
                          

LETTER • OPEN ACCESS

The interplay between memory and potentials of
mean force: A discussion on the structure of
equations of motion for coarse-grained
observables
To cite this article: Fabian Glatzel and Tanja Schilling 2021 EPL 136 36001

 

View the article online for updates and enhancements.

You may also like
On the derivation of the generalized
Langevin equation and the fluctuation-
dissipation theorem
Hadrien Vroylandt

-

Markovian equations of motion for non-
Markovian coarse-graining and properties
for graphene blobs
D Kauzlari, J T Meier, P Español et al.

-

The effective temperature
Leticia F Cugliandolo

-

This content was downloaded from IP address 3.140.185.123 on 27/04/2024 at 00:52

https://doi.org/10.1209/0295-5075/ac35ba
https://iopscience.iop.org/article/10.1209/0295-5075/acab7d
https://iopscience.iop.org/article/10.1209/0295-5075/acab7d
https://iopscience.iop.org/article/10.1209/0295-5075/acab7d
https://iopscience.iop.org/article/10.1088/1367-2630/15/12/125015
https://iopscience.iop.org/article/10.1088/1367-2630/15/12/125015
https://iopscience.iop.org/article/10.1088/1367-2630/15/12/125015
https://iopscience.iop.org/article/10.1088/1751-8113/44/48/483001


November 2021

EPL, 136 (2021) 36001 www.epljournal.org

doi: 10.1209/0295-5075/ac35ba

The interplay between memory and potentials of mean force:
A discussion on the structure of equations of motion
for coarse-grained observables

Fabian Glatzel
(a) and Tanja Schilling

(b)

Institute of Physics, University of Freiburg - Hermann-Herder-Str. 3, 79104 Freiburg, Germany

received 15 July 2021; accepted in final form 2 November 2021
published online 23 February 2022

Abstract – The underdamped, non-linear, generalized Langevin equation is widely used to model
coarse-grained dynamics of soft and biological materials. By means of a projection operator for-
malism, we show under which approximations this equation can be obtained from the dynamics
of the underlying microscopic system and in which cases it makes sense to introduce a potential
of mean force. We discuss shortcomings of previous derivations presented in the literature and
demonstrate the implications of our derivation for the structure of memory terms and for gen-
eralized fluctuation-dissipation relations. We show, in particular, that the widely used, simple
structure which contains a potential of mean force, a memory term which is linear in the observ-
able, and a fluctuating force which is related to the memory term by a fluctuation-dissipation
relation, is neither exact nor can it, in general, be derived as a controlled approximation to the
exact dynamics.
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When a coarse-grained model for a polymeric system or a
biological macromolecule is designed, groups of atoms are
merged into larger units. Then approximate equations of
motion for these units are solved to predict the evolution
of the model [1–3]. Depending on context, the coarse-
grained degrees of freedom can range from the positions
of small molecules or chemical groups to reaction coordi-
nates such as the relative orientation of structural motifs
in a biomolecule. In principle, to obtain the exact equa-
tion of motion of a coarse-grained degree of freedom, one
would need to integrate out systematically the atomistic
degrees of freedom. However, as this is a very difficult
task, researchers usually resort to effective models. For
instance, the underdamped non-linear Langevin equation
is frequently used

mẍt = −dW (x)

dx

∣∣∣∣
x=xt

− γẋt +
√

2γkBTξt, (1)

where xt is the position of a coarse-grained unit at
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time t (respectively, the value of a more general reaction
coordinate), m is a generalized mass, γ is a friction coef-
ficient, W (x) is an effective potential, kBT is the thermal
energy and ξt is white Gaussian noise [4].

The notation ẍ and ẋ for the time derivatives is fre-
quently used in the physics literature to indicate that
eq. (1) could be interpreted in analogy to the New-
tonian equation of motion of a particle in a potential
energy landscape. However, as ξt is a stochastic pro-
cess, the terms ẍ and ẋ are stochastic derivatives, and
W (x) is not an external potential but the potential of
mean force

W (x) := −kBT ln (ρeqX (x)).

