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Abstract – We study the evolution of pulses propagating through focusing nonlinear media. A
small disturbance of a smooth initial non-uniform pulse amplitude leads to formation of a region of
strong nonlinear oscillations. We develop here an asymptotic method for finding the law of motion
of the front of this region. The method is based on the conjecture that instability fronts propagate
with the minimal group velocity of linear waves. To support this conjecture, at first we review
several physical situations where this statement was obtained as a result of direct calculations.
Then we generalize it to situations with a non-uniform flow and apply it to the focusing nonlinear
Schrödinger equation for the particular cases of Talanov and Akhmanov-Sukhorukov-Khokhlov
initial distributions. The approximate analytical results agree very well with the exact numerical
solutions for these two problems.

perspective Copyright c© 2022 EPLA

Introduction. – Modulation instability of initially
smooth wide wave beams was first observed [1] in the form
of filamentation of light beams propagating through non-
linear media. This phenomenon was explained in ref. [2]
with the use of the focusing nonlinear Schrödinger (NLS)
equation

iψt +
1

2
ψxx + |ψ|2ψ = 0, (1)

written here in standard non-dimensional variables and in
1D geometry, ψ being the wave field variable. Bespalov
and Talanov obtained the dispersion relation

ω(k) = k
√
k2/4− ρ, k > kc = 2

√
ρ,

γ(k) = k
√
ρ− k2/4, 0 < k < kc = 2

√
ρ,

(2)

for linear waves ∝ exp[i(kx − ωt)] propagating along a
uniform background ψ = ψ0e

iρ0t =
√
ρ eiρ0t and noticed

that the frequency ω(k) becomes complex for 0 < k < 2
√
ρ

where it transforms to the growth rate γ(k) of unstable
modes; see fig. 1. This means occurrence of instability of
small perturbations of such a background, and the growth
of these unstable modes leads eventually to filamentation
of the beam at the nonlinear stage of evolution.
Discovered independently [3] modulation instability of

Stokes water waves drew much attention and it was

(a)E-mail: kamch@isan.troitsk.ru (corresponding author)

Fig. 1: Dispersion relation ω = ω(k) of propagating modes
(blue line) and the instability growth rate γ = γ(k) (red line)
as functions of the wave number k of harmonic waves. The
dispersion relation ω = ω(k) has an inflection point at k =
km =

√
6ρ > kc where the group velocity takes its minimal

value.

followed by intense study of different aspects of this phe-
nomenon (see, e.g., ref. [4] for the early history of these
studies). This simple theory of modulation instability is
applicable to uniform states only. However, in a number
of applications, such as a filamentation of optical beams,
the more natural formulation of the problem is related
with propagation of instability fronts into the “still” re-
gion —how does the area of strong oscillations spread out
to the region without oscillations? So far this question
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was addressed in very few particular situations and for
a uniform background only. To get a clue to a more
general approach, at first we shall review several earlier
theories of the front propagation in different physical sit-
uations. According to these particular cases, in modula-
tionally unstable systems the instability front propagates
with the minimal group velocity corresponding to the in-
flection point of the dispersion relation ω = ω(k) for the
stable branch of linear harmonic waves, as is shown in
fig. 1. We take this statement as a conjecture applicable
to slowly non-uniform and slowly time-dependent back-
grounds and formulate the method of calculation of the
path of the instability front in such situations. Our conjec-
ture is confirmed by comparison with numerical solutions
for two examples related with filamentation of intensive
light beams propagating through nonlinear media.

