
canonical distributions, that is, respectively, the ordinary
and escort functions:

p(ε; T ; q) ∼ [1 + (q − 1) · (ε − U)/(kBT )]
1

1−q , (2)
P (ε; T ; q) ∼ p(ε; T ; q)q ∼
[1 + (q − 1) · (ε − U)/(kBT )]−

1
q−1 −1

, (3)

where the internal energy per particle U is the mean
energy.

The modern framework of nonextensive statistical me-
chanics [34] is associated with eq. (3) and provides
the same physical definitions as in classical statistical
mechanics; namely, both the kinetic [35] and thermody-
namic [5,36,37] definitions of temperature, and their equiv-
alence [4,23,31,38].

The Hamiltonian function of a particle is H(
→
r ,

→
u) =

εK(
→
u)+Φ(

→
r ), where εK(

→
u) = 1

2m·u2 is the kinetic energy
and Φ(

→
r ) is the potential energy, which depends only on

the position vector. The q-distribution of a Hamiltonian
gives the probability distribution of a particle having its
position and velocity in the infinitesimal intervals [

→
r ,

→
r +

d
→
r ] and [

→
u,

→
u + d

→
u ], respectively. The corresponding

formulation of kappa distributions coincides exactly with
that of q-exponential distribution, under the transforma-
tion of their indices κ = 1/(q−1) [31]. Under this transfor-
mation, the kappa distribution of velocities/energies that
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follows from eq. (1) is

P (
→
r ,

→
u) ∼

[
1 − (q − 1) · H(

→
r ,

→
u)

kBT

] 1
q−1

∼
[
1 +

1
κ

· H(
→
r ,

→
u)

kBT

]−κ

. (4)

In the modern version of nonextensive statistical mechan-
ics, the kappa distribution is aligned to eq. (3) [23,39–41]:

[
1 + (q − 1) · H(

→
r ,

→
u) − 〈H〉
kBT

]− q
q−1

∼
[
1 +

1
κ

· H(
→
r ,

→
u) − 〈H〉
kBT

]−κ−1

, (5)

where 〈H〉 is the ensemble phase-space average of the
Hamiltonian. For zero potential energy Φ ∼ 0, eq. (5)
becomes

P (
→
u) ∼

[
1 +

1
κ

· εK(
→
u) − 〈εK〉
kBT

]−κ−1

. (6)

Lastly, we refer to the invariant kappa index. The
kappa index depends on the particle degrees of freedom d,
κ(d) = κ0+ 1

2d [40–43], where the 0-degrees kappa index κ0

is a thermodynamic property invariant under variations of
dimensionality. The degrees of freedom count the kinetic
dK and potential dΦ degrees. The former is typically 3,
while the latter depends on the form of potential energy Φ.
For a central power potential, Φ(r) ∼ ±r± b, (any analyti-
cal form can be locally approximated by a power law), the
potential degrees equal (2/b)dr, where dr is the dimen-
sionality of the positional vector (typically, 3). Hence,
d=dK+(2/b)dr; for a harmonic oscillator we have b=2,
d=6, or κ0 = κ − 3; the theory developed here represents
photons in a box, akin to a harmonic oscillator.

The notion of the invariant kappa index is suitable for
characterizing the thermodynamics of the system. In the
case of the stationary state corresponding to the classical
thermal equilibrium, the kappa index tends to κ0→∞. In
the case of anti-equilibrium [22], the kappa index tends
to the limit κ0→0. As the name suggests, this is the fur-
thest possible stationary state from the classical thermal
equilibrium. Each stationary state is described by kappa
distributions of a certain kappa index, with the two lim-
its i) at the classical thermal equilibrium for κ0→∞, de-
scribed by the Maxwell-Boltzmann velocity distributions
and zero correlation among particle velocities, and ii) at
anti-equilibrium, where the velocity distribution tends to
a simple power-law [4], and the correlation among particle
velocities is maximized [22,42,44].

Throughout the paper, we will be using the standard
kappa index formalism and symbol κ, but one can easily
convert the results through the invariant kappa index κ0 =
κ − 3.