Here ρeqX (x) is the so-called “relevant density” of the
coarse-grained observable X, i.e., the probability of the
observable X having the value x in the equilibrium en-
semble [5]. Thus the analogy to Newtonian mechan-
ics can be misleading. For canonical dynamics one
also often encounters the terms effective free energy
and free energy landscape for −kBT ln (ρeqX (x)), denoted
by ΔG(x).
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The dynamics of the atomistic degrees of freedom
which have been integrated out, in general, produce mem-
ory effects. Therefore integro-differential equations are
also often used to model coarse-grained variables, such
as, e.g.,

mẍt = − dW (x)

dx

∣∣∣∣
x=xt

−
∫ t

0

dτ K(t− τ)ẋτ + ft, (2)

where K is the memory kernel and f the flucutating force,
which is related to K by the second fluctuation-dissipation
theorem (see refs. [6–14] for examples of recent work in
which this equation is used to model coarse-grained dy-
namics). In this letter, we type-set times in parentheses if
the time dependence is on the level of the ensemble aver-
age (as, e.g., in the memory kernel K(t− τ)) and times as
subscripts if the dependence is on the level of the individ-
ual trajectory (as, e.g., in xt).
These effective equations of motion are frequently used

in the soft matter modelling community. They provide
a practical pathway to coarse-grained modelling, because
the functions W (x) and K(t) can be parameterised and
then fitted to simulation data. Therefore it is interest-
ing to check under which assumptions these equations
can be derived from first principles. We are aware of
only two publications, in which derivations for eq. (2) are
shown [15,16]. Note that we are referring specifically to
the form of the generalized Langevin equation, in which
the variable x enters W (x) non-linearly, while the mem-
ory term is linear in ẋ, and K(t− τ) and ft are related by
the second flucutation-dissipation theorem. Other forms
of the generalized Langevin equation, as discussed, e.g., in
refs. [4,17–22], are not in the focus of our letter. We also
acknowledge that, if one replaces the potential of mean
force W (x) in eq. (2) with an external potential Vext(x),
one obtains the equation of motion of a specific, well-
known model system: one particle linearly coupled to a
bath of harmonic oscillators [23]. Also this is not the type
of problem we are referring to in this letter. We are aiming
at coarse graining the dynamics of complex systems such
as polymers and biomolecules, in and out of equilibrium.
The question we address in this letter is if an equation
of motion with the structure of eq. (2) can be derived for
a broad class of systems and observables, as claimed in
refs. [15] and [16].
A useful framework to tackle this task is the pro-

jection operator formalism as originally introduced by
Zwanzig [24,25] and Mori [26]. Let Γ = {qi, pi} denote the
phase space coordinates of the microscopic system and
iL the Liouvillian, which for now shall not be explicitly
time dependent (we will come to time-dependent Liouvil-

lians later). �A(Γ) shall denote a set of phase space fields,
e.g., the coarse-grained observables for which we intend to
derive an equation of motion. We use blackboard bold for
phase-space functions and italics for the value they take at
specific points in phase space, i.e., �At = �A(Γt). In the case
of Hamiltonian dynamics, the action of the Liouvillian on

the fields Ai(Γ) is given by

Ȧi = iLAi = {Ai,H} =
∑
j

∂Ai

∂qj

∂H

∂pj
− ∂Ai

∂pj

∂H

∂qj
. (3)

The equation of motion of the observables can be inte-
grated formally

d �At

dt
= exp(tiL)iL�A(Γ)

∣∣
Γ=Γ0

. (4)

The right-hand side is the time-evolution operator for a
time span of t acting on the time derivative of �A. (Note
that the initial phase-space coordinates Γ0 are inserted
after performing this operation.) We introduce projection
operators P which act on the space of phase-space fields.
Using the Dyson-Duhamel identity, eq. (4) can be written
as

d �At

dt
=

t∫
0

ds exp(siL)PiLQ exp ((t− s)iLQ) iL�A

+ exp(tiL)PiL�A+Q exp (tiLQ) iL�A, (5)

where Q := 1 − P. (We dropped the explicit insertion of
the initial point in phase-space Γ0 on the right-hand side.)
Next, we need to choose a specific projector. Two of the
most prominent types of projectors are the Zwanzig and
the Mori projector. As we will see in the following, the
Zwanzig projector has the useful property that the second
term in eq. (5) turns into a derivative of a potential of
mean force under certain conditions. On the other hand,
the Mori projector, which is linear in the observable(s),
yields a fluctuation-dissipation relation.
We begin with a projection operator similar to