Typical examples. –

Reaction-diffusion systems. A prototype example of
the front propagation into an unstable state is given by
the well-known Fisher-Kolmogorov-Petrovsky-Piskunov
equation [5,6] which describes propagation of waves in bi-
ological systems of diffusion-reaction type. In many situa-
tions the main quantity of interest in this type of theories
is the velocity of the front propagation, when a stable
non-uniform state of a nonlinear dissipative system prop-
agates into an initially unstable homogeneous region. As
a result of numerous investigations (see, e.g., the review
article [7] and references therein) it was found that in
typical situations the front’s velocity quickly approaches
some asymptotic value v∗, and, as was first suggested in
ref. [8], the velocity v∗ is the one at which the front is
“marginally stable”, that is the front solutions that move
slower than v∗ are unstable to perturbations while those
that move faster are stable. If the dispersion relation
of linearized equations is given by the complex function
ω = ω(k) = ω′(k) + iω′′(k), then the above condition
yields the following equations for calculation of v∗:

v∗ =
dω′(k)

dk

∣∣∣∣
k=k∗

,
dω′′(k)

dk

∣∣∣∣
k=k∗

= 0. (3)

Thus, the front propagates asymptotically with the group
velocity corresponding to the wave number k∗ of the mode
with maximal instability growth rate. However, this the-
ory cannot be applied to non-dissipative systems. For in-
stance, in the case of modulation instability described by
the NLS equation (1) the maximal instability growth rate
γ∗ corresponds to the wave number k∗ of non-propagating
mode with vanishing group velocity (see fig. 1). The aim
of this letter is to develop the theory of the instability
front propagation in such situations.

Instability of a uniform plane wave propagating through
a nonlinear self-focusing medium. Here we shall consider
the problem of evolution of initially smooth wave packets
(or wide light beams) in a focusing nonlinear medium.
Numerical experiments (see, e.g., [9–11]) showed that an

Fig. 2: Wave pattern evolving from an initially localized small
disturbance introduced at the moment t = 0 in the vicinity of
the point x = 0. In the case of the NLS equation (1) the edges
of the wave pattern propagate to the undisturbed region with
velocities vg = ±2

√
2ρ0.

initially smooth localized distribution focuses forming a
spike at some moment of time, and after that a region of
large amplitude nonlinear oscillations appears at the cen-
ter of the distribution and this region spreads with time
outwards over the smooth evolving background distribu-
tion. Formation of the region of large nonlinear oscilla-
tions can be triggered by a localized disturbance which
violates smoothness of the initial distribution [12,13]. For
example, let a small initial disturbance be located at x = 0
and let it evolve along a constant background |ψ0| =

√
ρ

according to the NLS equation (1). Then we find that
the region of strong nonlinear oscillations appears around
the origin [12,13] which spreads outwards with time; see
fig. 2. For not too large time of evolution, the region
of oscillations can be represented as a modulated peri-
odic solution of eq. (1) and, according to the Gurevich-
Pitaevskii approach [14] to the theory of dispersive shock
waves, the evolution of the modulation parameters obeys
the Whitham modulation equations [15,16]. In the case of
the periodic solution of the NLS equation (1) the intensity
of light ρ = |ψ|2 is given by the expression (see, e.g., [17])

ρ(x, t) = (γ + δ)2 − 4γδ

×sn2
(√

(α− β)2 + (γ + δ)2(x− V t),m
)
,

(4)

where m and V are equal, respectively, to

m =
4γδ

(α− β)2 + (γ + δ)2
, V = −(α+ β). (5)

In a strictly periodic solution the parameters α, β, γ, δ
are constant but in a modulated wave they become slow
functions of x and t changing little in one wavelength or
one period of oscillations in the periodic wave. In the
Whitham theory [15,16], averaging over these fast oscil-
lations yields the modulation equations for these parame-
ters. Solution of the Whitham equations for the problem
posed in refs. [12,13] with a small disturbance located in
the vicinity of the point x = 0 at the moment t = 0 was
obtained in refs. [18,19] for the NLS equation case and
a similar problem with identical Whitham equations was
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solved in ref. [20] for the one-dimensional Heisenberg fer-
romagnet. It is clear that it must be self-similar, so the
parameters can depend on x and t only through the vari-
able ζ = x/t. Then one can find that either (α, γ) or (β, δ)
must be constant and if for definitness we take (α, γ) con-
stant, then dependence of (β, δ) on ζ is determined by the
equations

E (m)

K (m)
=

(α− β)
2
+ (γ − δ)