Formulation of discrete kappa distributions. –
We recall that kappa distributions are consistent with

the concept of generalized thermal equilibrium, describing
systems residing in stationary states characterized by the
intensive thermodynamic parameters of temperature and
kappa [5]. Here we show the formalism of discrete kappa
distributions.

Let the discrete energy {εj} of a particle system be as-
sociated with a discrete kappa distribution function {P j}.
If the system resides in stationary states and exhibits cor-
relations among particles’ velocities/energies, then it ac-
tually resides in the generalized thermal equilibrium [5],
where its particles phase space is described by kappa dis-
tributions, i.e.,

Pj = 1
Z ·

(
1 +

1
κ

· εj − 〈ε〉
kBT

)−κ−1

,

Z =
∑∞

j=0

(
1 +

1
κ

· εj − 〈ε〉
kBT

)−κ−1

.

(7)

The mean energy is determined by

〈ε〉 =
∞∑

j=0

Pj (〈ε〉) · εj , (8)

which can be given implicitly from

∞∑
j=0

(
1 +

1
κ

· εj − 〈ε〉
kBT

)−κ−1

=

∞∑
j=0

(
1 +

1
κ

· εj − 〈ε〉
kBT

)−κ

. (9)

It is useful to express the internal energy 〈ε〉 for sta-
tionary states near classical equilibrium (κ→∞), that is,
for 1/κ � 1. We set β 〈ε〉 ∼= y0 + 1

κy1 + O( 1
κ)2 where

β ≡ (kBT )−1 denotes the inverse temperature; in ap-
pendix A in the SM, we show that

y0 = S1/S0, y1 =
1
2
S3/S0 −

(
1 +

3
2
y0

)
S2/S0 + y0

2 + y0
3,

(10)
where the Sk coefficients can be defined and derived from

Sk ≡
∞∑

j=0

e−βεj(βεj)k, Sk = (−1)kβk · ∂(k)S0/∂β(k). (11)

The term y0 denotes the result within the framework of
the classical Boltzmann-Gibbs statistical mechanics, i.e.,
〈ε〉 = y0kBT for κ → ∞; the percentage deviation from the
classical value is 〈ε〉 /(y0kBT ) − 1 = y1/(κy0) for κ→∞.

Black body in generalized thermal equilibrium.
– It is important to follow the classical path of derivation
of the black-body radiation. This is developed by substi-
tuting the Boltzmannian formulation of the discrete distri-
bution of energies with the one given by the discrete kappa
distribution of energies shown in the previous section
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and especially in eq. (7). In fact, this black-body ra-
diation formulation is a natural thermodynamic gener-
alization for systems out of thermal equilibrium. We
note that there were several other attempts to approach
the problem within a generalized statistical framework
(e.g., [45–47]). However, these were not based on the self-
consistent framework of the modern adaptation of nonex-
tensive statistical mechanics, which leads to eq. (3) (in
terms of the entropic parameter q), or equivalently, to
eq. (5) (in terms of the thermodynamic kappa index κ).
(For details, see [22,23,31,43].)

The black-body radiation spectrum is characterized by
a discrete energy and probability distribution and studied
by the thermostatistics of the generalized thermal equi-
librium, which are described by the formulation of kappa
distributions.

Let us consider a cubical black body of size L, filled
with electromagnetic radiation residing in a stationary
state (generalized thermal equilibrium at temperature T
and kappa κ) with the surrounding space plasma. The
ensemble of any number of photons, j, leads to the dis-
crete energy of εJ = (j + 1

2 ) · hν. The constant factor
1
2hν has no effect on the statistics, either for the clas-
sical Boltzmann exponential function (as an exponential
function that can be factored out) or for kappa distri-
butions (since the base of the distribution includes the
difference between energy and its mean value, eq. (7)).
Hence, we ignore the constant part of the energy levels,
setting for simplicity that εJ = j · hν. The 3D wave
number and wavelength components characterize the fre-
quency, given by 2π · ν = ck = c(k2

x + k2
y + k2

z)1/2 or
ν = c(λ−2

x +λ−2
y +λ−2

z )1/2. According to the theory anal-
ogous to the wave function of a particle in a box, the
electromagnetic field is expressed as superposition of peri-
odic standing waves, where each wavelength component is
determined by a positive integer, λi = 2L/ni, with i : x, y,
z, and the frequency is proportional to the magnitude of
these numbers n = (n2

x +n2
y +n2

z)
1/2, i.e., ν = n · [c/(2L)].