Zwanzig’s original one to bring the second term of the
right-hand side of eq. (5) into the form of a derivative of
a potential of mean force. We define

PX(Γ) =
1

ρA(�A(Γ))

∫
dΓ′ρeq(Γ′)X(Γ′)δ(�A(Γ′)− �A(Γ))

(6)

with

ρA( �A) =

∫
dΓ ρeq(Γ)δ(�A(Γ)− �A), (7)

where X is an arbitrary phase-space field. The normaliza-
tion factor ρA( �A) is the relevant density of the variables
Ai. In the next steps, we use the canonical equilibrium
density ρeq(Γ) ∝ exp(−βH(Γ)), where β = 1/kBT , to
project X onto a set of phase space fields {Ai}. (This
is not mandatory, a similar derivation can also be carried
out for other ensembles.)
To derive an equation of a structure similar to eq. (2),

we assume that the Hamiltonian can be split into a simple
kinetic contribution and a potential that depends only on
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the generalized coordinates

H(Γ) =
∑
j

p2j
2mj

+ V(q1, . . . , qN ). (8)

Now we project onto a set of two rather specific ob-
servables, �A = (A1,A2)

�. The first one takes the form
A1 = α0 +

∑
j αjqj with constant prefactors αi. An ex-

ample for such an observable would be a center of mass of a
set of atoms. The second observable is the time derivative
of the first one, namely A2 = iLA1 =

∑
j αjpj/mj .

To obtain an equation similar to eq. (2), where the left-
hand side is the second time derivative of the observable,
we consider the evolution of A2. Thus, the second term in
the second component of eq. 5 reads

exp(tiL)PiLA2 = − exp(tiL) 1

ρA(�A(Γ))

∫
dΓ′ ρeq(Γ′)

× δ(�A (Γ′)− �A(Γ))
∑
j

αj

mj

∂V(Γ′)

∂q′j
. (9)

To relate this expression to a potential of mean force, we
take the derivative of the relevant density with respect to
the first coordinate

∂ρA

(
�A
)

∂A1
=

∫
dΓ′ ρeq (Γ′) δ (A2 (Γ

′)−A2)

× μ
∑
j

αj

mj

∂

∂q′j
δ (A1 (Γ

′)−A1) , (10)

where μ =
∑

i mi/α
2
i . Next, we carry out an integration

by parts and use the fact that

∂

∂qj
ρeq(Γ) = −β

∂V(Γ)

∂qj
ρeq(Γ) (11)

to obtain

∂ρA( �A)

∂A1
= βμ

∫
dΓ′ ρeq (Γ′) δ(�A (Γ′)− �A)

×
∑
j

αj

mj

∂V(Γ′)

∂q′j
. (12)

Comparing eq. (9) and eq. (12), we see that

exp(tiL)PiLA2 = − 1

μ

∂

∂A1
(−kBT ln(ρA( �A)))︸ ︷︷ ︸

=:W ( �A)

∣∣∣
�At

, (13)

where W ( �A) is the potential of the mean force. Note

that ∂W ( �A)/∂A1 does not depend on A2, because the
A2-dependent factors in the numerator and denominator
cancel each other.
A similar expression can be derived for a projection on

multiple observables, e.g., for a projection on the centers
of mass of several “blobs” (united atoms in a polymeric
system). In this case one replaces the first observable A1

by a set of observables A1i, where each of these observables
has the form A1i = α0i +

∑
j αjiqj , with constant prefac-

tors αji. Then the set is extended by the time deriva-
tives A2i = iLA1i. Similar as before, the effective masses
μi =