2

(α− β)
2
+ γ2 − δ2

,

−2β − γ2 − δ2

β − α
=

x

t
,

(6)

K(m) and E(m) are the complete elliptic integrals of the
first and second kind, respectively. Substitution of these
β = β(x/t), γ = γ(x/t) for the particular choice α = 0,
γ = 1 into expression (4) gives the dependence of ρ =
ρ(x, t) on x at the fixed moment of time t = 4 shown in
fig. 2.
The small-amplitude edge of the oscillatory region cor-

responds to the limit m → 0. If we take for simplicity
α = 0, then we obtain β = −γ/

√
2, δ = 0, and then

eq. (6) yields v = x/t = 2
√
2γ. On the other hand, we

find from eq. (4) the background intensity ρ0 = γ2 and the
wave number k =

√
6 γ =

√
6ρ0 of the wave at the small-

amplitude edge. Thus, the wave number corresponds ex-
actly to the inflection point of the dispersion relation (2)
and the small-amplitude edge propagates along a uniform
background with the group velocity

vg =
dω

dk

∣∣∣∣
k=km

= 2
√

2ρ0 (7)

equal to its minimal value at k = km =
√
6ρ0 (see fig. 1).

Snake instability of dark solitons. Now we shall con-
sider the two-dimensional NLS equation

iψt +
1

2
Δψ − (|ψ|2 − 1)ψ = 0, Δ =

∂2

∂x2
+

∂2

∂y2
, (8)

with defocusing nonlinearity and background density ρ0 =
1 in standard non-dimensional variables. For conve-
nience of notation, we have excluded the trivial time de-
pendence ψ0 =

√
ρ0e

−iρ0t from the wave function by
adding the term ρ0ψ to the equation. It is well known
that this equation has the dark soliton solution [21]
that can be written for the wave function ψ(x, y, t) =√
ρ(x, y, t) exp(iφ(x, y, t)) in the form

ρ = ρs(x− V t) = 1− 1− V 2

cosh2[
√
1− V 2(x− V t)]

,

u =
∂φ

∂x
= V

(
1− 1

ρ

)
, v =

∂φ

∂y
= 0.

(9)

This solution manifests itself as a dip in the uniform back-
ground density parallel to the y-axis and this dip propa-
gates in the direction of the x-axis with velocity V . If
we impose a small “snake-like” bending disturbance, then

we find that this solution is unstable: amplitude of the
disturbance grows up leading eventually to breaking of
the soliton to a sequence of vortex–anti-vortex pairs. The
undisturbed soliton is located along a straight line, so
propagation of the small-amplitude disturbance waves has
effectively the one-dimensional form and can be character-
ized by the wave number and the frequency of harmonic
waves propagating along the soliton. In the limit of shal-
low solitons and long wavelength disturbances the insta-
bility increment was found in ref. [22] and for arbitrary
wavelength in ref. [23]. It has a form similar to eq. (2)
(see fig. 1):

ω(k) =

√
2

33/4
k
√
k − kc, k > kc =

√
3(1− V ). (10)

This formula implies small depth of the soliton, i.e.,
1 − V � 1, and for arbitrary depth or for soliton’s ve-
locity in the interval 0 < V < 1 the stability of solitons
was studied in ref. [24]. Qualitatively the spectrum of
harmonic disturbances of dark solitons is the same for any
depth: the bending waves are unstable for small enough
wave numbers 0 < k < kc and they correspond to propa-
gating stable waves for k > kc. Instability of dark solitons
was observed experimentally [25,26] and studied in nu-
merous papers (see the review article [27] and references
therein).
A different situation occurs for dark solitons generated

by a supersonic flow of atomic or polariton condensate
past an obstacle (they were predicted in ref. [28]): nu-
merical and real [29,30] experiments showed that such a
soliton is stable for large enough supersonic flow velocity.
This phenomenon was explained in [31] as a transition
from an absolute instability of dark solitons to their con-
vective instability. Simple theory of such a transition was
developed in ref. [32]. Let a dark soliton be disturbed in
the vicinity of the point y = 0. Numerical solution of the
2D NLS equation (8) demonstrates formation of a “wave
of destruction” —in its center vortex pairs are formed and
its edges propagate along the soliton with some velocity v;
see fig. 3. This velocity can be estimated in the following
way. Let the initial disturbance have the Fourier repre-
sentation φ0(y) =

