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Abstract – We introduce the metric of general relativity into a description of baryon mass spectra
which otherwise has been founded entirely on the concept of an intrinsic configuration space, the
Lie group U (3). We find that the general relativistic metric influences the mass eigenstates in
gravitational fields. We discuss parts per million effects that may be observed in space missions
close to the Sun or the planet Jupiter, for instance by accurate Cavendish experiments or energy
shifts in gamma decays of metastable nuclei like Ba-137m. We review how the particle and gauge
fields are generated by momentum forms on the intrinsic wave functions to form the quantum field
bases for instance of quantum chromodynamics. Our strategy to combine quantum interactions
and general relativity is that of geometrising quantum mechanics rather than quantising gravity.
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Introduction. – It was a great step forward in our
understanding of fundamental interactions when electro-
magnetic interactions and weak interactions were put into
a common setting as gauge theories based on gauge groups
U(1) and SU(2), respectively [1]. This was seen as a first
step in unifying the quantum interactions and once SU(3)
was found to be the relevant gauge group for the strong in-
teractions, ambitions rose to quantise also gravity which so
far had been left alone as a classical field theory, namely
the general theory of relativity [2] —that, however, still
stands to test in its classical form [3,4].

The present work does not try to quantise gravity. We
try to describe baryon mass eigenstates in gravitational
fields and distinguish between rest masses and eigenvalues
of mass eigenstates.

Our idea is to use a description of elementary particles
that starts out completely detached from spacetime, see
fig. 1. We shall use intrinsic configuration variables to de-
scribe baryon mass spectra [5,6]. From the intrinsic wave
functions we then generate —by exterior derivatives also
called momentum forms— the quantum fields that make
up the basic fields of gauge theories. The exterior deriva-
tives are “just” the group generators acting as derivatives
on the wave functions and these generators are very close
analogues of the kinematical operators that led to the cre-
ation of the intrinsic (particle) states in the first place.

(a)E-mail: ole.trinhammer@fysik.dtu.dk (corresponding author)

Fig. 1: The intrinsic space —shown as a torus— can be reached
from any point in laboratory space —shown as a patterned
floor. Letting the floor pattern be visible through the intrinsic
toroidal space is to stress that the intrinsic space should not
be considered as just “extra” spatial dimensions like in string
theory. Rather the intrinsic space should be likened to a gen-
eralised spin space, i.e., with no physical dimensional units.
Drawing inspired by Maldacena [7]. Figure and caption edited
from [8].

Mass eigenstates as intrinsic configurations. –
We derived the local gauge invariance for the quark and
gluon fields of quantum chromodynamics from an intrinsic
description of baryons as mass eigenstates on the intrinsic
configuration space, the Lie group U(3), see the appen-
dices for résumés. The stationary mass eigenstates have
eigenvalues E = mc2 determined by the following mass
Hamiltonian operating on an intrinsic wave function Ψ [5]:

�c

a

[
−1

2
Δ +

1

2
d2(e, u)

]
Ψ(u) = EΨ(u), u = eiχ ∈ U(3).

(1)
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The generator χ of the configuration variable u can be
expanded on nine group generators Tj , Sj ,Mj , j = 1, 2, 3,

χ = θjTj + (αjSj + βjMj)/�, θj , αj , βj ∈ R. (2)

We use dynamical angles

θj = xj/a (3)

to map from laboratory space to intrinsic space by intro-
ducing a length scale a which is set by the classical electron
radius [5,9]

πa = re. (4)

In that way we can interpret all nine generators to have
analogues in nine kinematical operators from laboratory
space. The toroidal generators iTj are equivalent to mo-
mentum operators in laboratory space

iTj =
∂

∂θj
, pj = −i�

1

a

∂

∂θj
=

�

a
Tj . (5)

The operators Sj in coordinate representation [10] are ana-
logues of angular momentum operators and take care of
spin, e.g.,

S3 = aθ1p2 − aθ2p1 ∼ �λ2 (6)

and the mixing operators Mj are analogues of the less
well-known Laplace-Runge-Lenz vector operator which
is conserved in the hydrogen atom [10] and in Kepler
orbits [11], e.g.,