∑
j mj/α

2
ji are defined. However, there is one addi-

tional restriction in this case: if a microscopic coordinate
qj enters one A1k it must not enter any other A1l. Other-
wise, the partial integration performed to obtain eq. (12)
will yield additional terms. If the coarse-grained observ-
ables are the centers of mass of different blobs, this means
that a single particle must not be attributed to more than
one blob.
In this case the derivation can be carried out as before

and we obtain

exp(tiL)PiLA2i = − 1

μi

∂

∂A1i
(−kBT ln(ρA( �A)))︸ ︷︷ ︸

=:W ( �A)

∣∣∣
�At

. (14)

Again, ∂W ( �A)/∂A1i does not depend on A2i.
Thus, the second term in eq. (5) takes the form of a

derivative of a potential of mean force under the following
conditions:

– The Hamiltonian is of the form given in eq. (8).

– A Zwanzig-type projector (cf. (6)) onto two observ-
ables is used.

– The first set of observables of the projector is of the
form A1i = α0i +

∑
j αjiqj with constant αji.

– If a coordinate qj enters one A1k it must not enter
any other A1l.

– The second set of observables of the projector is the
time derivative of the first set A2i = iLA1i.

(We note that this derivation does also hold for a time-
dependent Hamiltonian if it can be expressed in the form
of eq. (8) with time-dependent masses and/or a time-
dependent potential V(q1, . . . , qN ; t). In this case, we
would need a time-dependent projector where the equilib-
rium density in eq. (6) is replaced by the equilibrium den-
sity with respect to the current Hamiltonian ρeq(Γ; t) ∝
exp(−βH(Γ; t)). See ref. [22] for a suitable projection op-
erator approach.)
Next, we consider the first and third term of eq. (5).

Inserting the Zwanzig projector, eq. (6), into the first term
of the right-hand side of eq. (5) we obtain a term which is
in general non-linear in Ȧτ . Based on Zwanzig’s work [25],
Hijón et al. showed in ref. [20] that the memory term for
the second component can be written as

t∫
0

ds
∑
i=1,2

(
Mi( �As, t− s)

∂W ( �As)

∂Ai,s
+ kBT

∂Mi( �As, t− s)

∂Ai,s

)

with

Mi( �A, t) :=
1

kBT
P ([iLAi] [Q exp(tiLQ)iLA2]) .

36001-p3
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(The sum runs over the number of components of �A.)
This expression differs considerably from the desired one
in eq. (2). Even if we assume that there is time-scale sep-
aration between the observables Ai and the other degrees
of freedom, such that Mi( �As, t − s) ∝ γ( �As)δ(t − s), we

do not recover eq. (1), because in general, γ( �As) is not a
constant.
In order to see the structure of the first and third term of

eq. (5) more clearly, we now use a mapping of the Zwanzig
projector to a Mori projector as proposed in refs. [27,28].
(This mapping holds for a general set {Ai}, not just for
the specific one used in the previous paragraphs.) We
define a scalar product between square-integrable phase-
space fields by

(X,Y) =

∫
dΓ ρeq(Γ)X(Γ)Y(Γ), (15)

and express the projector in eq. (6) as

PX(Γ) =
(δ(�A− �A),X)

(δ(�A− �A), 1)

∣∣∣∣∣
�A=�A(Γ)

. (16)

The set of phase-space functions that depend on Γ solely
through �A(Γ) are a closed subset of all phase-space func-
tions. Thus, we can define a complete (infinite) set of

phase-space functions fi(�A(Γ)) such that

(fi(�A), fj(�A)) = δi,j (17)

and

∞∑
i=1

fi(�A(Γ))fi(�A(Γ
′)) =

δ(�A(Γ)− �A(Γ′))

(δ(�A− �A), 1)
∣∣
�A=�A(Γ)

. (18)

These functions form a basis for the subspace of phase-
space functions that depend on Γ solely through Ai. In
practice, such a set of basis functions can be obtained by
means of a Gram-Schmidt process starting from monomi-
als in Ai. Note, that the denominator in eq. (18) is a mere
consequence of the normalization of the basis functions.
Thus, we can write the Zwanzig projector in eq. (16) as

PX(Γ) =
∞∑
i=1

(fi(�A),X)fi(�A(Γ)). (19)

However, this is nothing but a Mori projector on the in-
finitely many observables fi(�A). Using this expression, we
can write the second term in eq. (5) as

∞∑
i=1

t∫
0

dsK2,i(t− s)fi( �As),

with

Kj,i(t− s) = (fi(�A), iLQ exp((t− s)iLQ)iLAj).