∫
f(k)eikydk with a smooth spectrum

f(k) so that the disturbance is localized around the point
y = 0. The disturbance leads to waves propagating along
the soliton and, as long as their amplitude is small, they
are represented by the Fourier integral

φ(y, t) =

∫
f(k)ei(ky−ω(k)t)dk (11)

with the known dispersion relation ω = ω(k) (for example,
in the case of shallow solitons it is given by eq. (10)). For
large time t the integral can be evaluated by the steepest
descent method and the main contribution to it is given
by vicinity of the saddle points ks defined as solutions of
the equation

y

t
=

dω(k)

dk
. (12)
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Fig. 3: Evolution of a localized disturbance of the dark soliton
with time [32]. A plane soliton slightly disturbed in vicinity
of the point y = 0 starts its motion at x = 10 with velocity
V = 0.355. The disturbance leads to breaking the soliton into a
sequence of vortex–anti-vortex pairs in the central part and to
propagation of the edges of the instability region with velocity
vg equal to the minimal group velocity of propagating along
the soliton “snake”-like bending waves.

The values of ks depend on y/t and the integrand function
includes the fast oscillating factor eiksy. Consequently, the
resulting integral corresponds to a usual dispersive wave
packet slowly decaying with time as t−1/2. However, if
with decrease of y the roots of eq. (12) move along the
real k-axis and collide with each other at some value of
y = ym bifurcating here into two complex roots ks and
k∗s , then the saddle points move into the complex plane
and the integral (11) acquires the factor exp[−Im(km(y))y]
which depends exponentially on y. Hence, the bifurcation
point y = ym corresponds to the edge of a large amplitude
pulse. At the point of bifurcation of two real roots into two
complex ones eq. (12) has a double root, that is we have
here d2ω/dk2 = 0, and that means that the edge of the
pulse corresponds to the extremum of the group velocity.
For example, the amplitude of disturbance propagating
along a shallow soliton is proportional to

φ(y, t) ∝ exp

[
−y2

t

√
2
√
3km − 3

y2

t2

]
, (13)

near the edge of the large amplitude region, and this
edge propagates with the velocity ym/t =

√
2km/31/4 =√

2(1− V ) equal to the minimum of the group velocity at
k = km = 4kc/3,

vf = min

(
dω

dk

)
=

dω

dk

∣∣∣∣
k=km

, (14)

corresponding to the dispersion law (10).

The last two examples suggest generalization to propa-
gation of instability fronts in modulationally unstable sys-
tems along non-uniform and time-dependent backgrounds.

Propagation of instability fronts in modulation-
ally unstable systems. –

General theory. We assume that the system under
consideration is described by two wave variables ρ(x, t)
and u(x, t) which we shall call the “density” and “flow
velocity”, correspondingly. As was shown in ref. [33], in
many physical situations the equations of wave dynamics
can be cast in the form

ρt + (ρu)x = 0, (ρu)t + (ρu2 + P )x = 0, (15)

where P = P (ρ, u, ρx, ρt, ux, ut, ρxx, . . .) and the higher-
order derivatives in P correspond to dispersive (or dissi-
pative) effects. In dispersionless limit, these higher-order
derivatives are disregarded, P = P (ρ, u), and eqs. (15)
take the form of equations of compressible fluid dynam-
ics. The system is modulationally unstable in the long
wavelength limit if ∂P (ρ, u)/∂ρ < 0. For example, the
substitution ψ =