M3/� = θ1θ2 +
a2

�2
p1p2 ∼ λ1, (7)

with matrix representations corresponding to Gell-Mann’s
lambda matrices [10]. The Mj ’s mix spin and flavour de-
grees of freedom. The spin operators commute like in-
trinsic spin operators in body fixed coordinate systems
in nuclear physics (note the minus sign in (8)) and the
mixing operators close the algebra by commuting into the
subspace of the spin algebra

[Mi,Mj ] = [Si, Sj ] = −i�εijkSk. (8)

The generators act as derivatives in the Laplacian [12]

Δ =
3∑

j=1

1

J

∂2

∂θ2j
J + 2−

3∑
1≤i<j,k �=i,j

(S2
k +M2

k )/�
2

8 sin2 1
2 (θi − θj)

, (9)

where

J =
3∏

1≤i<j

2 sin

(
1

2
(θi − θj)

)
. (10)

The potential 1
2d

2 is half the square of the shortest
geodesic from the origo e in the configuration space to
the configuration variable u and may be thought of as an
intrinsic harmonic oscillator potential. It maps out in the

angular space as a periodic potential manifesting the com-
pactness of the configuration space. It can be expressed
as

1

2
d2(e, u) =

1

2
Tr χ2 (11)

and thus only depends on the eigenangles θj in the eigen-
values eiθj of u. This follows from the fact that the trace is
invariant under similarity transformations u → v−1uv, v ∈
U(3), in particular transformations to diagonalise u. The
potential may be seen as the Euclidean measure folded
into the group manifold [13]. It is through this latter con-
ception of the potential that we find an opening for the
inclusion of effects of the generally curved metric in the
general theory of relativity. But first we must consider
the time-dependent case

�c

a

[
−1

2
Δ +

1

2
d2(e, u)

]
Ψ(u, t) = i�

∂

∂t
Ψ(u, t). (12)

We use the same length scale a as for the spatial coordi-
nates and introduce an imaginary “time angle” θ0 by

aθ0 = ict, (13)

where t is the time parameter in spacetime and c is the
speed of light in empty space. Further, the time derivative
corresponds to the time coordinate field generator

∂

∂θ0
=

a

ic

∂

∂t
= −H/Λ ≡ iT0, (14)

where Λ = �c/a is the energy scale in (1) amounting
to approximately 214MeV at nucleonic values of the fine
structure coupling inherent in the classical electron radius
in a from (4). We then have for

ũ ≡ eiθ0T0u ∈ U(1)× U(3) (15)

a left invariant time coordinate field

∂0|ũ =
d

dθ
(ũ exp θiT0)|θ=0 = ũiT0 (16)

with the generator iT0 and corresponding time form dθ0
fulfilling dθ0(∂0) = 1.

We factorize the time-independent wave function Ψ into
a toroidal part τ and an off-toroidal part Υ analogous of
the radial part and the spherical harmonics introduced in
solving the hydrogen atom [14], i.e., we write

Ψ(u) = τΥ. (17)

In that way the measure-scaled, time-dependent wave
function Φ(u, t) = JΨ(u, t) for a time-independent,
toroidally symmetric potential V (u, t) = V (θ1, θ2, θ3) be-
comes

Φ(u, t) = e−iEt/�R(θ1, θ2, θ3)Υ ≡ R(θ0, θ1, θ2, θ3)Υ (18)

with measure-scaled toroidal wave function

R(θ1, θ2, θ3) = J(θ1, θ2, θ3)τ(θ1, θ2, θ3). (19)

51003-p2
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For the mapping between spacetime and the torus, we
have in particular the following corresponding bases:

∂μ|e = iTμ = eμ (20)

and can write at each event x

x = xμeμ, x0 = ct (21)

with contravariant spacetime coordinates xμ, μ = 0, 1, 2, 3
and covariant base eμ and with Einstein’s summation con-
vention as throughout. For the induced base {iTμ} at the
origo e = I in the 4D torus we may choose a representa-
tion with

iT0 =

⎧⎪⎪⎨
⎪⎪⎩
−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎬
⎪⎪⎭ , iT1 =

⎧⎪⎪⎨
⎪⎪⎩
0 0 0 0
0 i 0 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎬
⎪⎪⎭ ,

iT2 =

⎧⎪⎪⎨
⎪⎪⎩
0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 0

⎫⎪⎪⎬
⎪⎪⎭ , iT3 =

⎧⎪⎪⎨
⎪⎪⎩
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 i

⎫⎪⎪⎬
⎪⎪⎭ .