Using the shorthand notation

�εt = Q exp (tiLQ) iL�A, (20)

we obtain the equation of motion

d2A1,t

dt2
=

dA2,t

dt

=

∞∑
i=1

t∫
0

dsK2,i(t− s)fi( �As)

− 1

μ

∂

∂A1
W (A1)

∣∣∣
A1=A1,t

+ ε2,t. (21)

If, in particular, A is the center-of-mass position of a set
of atoms, eq. (21) reads

ẋt = − 1

μ

∂

∂x
W (x)

∣∣∣
x=xt

+
∞∑
i=1

t∫
0

dsK2,i(t− s)fi (xs, ẋs) + ε2,t,

which differs considerably from eq. (2).
As the Liouvillian is anti-self-adjoint we can write the

memory kernels as

Kj,i(t) = −(iLfi(�A),Q exp (tiLQ) iLAj). (22)

If the phase-space distribution at time t equals ρeq, the
scalar product can be interpreted as a correlation,

Kj,i(t) = −
〈(

dfi( �At)

dt

∣∣∣∣∣
t=0

)
εj,t

〉

= −
〈⎛
⎝�ε0 ·

dfi( �A)

d �A

∣∣∣∣∣
�A=�A(Γ0)

⎞
⎠ εj,t

〉
, (23)

i.e., there is a relation between correlations in the fluc-
tuating force and the memory kernel, but all functions
fi(At) enter this relation. This is as close as we get to a
fluctuation-dissipation relation. Thus we conclude, if we
enforce the drift term in the equation of motion to be a
derivative of a potential of mean force, then the memory
term and the fluctuating force term are not related by a
fluctuation-dissipation relation.
Via the functions fi the memory term of eq. (21) con-

tains all powers and combinations of the variables Ai, not
just linear terms. To obtain an expression which is closer
in structure to eq. (2) (i.e., one in which the integrand is
linear in the observable), we begin the Gram-Schmidt pro-

cedure with the linear term A2 and ensure f1( �At) = φA2,t

where φ is the normalization factor. Then eq. (2) follows
if we truncate the sum in eq. (21) at i = 1. However, this
sum is in general not an expansion in a small parameter
and, hence, we have no information on the magnitude of
the other terms. Thus they should not be dropped without
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verifying that this constitutes a reasonable approximation
for the specific system at hand.
In the case where the fluctuations of the coarse-grained

variables around their means are small, Kauzlarić et al.
showed that the Zwanzig projector can be approximated
by a “Mori-like” projector [29]. Under these conditions,
the memory term can be approximated as one that is lin-
ear in the observable. However, the same applies to the
drift term, therefore one then does not obtain an equa-
tion of motion that contains a non-linear generalized drift
(which would allow to define a potential of mean force).
A special exception to this is the case where the potential
of mean force is quadratic such that its derivative is linear
and coincides with the Mori drift term. However, this is
certainly not the general case.
We conclude eq. (2) is neither exact nor, in general,

the result of a controlled approximation. The authors
of ref. [15] came to a different conclusion, because they
switched between a Zwanzig projector and a Mori pro-
jector for a single variable (rather than the inifinitely
many variables needed for eq. (19)) half-way through their
derivation. In the work of Kinjo et al., the time depen-
dences in eq. (17) of ref. [16] and eq. (26) of ref. [16] do not
match up and, hence, the projector is implicitly switched
as well. Unfortunately, in eq. (26) of ref. [16] the time
dependences are not given expicitly.
Finally, we note that �εt, eq. (20), is orthogonal to any

phase-space field g(�A(Γ)) which depends on the phase-

space coordinates solely through �A. Thus, if the phase-
space distribution equals ρeq at all times,