√
ρ exp

(
i
∫ x

u(x′, t)dx′) casts the NLS
equation (1) to the system

ρt + (ρu)x = 0,

ut + uux − ρx +

(
ρ2x
8ρ2

− ρxx
4ρ

)
x

= 0,
(16)

and in dispersionless limit P = −ρ2/2, dP/dρ = −ρ < 0.
If we omit the terms in eq. (15) with higher-order deriva-

tives, then we arrive at dispersionless equations which
describe the self-focusing of initial distributions in the geo-
metric optics approximation. Although, strictly speaking,
in this case the geometric optics problem is ill-posed, nev-
ertheless, if the initial data are represented by analytic
functions, then solutions of dispersionless equations pro-
vide a very good approximation (see, e.g., [9,34,35]) up to
the focusing moment and they often can be obtained by
classical methods of the compressible fluid dynamics (see,
e.g., [36]). We assume that such a dispersionless solution
is known and it is convenient for what follows to write this
solution in an implicit form

x = x(ρ, u), t = t(ρ, u), (17)

so that solving this system with respect to ρ and u
yields the time-dependent distributions ρ = ρ(x, t) and
u = u(x, t). We shall assume that the instability is trig-
gered by a small perturbation located in the vicinity of
the point x = 0 in the initial distribution. Then for t > 0
the region of strong nonlinear oscillations develops and,
following the ideas of the Gurevich-Pitaevskii theory of
dispersive shock waves [14], we assume that at the asymp-
totic stage of evolution, when the typical wavelength of
these nonlinear waves is much smaller than the length
of the whole oscillatory region, the wave dynamics out-
side this region can be described by the above-considered
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dispersionless limit of the equations under consideration
with disregarded dispersion (diffraction) effects. Near the
edges of the oscillatory region the amplitude of oscilla-
tions is small and these waves propagate along the smooth
background (17) according to the linearized equations (15)
which yield some dispersion law

ω = ω(k, ρ, u), (18)

where the wavelength 2π/k is assumed much smaller than
the characteristic size of the background flow distribu-
tions. Then, according to the above-considered examples,
the edges of the oscillatory region propagate with the min-
imal group velocity

dx

dt
= vg(ρ, u) =

∂ω

∂k

∣∣∣∣
k=km

,
∂2ω

∂k2

∣∣∣∣
k=km

= 0. (19)

These equations replace eqs. (3) known from the theory
of pattern formation in reaction-diffusion systems. Nat-
urally, the use of the notion of the group velocity means
that our theory is asymptotic and is applicable only to
the stage of evolution later enough after the moment of
formation of the region of nonlinear oscillations.
We assume for simplicity that the variable u can be

excluded from system (17) and from the function vg =
vg(ρ, u), so we get

x = x(ρ, t), vg = vg(ρ, t), (20)

where ρ plays the role of the parameter along the path of
the small amplitude wave packet. Substitution of these
expressions into eq. (19) gives the differential equation

dρ

dt
=

vg − ∂x/∂t

∂x/∂ρ
, (21)

for variation of the background density along the packet’s
path. In the case of instability triggered by a small initial
disturbance localized in vicinity of the point x = 0, this
equation should be solved with the initial condition

ρ = ρ0(0), at t = 0, (22)

where ρ = ρ0(x) is the initial distribution of the density.
The resulting solution ρ = ρ(t) of eq. (21) after substitu-
tion into eq. (20) yields the asymptotic expression for the
path of the edge. Now we illustrate this approach by two
particular examples.

Talanov’s self-focusing solution. We take the initial
distribution in the form of a parabolic hump

ρ0(x) =

{
a2(1− x2/l2), |x| ≤ l,

0, |x| > l,
(23)

and the initial phase is equal to zero everywhere, hence
u0(x) = 0. System (16) reduces in the dispersionless limit
to the “inverted” shallow water equations

ρt + (ρu)x = 0, ut + uux − ρx = 0. (24)

As was shown by Talanov [37], this system with the initial
conditions (23) has the exact solution in the form

ρb(x, t) =
a2

f(t)

(
1− x2

l2f2(t)

)
,

ub(x, t) =
f ′(t)

f(t)
x = −2a

l

√
1− f

f3/2
x,

(25)

where the function f(t) is defined implicitly by the expres-
sion

(2a/l)t =
√
f(1− f) + arccos

√
f. (26)