Then, setting, a ≡ ε1/(kBT ) = hν/(kBT ),

εj

kBT
= j · hν

kBT
≡ j · a,

〈ε〉
kBT

= 〈j〉 · hν

kBT
= 〈j〉 · a, (12)

where 〈j〉 is determined in terms of a using eqs. (8), (9),
i.e.,

〈j〉 =
∞∑

j=0

[
1 +

1
κ

(j − 〈j〉)a
]−κ−1

j

/ ∞∑
j=0

[
1 +

1
κ

(j − 〈j〉)a
]−κ−1

, (13)

∞∑
j=0

[
1 +

1
κ

(j − 〈j〉) a

]−κ−1

=

∞∑
j=0

[
1 +

1
κ

(j − 〈j〉) a

]−κ

. (14)

The above equations generalize the respective equation
of the classical Boltzmannian case (e.g., [48]):

∞∑
j=0

e−j·a (j − 〈j〉) = 0 or 〈j〉 =
∞∑

j=0

e−j·aj

/ ∞∑
j=0

e−j·a.

(15)
The expressions in eqs. (13), (14) may be used to de-

termine 〈j〉, which corresponds to the mean kinetic energy
〈ε〉 according to eq. (12). We avoid the summations in our
calculations, using a known closed form, the Hurwitz zeta
function [49],

ζ(s, λ) ≡
∞∑

j=0

(Λ + j)−s. (16)

Then, eq. (14) can be written without the summation as

(κ/a) · ζ (κ + 1, κ/a − 〈j〉) = ζ (κ , κ/a − 〈j〉) . (17)

Still, the desired unknown, 〈j〉, is implicitly involved in
the above equations. Then, we use the following mathe-
matical substitution to have 〈j〉 simply expressed in terms
of a. Setting Λ ≡ κ/a − 〈j〉, we derive the expression of
〈j〉 as a function of a, denoted by 〈j〉 (a), as a parametric
equation, where Λ is the common parameter (see fig. 1(a)),

〈j〉 (Λ) =
ζ (κ, Λ)

ζ (κ + 1, Λ)
− Λ,

a(Λ) = κ · ζ (κ + 1, Λ)
ζ (κ, Λ)

.

(18)

It is faster in coding to determine the Hurwitz zeta func-
tion just once; using an identity of this function, we rewrite
(18):

〈j〉 (Λ) = −κ/ln′ζ(κ, Λ) − Λ, a(Λ) = ln′ζ(κ, Λ). (19)

Note that the above quantities depend on both Λ and
kappa, 〈j〉 (Λ; κ) and a(Λ; κ); for simplicity, we ignored
showing the dependence on kappa; still, the desired equa-
tion 〈j〉 (a; κ) is derived from eliminating Λ from 〈j〉 (Λ; κ)
and a(Λ; κ).

Next, we calculate the spectral intensity (or radiance) at
frequency ν, Bν(T; κ), or at wavelength λ, Bλ(T; κ), of the
radiation emitted by the black body residing in nonther-
mal equilibrium with the surrounding space plasma char-
acterized by temperature T and correlations with kappa
κ (fig. 1(b), (c)).

Setting ε1 = akBT = hν = hc/λ, the density of pho-
ton states is g(n)dn = g(ε1)dε1, with g(n)dn = πn2dn =
V 8πh−3c−3ε1

2dε1 = V 8πc−3ν2dν = −V 8πλ−4dλ, where
the black-body volume is V = L3; we find 〈j〉 ν3dν =
−8πhc 〈j〉λ−5dλ. The spectral intensity Bν(T ; κ) or
Bλ(T ; κ), is the energy dU = 〈ε〉 g(n)dn per volume V
and frequency interval dν or wavelength interval dλ:

Bν (ν ; T , κ) ≡ (c/4π) · |dU/(V dν)| =

2hc−2 · 〈j〉
(

h

kBT
ν; κ

)
· ν3, (20)

49001-p4



Black-body radiation in space plasmas

Fig. 1: (a) The average number of photons 〈j〉, which cor-
responds to the average energy 〈ε〉 = 〈j〉 hν or 〈ε〉 /(kBT ) =
〈j〉 · a, is plotted with respect to a ≡ hν/(kBT ), and for kappa
indices κ = 3 (red), κ = 4 (blue), κ = 5 (green), κ = 10 (pink),
and κ→∞ (light-blue). (b) The spectral intensity Bν(a = ν; κ)
in eq. (20) is plotted with respect to a, which coincides with
the frequency with units h/(kBT ) ≡ 1, for the same values
of kappa as in (a). (c) Similar to panel (b), the intensity
Bλ(a = λ−1; κ) in eq. (21) is plotted with respect to λ = a−1.
(d) The kappa-dependent factor f κ that modifies the Stefan-
Boltzmann law diverges for κ<3 and is plotted with respect
to κ; the input panel shows the approximately power-law rela-
tionship of fκ ≈ 1 + 10 · (κ − 3)−1. Note: κ→3 corresponds to
the furthest state from thermal equilibrium, which is expected
when the invariant kappa index κ0=κ−3 reaches zero.

Bλ (λ; T, κ) ≡ (c/4π) · |dU/(V dλ)| =

2hc−2 · 〈j〉
(

h

kBT
λ−1; κ

)
· λ−5. (21)

The total energy emitted over the whole radiance
spectrum U is dU/V = 〈ε〉 g(n)dn/V =〈j〉 akBT ·
8πh−3c−3ε1

2dε1, that is, dU/V = 〈j〉 8πh−3c−3(kBT )4 ·
a3da. Hence,

u ≡ 1
4
c · U/V = 2πh−3c−2(kBT )4

∫ ∞

0

〈j〉 (a; κ)a3da,

(22)
leading to the generalized Stefan-Boltzmann law
(fig. 1(d)),

u =
2
15

π5h−3c−2(kBT )4fκ = σ · T 4 · fκ, (23)

which includes the known fourth power of tempera-
ture [50], but also an important new kappa-dependent fac-
tor

fκ ≡
∫ ∞
0 〈j〉 (a; κ)a3da∫ ∞

0 〈j〉 (a; κ → ∞)a3da
= 15π−4

∫ ∞

0

〈j〉 (a; κ)a3da.

(24)
This recovers f ∞→1 at κ → ∞, because∫ ∞

0

〈j〉 (a; κ → ∞)a3da =
∫ ∞

0

a3(ea − 1)−1da = π4/15.

(25)
Next, we use the approximation in eqs. (9), (10). From

eq. (14)

β 〈ε〉 = βhν 〈j〉 = a 〈j〉 ∼= y0 +
1
κ

y1, for κ 	 1, (26)

where y0 and y1 are derived from eq. (10), with Sk

coefficients:

Sk ≡ ak ·
∞∑

j=0

e−a·jjk = (−a)k · ∂(k)S0/∂a(k), (27)

leading to Sk = akea(ea − 1)−k−1(1 + Rk), for k=0,1,2,3,
with Rk = {0, 0, ea, ea(ea + 4)}. Hence, we end up with
〈j〉 ∼= a−1(y0+ 1

κy1) (from eq. (26), where y0 = (1−e−a)−1

and y1 = a2ea(ea − 1)−3[(1
2a − 1)ea + 1

2a + 1], i.e.,

〈j〉 ∼= (ea − 1)−1 +
1
κ

· aea(ea − 1)−3

[(
1
2
a − 1

)
ea +

1
2
a + 1

]
. (28)

The spectral intensity per frequency in eq. (20) becomes

Bν (T ; κ) ∼= 2hc−2ν3

e
h

kBT ν − 1
·
(

1 +
1
κ

· δ ln Bν

)
, (29)

with

δ ln Bν ≡
h

kBT νe
h

kBT ν

e
h

kBT ν − 1
·
(

1
2

h

kBT
ν

e
h

kBT ν + 1

e
h

kBT ν − 1
− 1

)
. (30)