(22)

In special relativity we have

xμxμ = xμημνx
ν = (x0)2 − (x1)2 − (x2)2 − (x3)2 (23)

from a metric tensor with non-zero components η00 =
1, η11 = η22 = η33 = −1. We get accordingly with trace
taking

Tr (θμiTμ) (θνiTν) = (θ0)
2 − (θ1)

2 − (θ2)
2 − (θ3)

2. (24)

We see that the generators {iTμ} carry the Minkowski
metric intrinsically. Thus as

eμ · eν = ημν (25)

we likewise have

Tr (iTμiTν) = ημν . (26)

Gravitational term in the intrinsic dynamics. –
We shift to the metric sign convention of Weinberg [2] and
write the general metric as a sum of two parts

gμν = ημν + hμν , ημν = diag(−1, 1, 1, 1). (27)

This gives the proper time invariant under Lorentz trans-
formations in flat spacetime, p. 26 in [2]

dτ2 ≡ dt2 − dx2 = −ημνdx
μdxν . (28)

As mentioned, the intrinsic potential in (1)

1

2
d2(e, u) =

1

2
Tr χ2 =

3∑
j=1

w(θj), (29)

w(θ) =
1

2
(θ − n · 2π)2,

θ ∈ [(2n− 1)π, (2n+ 1)π)], n ∈ Z

may be seen as the Euclidean metric folded into the group
manifold and may therefore be seen to represent the flat
spacetime part resulting from the ημν part in (27). In
order to take into account the full metric gμν we therefore
add a gravitational term to our theory for baryon mass
eigenstates

�c

a

[
−1

2
Δ +

1

2
d2(e, u) +

1

2
ε θ̄∗μhμν θ̄ν

]
Ψ(u, t) =

i�
∂

∂t
Ψ(u, t), where θ̄j , θ̄0/i ∈ [−π, π]. (30)

We consider three cases for the parameter ε

ε =

⎧⎪⎨
⎪⎩
1, generic,

l2Pl/a
2, Planck scale,

ε, empirical.

(31)

For positive ε we get an increase in the eigenvalues of the
mass eigenstates of the baryons from (30) when compared
to (1). For the generic case ε = 1 the effect is at the
5.5 ppm level at the surface of the Sun and at the 51
ppb level if considered in the gravitational field at the
surface of the planet Jupiter. To see this, we need to know
the metric components and estimate the integral over the
time-dependent gravitational term

1

2
θ̄∗μhμν θ̄ν . (32)

Disregarding the off-diagonal terms which are vanishing in
an asymptotic weak field approximation (37) we have

1

2
θ̄∗μhμν θ̄ν ≈

3∑
μ=0

hμμw(θμ). (33)

For the measure-scaled wave function R we use a Slater
determinant

R0 1
2 1

=
1

N

∣∣∣∣∣∣∣∣∣

1 1 1

sin
θ1
2

sin
θ2
2

sin
θ3
2

cos θ1 cos θ2 cos θ3

∣∣∣∣∣∣∣∣∣
, R = e−iEt/�R,

(34)

with N a normalisation constant over [−2π, 2π]3, N2 =
96π3. This R approximates the toroidal part of the sta-
tionary protonic state in (1). It has yielded a quite rea-
sonable proton spin structure function [6] and reasonable
parton distribution functions for the up and down valence
quarks in the proton [5].
Weinberg derives the terms hμν in a weak field approx-

imation and finds (p. 78 in [2]) for the time component

h00 = −2φ, (35)

where φ is the Newtonian gravitational potential from a
mass M at distance r from its center in relativistic units

φ = − 1

c2
GNM

r
. (36)

51003-p3
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Newton’s gravitational constant is GN = 6.67430(15) ·
10−11 Nm2kg−2 [15]. From the asymptotic part of the
spatial metric Weinberg finds (p. 182 in [2]) as r → ∞

hij →
2GNM

c2r
ninj +O

(
1

r2

)
, nj ≡ xj/r, j = 1, 2, 3.