〈g0�εt〉 = �0 ∀t. (24a)

Note, that also 〈�εt〉 = 0 ∀t as we could choose g(�A) =
const.
Now we extend the discussion to full non-equilibrium,

i.e., we allow for an explicit time dependence of the Liou-
villian. To simplify the projection operator formalism, we
“augment” the phase-space by one additional dimension
(time) [22,27]. The new coordinates are Γa = (Γ, τ), where
the superscript a stands for “augmented phase-space”. We
denote the observable fields on the augmented phase-space
by A

a(Γa). However, Aa shall not depend on τ explicitly.
The equivalent to the Liouville operator is

iLa◦ = Γ̇a(Γa) · ∂

∂Γa
◦

and observables evolve according to the equation

At(Γ
a) = exp (iLat)Aa(Γa). (25)

We introduce an inner product on the augmented phase-
space

(Xa,Ya)
a
t =

∫
dΓa ρa(Γa, t) Xa(Γa)Ya(Γa) =∫

dΓa ρa(Γa, 0) (exp (iLat)Xa(Γa))

× (exp (iLat)Ya(Γa)) ,

where the notation ρa(Γa, t) indicates that we synchro-
nized the phase-space distribution such that ρa(Γa, t) =
ρ(Γ, t)δ(τ − t). As above, we define an orthonormal basis
{φa

i (A
a, τ)} such that(

φa
i (A

a, τ), φa
j (A

a, τ)
)
t
= δi,j ∀t.

Note that we will, in general, need a different set of basis
functions for each time t. As a generalized version of the
Zwanzig projector, we define

P(t)Xa(Γa)=

∫
dΓa′ρa(Γa′, t)δ(Aa(Γa′)−A

a(Γa))Xa(Γa′)∫
dΓa′ ρa(Γa′, t)δ(Aa(Γa′)− Aa(Γa))

.

Using the basis set, this projector can be brought into the
form

P(t)Xa(Γa) =

∞∑
i=1

(φa
i (A

a(Γa), τ),Xa(Γa′))t φ
a
i (A

a(Γa), t).

In contrast to eq. (19), this expression is not a Mori pro-
jector on the augmented space. However, as it is linear in
the functions φa

i , it can still be inserted straight-forwardly
into the Dyson-Duhamel identity. We obtain the equation
of motion

dAt

dt
=

∞∑
i=0

(
ωi(t)φ

a
i (At, t) +

∫ t

0

dsKi(t, s)φ
a
i (As, s)

)
+ft,

(26)
with

ωi(t) = (φa
i (A

a(Γa), τ), iLa
A

a(Γa))t,

Ki(t1, t2) =

(φa
i (A

a(Γa), τ), (iLa−Ṗ(t2))Q(t2)G(t2, t1)iLa
A

a(Γa′))t2 ,

and

ft = Q(0)G(0, t)iLa
A

a(Γa′), (27)

where Q(t) = 1 − P(t) and the negatively time-ordered

exponential G(t1, t2) = exp−(
∫ t2
t1

ds iLaQ(s)).

If we again impose the condition that φa
1(A

a) ∝ A
a,

we could, in principle, truncate the sum in eq. (26) at
i = 1 in order to obtain a memory term linear in As.
However, as above this sum is not an expansion in a small
parameter thus the truncation does not produce a well-
controlled approximation.
In summary, we discussed the structure of the non-

linear, generalized Langevin equation for a set of coarse-
grained observables. By means of a projection operator
formalism, we showed that the widely used equation of
motion, which consists of a derivative of a potential of
mean force as the organized drift, a memory term which
is linear in the observable and a fluctuating force which
obeys a fluctutation-dissipation relation with respect to
the memory kernel, is in general not exact.
To expand the memory kernel in a set of orthogonal

polynomials and to then truncate this expansion after the
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linear contribution does not constitute a general path-
way to a controlled approximation to the exact dynamics.
Whether or not the combinaton of a potential of mean
force with a linear memory term serves as a suitable ap-
proximation to a system’s coarse-grained dynamics, there-
fore needs to be tested case by case.
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