The near-Boltzmannian term of the order (1/κ) can be
interpreted as statistical fluctuations from the classical
case of the Boltzmannian term. When a system resides
near (1/κ � 1) but not exactly at classical equilibrium
(1/κ → 0), then there are deviations from the classical
intensity (and its Boltzmannian term), which may be ob-
servable. Such deviations would have been interpreted
as just statistical fluctuations, but instead, they could be
physical and caused by the near-Boltzmannian term, cor-
responding to percentage deviation δ ln Bν . The respective
approximation of the kappa-dependent correcting factor of
eq. (24) that modifies the Stefan-Boltzmann law, eq. (23),
is given by

fκ
∼= 1+

1
κ

·15
π4

∫ ∞

0

a4ea

(ea − 1)2

(
1
2
a
ea + 1
ea − 1

− 1
)

da = 1+6
1
κ

.

(31)
Finally, we compare the exact spectral intensity per fre-

quency, shown in eq. (20), and its approximation, shown
in eq. (29). Figure 2 plots the percentage deviation of
the spectral intensity from its classical value, expressed by
δ ln Bν , for both the exact and approximate expressions,
and for several kappa indices. We observe that the differ-
ence between the two graphs tends to zero as the kappa
increases; for kappa ∼100 or larger, the two expressions
practically coincide.

Discussion. – In this study, we generalized Planck’s
law for black-body radiation for systems described by
kappa distributions, such as in space plasmas, which reside
in stationary states out of classical thermal equilibrium.
This provides the spectral intensity of electromagnetic ra-
diation, emitted by a black body residing in nonthermal or
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Fig. 2: Percentage deviation of the spectral intensity from its
classical value, δlnBν , plotted with respect to frequency, and
for kappa indices, (a) κ = 10, (b) κ = 25, and (c) κ = 100. We
plot both the exact (blue) and approximate (red) expressions
of the spectral intensity, using eqs. (20) and (29), respectively.

generalized thermal equilibrium, that is, in the stationary
state described within the framework of kappa distribu-
tions. Then, statistical correlations may characterize the
particle velocities/energies as generally observed in space
and astrophysical plasmas.

In summary, in this paper, we: i) developed the equation
of the mean energy of photon ensemble, and spectral inten-
sity (radiance) with respect to frequency and wavelength
for black bodies residing in the stationary states of the
generalized thermal equilibrium with the surrounding and
interacting material or particles (e.g., space plasma), at
temperature T and kappa index κ; ii) updated the Stefan-
Boltzmann law of the total energy emitted from the whole
radiance spectrum for black bodies residing in generalized
thermal equilibrium, which is characterized by the well-
known fourth power of temperature, but now multiplied
by a kappa-dependent factor; and iii) derived first-order
approximation formulae for all the above developments, in
the near-Boltzmannian case, where 0 < 1/κ � 1, and the
form of percentage deviation from the exact Boltzmannian
case.

With the developments provided here, it is straightfor-
ward to compare the spectral intensities measured from
various space physics observations with the modelled val-
ues using the statistical framework of kappa distributions.
In this way, we minimize the chances for misinterpretation
and error, such as from temperature measurements de-
rived from radiation spectra, by also including the values
of kappa that characterise these non-thermal black-body
systems.

Black-body radiation is a common phenomenon; in fact,
all objects are potential black-body radiators (anything
at a higher temperature than its surroundings can radi-
ate), with the amount of radiation and position in the
spectrum depending on the emissivity, as well as the ob-
ject’s temperature and kappa values. There are every-day
examples of black-body radiators, such as heaters, light
bulbs, stoves, night-vision equipment, burglar alarms,

warm-blooded animals, etc. They can be used in nu-
merous applications, such as lighting, heating, security,
thermal imaging, metrology, etc. Black-body spectral ra-
diation physics is also applicable in many space and as-
trophysical systems, even to cosmological scales: Solar
spectroscopy; stellar spectroscopy, e.g., characterization
of stellar age, types, and Hertzsprung-Russell (HR) dia-
grams; planetary surfaces, atmospheres and clouds; ther-
mal noise spectroscopy; gamma-ray bursts; Cosmic Mi-
crowave Background (CMB).