This solution determines profiles of the background den-
sity and the flow velocity as functions of time.
Now we suppose that the initial distribution (23) is dis-

turbed and for definiteness we take this disturbance in
the form of a tiny hillock over the density distribution at
x = 0. (In fact, the asymptotic evolution of the instability
region does not depend on the form of the disturbance).
As a result of such a disturbance, the region of strong
oscillations is formed, and our aim is to find the low of
motion of its edges. The edge wave packet propagates up-
stream or downstream the background flow (25) that has
the local flow velocity ub(x, t), so the Doppler-shifted local
dispersion relation reads

ω(k) = k
(
ub ±

√
k2/4− ρb

)
, (27)

where the sign depends on the direction of the propagation
of the packet. The function ω = ω(k) has inflection points
at k = ±

√
6ρb and the corresponding group velocity is

equal to
vg = ub ± 2

√
2ρb. (28)

For definiteness, we shall consider the left instability front
at x < 0 for which ub > 0 and vg < 0, that is we get with
account of eqs. (25)

dx

dt
= −2a

l

√
1− f

f3/2
− 2

√
2a ·

√
1

f

(
1− x2

l2f2

)
. (29)

With the use of eq. (26) we transform eq. (29) to

dx

df
=

x

f
+
√
2l ·

√
1− x2/(lf)2

1− f
. (30)

Due to the initial disturbance, the instability front starts
its propagation at the point x = 0 at the moment t = 0,
when f = 1, so eq. (30) should be solved with the initial
condition x(f = 1) = 0 and the solution reads

x(f) = −lf sin

(√
2 ln

1 +
√
1− f

1−
√
1− f

)
. (31)

Together with eq. (26), this equation determines the path
of the instability front in a parametric form (x(f), t(f))
with f playing the role of the parameter. The front’s
coordinate x(f) touches the edge of the background dis-
tribution (25) when the argument of the sine-function in
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Fig. 4: (a) Plot of the numerical solution of the NLS equa-
tion (1) for the initial condition (23) with a = 1.5, l = 70,
and a tiny disturbance of density at x = 0. (b) Plot of
|ρ(x, t) − ρb(x, t)| with subtracted background evolution (25)
from the exact solution ρ(x, t). Analytical paths of the insta-
bility fronts are shown by blue lines.

eq. (31) equals π/2, that is at f = fc = 1/ cosh2(π/4
√
2) ≈

0.745. The background density vanishes at this point and
our approach becomes inapplicable. Thus, the parameter
f in eq. (31) changes in the interval 1 ≥ f > fc.

We compare our analytical theory with the exact nu-
merical solution of the NLS equation with the disturbed
parabolic initial distribution (23). In fig. 4(a) the surface
plot of the function ρ(x, t) is shown where for clarity the
large amplitude peaks are cut at the level ρ = 2.3. Theo-
retical paths of the instability fronts given parametrically
by the formulas (±x(f), t(f), ρb(±x(f), t(f))) are shown
by blue lines. To show the evolution of the region of large
amplitude oscillations only, we subtracted the background
distribution ρb(x, t) given by eq. (25) from the exact nu-
merical solution ρ(x, t) of the NLS equation and the cor-
responding surface plot of |ρ(x, t) − ρb(x, t)| is shown in
fig. 4(b). Again the large amplitude oscillations are cut
for clarity at the level |ρ(x, t) − ρb(x, t)| = 0.1 and the
fronts’ paths are shown by blue lines. The theory does
not contain any fitting parameters and its agreement with
the numerical solution seems quite good.