The kappa index that characterizes spectral radiation
may lead to a new thermal-type parameterization of the
source properties, such as its thermodynamic state, poly-
tropic behavior, or other physical properties such as the
connection with the magnetic field, or even conclusions
about its age.

As an example, we may mention quasi-thermal noise
spectroscopy, which has been applied to solar wind
and Earth’s plasmasphere [51]. This is based on the
generalization of an antenna immersed in black-body ra-
diation. Whereas analyses of electromagnetic fluctua-
tions yield the temperature, an antenna in an equilibrium
plasma is excited by thermal Langmuir waves, enabling
the measurements of the plasma density and temperature.
Improvements of this technique could also provide mea-
surements of the kappa index.

In planetary science, clouds are also approximated as
black bodies. The effect of clouds can be implemented
by modifying the bulk emissivity depending on the cloud
fraction and/or type. However, the most relevant param-
eter for the transmitted radiation is the temperature of
its lower boundary, or cloud base (e.g., [52]). Here the
modified Stefan-Boltzmann law and involved kappa index
should play a significant role in the modelling of atmo-
spheric radiation.

The spectral intensity and Stephan-Boltzmann law are
also used in astrophysics and cosmology, and its non-
equilibrium modification may lead to important modifica-
tions of the existing physical concepts. For instance, the
HR diagram plots stars’ absolute magnitudes or luminosi-
ties vs. their stellar classifications or effective tempera-
tures. The stellar lifetime is a sequence of luminosity- and
temperature-dependent changes; thus, the HR diagram re-
flects the basics of these stellar lifetime stages. A new
version of the HR diagram should include both the ther-
modynamic parameters of temperature and kappa.

Other phenomena involve types of gamma-ray bursts
(GRBs) which are characterized by the presence of a signif-
icant thermal component following the prompt emission,
as well as by the absence of a typical afterglow. These are
black-body–dominated GRBs, where the thermal emission
is attributed to the interaction of an ultra-relativistic jet
with a hydrogen shell in the vicinity of the progenitor star
that generates the GRBs [53]; their kappa indices charac-
terize the thermodynamics of this interaction.

The CMB is sometimes considered as a system in
thermal equilibrium; e.g., [54] reviewed temperature
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anisotropies of CMB radiation and noted that “the almost
perfect blackbody shape of the energy spectrum could only
be realized by the thermal equilibrium between photons,
electrons, and protons in the early universe.” On the other
hand, there is a merit to the theoretical view that the ther-
mal equilibrium of CMB is a fossil, since it refers to an era
when the photons were closely interacting with the cosmic
plasma; very long wavelength modes, residing outside the
horizon at this epoch, were never in thermal equilibrium
with each other (e.g., [55]). The black-body formalism
for nonthermal equilibrium described by kappa distribu-
tions might be just the right modification for describing
the complex thermodynamics of the early universe.

In general, complicated systems under physical
processes out of the classical thermal equilibrium are in-
vestigated within the framework of nonextensive statis-
tical mechanics, which is associated with the concept of
nonthermal or generalized thermal equilibrium [5]. The
modifications developed in this paper apply across space
plasmas, as well as any other areas where kappa distribu-
tions, rather than Maxwellian’s, characterize the physical
systems.
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[26] Vasyliũnas V. M., J. Geophys. Res., 73 (1968) 2839.
[27] Tsallis C., J. Stat. Phys., 52 (1988) 479.
[28] Treumann R. A., Geophys. Res. Let., 24 (1997) 1727.
[29] Milovanov A. V. and Zelenyi L. M., Nonlinear Pro-

cess. Geophys., 7 (2000) 211.
[30] Leubner M. P., Astrophys. Space Sci., 282 (2002) 573.
[31] Livadiotis G. and McComas D. J., J. Geophys. Res.,

114 (2009) A11105.
[32] Gibbs J. W., Elementary Principles in Statistical Me-

chanics (Scribner’s sons, New York) 1902.
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