Akhmanov-Sukhorukov-Khokhlov self-focusing solution.
As another example, let us consider evolution of the back-
ground with the initial conditions

ρ0(x) =
a2

cosh2(x/l)
, u0(x) = 0 at t = 0. (32)

Solution of this problem was obtained in ref. [38] and it
can be written in the following parametric form:

ρ(ξ, η) = a2(1 + ξ2)(1− η2), u(ξ, η) = 2aξη, (33)

t =
l

a
· ξ

(1 + ξ2)(1− η2)
,

x = l

[
2ξ2η

(1 + ξ2)(1− η2)
− 1

2
ln

1 + η

1− η

]
,

(34)

where ξ and η are parameters (ξ ≥ 0,−1 ≤ η ≤ 1). Their
elimination yields the original implicit form of the solution

Fig. 5: (a) Plot of the numerical solution of the NLS equa-
tion (1) for the initial condition (32) with a = 1.5, l = 20, and
a tiny disturbance of density at x = 0. (b) Plot of |ρ(x, t) −
ρb(x, t)| with subtracted background evolution (35), (36) from
the exact solution ρ(x, t). Analytical paths of the instability
fronts are shown by blue lines.

found in ref. [38]. For us it is more convenient to exclude
only the parameter η to obtain

ρ(ξ, t) = al · ξ
t
, u(ξ, t) = 2aξ

√
1− lξ

at(1 + ξ2)
(35)

and

x(ξ, t) = 2atξ

√
1− lξ

at(1 + ξ2)
− l

2
ln

1 +
√

1− lξ
at(1+ξ2)

1−
√

1− lξ
at(1+ξ2)

.

(36)

If we fix the moment of time t, then these formulas
give us parametric forms of distributions of the density
(ρ(ξ, t), x(ξ, t)) and the flow velocity (u(ξ, t), x(ξ, t)) as
functions of x. This solution becomes singular in the limit
t → tf = l/(2a) with space derivatives of the distributions
ρ(x, t), u(x, t) tending to infinity. To avoid complications
related with dispersion effects near singularity point, we
shall consider formation of the instability region due to
small disturbance in the initial condition (32).
Formulas (35), (36) show that it is convenient to choose

ξ as a parameter along the front’s path. The group ve-
locity of linear waves propagating in the neighborhood of
the point x(ξ, t) with the carrier wave number km =

√
6ρ

at the moment t can also be expressed as a function of ξ
and t:

vg(ξ, t) = 2aξ

√
1− l

at

ξ

1 + ξ2
− 2

√
2alξ

t
. (37)

If we denote by x = x̄(ξ(t), t) the front’s path, then we
have x̄ξ(dξ/dt) + x̄t = vg(ξ, t) (see eq. (21) where the
parameter ρ is replaced by ξ), and taking into account
eq. (36) this equation reduces to the differential equation

dξ

dt
=

ξ(1 + ξ2)

t[4aξt(1 + ξ2)2 + l(1− 6ξ2 − 3ξ4)]

[
l(1− ξ2)

−4(1 + ξ2)

√
2alξt

(
1− l

at

ξ

1 + ξ2

)]
, (38)
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for the dependence of the parameter ξ along the path. This
equation must be solved with the initial condition ξ = 0
at t = 0 which means instant formation of the oscillatory
region due to the disturbance. This equation can be easily
solved numerically and substitution of the solution into
eq. (36) gives us the path of the edge (the interval 1 > ξ >
0 corresponds to the left edge of the oscillatory region).
An example of the resulting plots is shown in fig. 5. Again
we see quite good agreement of our analytical theory with
numerical solution.

Conclusion. – In this letter, we have developed the
analytical approach to the problem of propagation of in-
stability fronts in modulationally unstable systems. The
theory is based on the conjecture that such a front prop-
agates with minimal group velocity of linear waves prop-
agating in such systems. This conjecture is based on a
few earlier studied examples where it was derived in the
framework of either Whitham’s theory of modulations or
asymptotic theory of propagation of linear wave packets.
Taking this conjecture as a general principle, we formulate
the theory of instability front propagation in non-uniform
and time-dependent situations. As a result, eqs. (3) which
determine the instability front velocity in dissipative sys-
tems should be replaced by eqs. (19) for such a velocity
in modulationally unstable non-dissipative systems. The
theory is applied to the systems whose evolution is de-
scribed by the focusing NLS equation and it is confirmed
by comparison of the results with numerical solutions.
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