(37)
It is reasuring in a general relativistic setting to see that

the time and space components are equal in size h00 =
hjj . With solar mass MSun = 1.9885 · 1030 kg and radius
rSun = 6.9551 · 108 m [15] we get at the surface

hμμ ≈ 2GNMSun

c2rSun
= 4.24635(24) · 10−6 ≈ 4 ppm. (38)

Generic case. To estimate the effect on the eigenval-
ues in (30) we integrate R over the gravitational term. For
the time component we have

1

2π

∫ π

−π

eiEt/�
1

2
θ∗0θ0e

−iEt/�d(θ0/i) =
π2

6
. (39)

The wave function R for the spatial part has doubling in
the periods1 and we get

∫ ∫ ∫ (2π)3

(−2π)3
R∗

3∑
j=1

w(θj) R dθ1dθ2dθ3 =
π2

2
+

5

4
. (40)

Hovering in the spherical, static field φ we have for the
length scale a that a2 → a′2 = gjja

2 = (1 − 2φ)a2 =
(1 + hjj)a

2 [16]. Thus with �c/a = 214MeV and ε = 1,
we get the approximate proton eigenvalue shift from (1)
to (30)

E ′ − E =

E√
1 + hjj |Sun

+

(
�c

a

(
π2

6
+

π2

2
+

5

4

)
hμμ|Sun√
1 + hjj |Sun

)

−E = E · (−2.1 + 7.6) ppm = E · 5.5 ppm. (41)

This contribution is larger than the uncertainty with
which certain nuclear masses are known. To test it in
a far future one may imagine a robotic mission in close
orbit around the Sun deploying a space shuttle to hover
in the Sun’s almost static field at a fixed radius vector
relative to the stars —i.e., disregarding the Sun’s differ-
ential rotation— doing an analogue of Cavendish’s experi-
ment with two balls in mutual mass attraction. The mass
eigenstate eigenvalues in the shuttle might be compared
to the unaffected rest masses determined in the mother-
ship in a freely falling frame of reference when in orbit
around the Sun. Rest masses should be measured in freely
falling frames of reference, i.e., locally Minkowskian spaces
while the eigenvalues of quantum mechanical mass eigen-
states according to (30) might be influenced by the pres-
ence of gravitational fields when the particles are not freely

1We interpret the period doubling as the topological origin of the
non-zero charge of the proton [5].

falling. The predicted increases in mass eigenstate eigen-
values do not imply composition-dependent rest masses
because in free fall the extra gravitational term in (30)
vanishes. Thus the Eötvös/Eöt-Wash experiments [3,4]
on the weak equivalence principle WEP do not question
the predictions. Instead something like a Cavendish exper-
iment of mutually attracting test masses is needed. The
maneuvering stability of the MICROSCOPE satellite [4]
in either “spin mode” or “inertial pointing” is encourag-
ing for such undertakings. Extraterrestrial measurements
of “hovering masses” may also be compared with masses
determined at the surface of the Earth. Apart from the
huge technical challenges a Cavendish experiment asks for
an increased accuracy on the value of Newton’s gravita-
tional constant GN which so far is known “only” at the
23 ppm level. A less futuristic, yet still quite challenging
experiment would be on a mission going close to the sur-
face of Jupiter. With mass MJup = 1.89815(4) · 1027 kg
and radius rJup = 7.1492 · 107 m [17] we get correspond-
ingly an effect at the 51 ppb level. Here one could measure
the gamma decay energy of the metastable barium-137 iso-

tope whose energy level JP = 11
2

−
is known almost at the

ppm level [18],

Eγ = 661.659(3) keV. (42)

The half-life of this state is 2.552 minutes [18] correspond-
ing to a level width of

Γ(Ba-137m) =
h

(2.552/ ln 2 min)
= 1.872·10−17 eV. (43)

Since the effect of the gravitational term is more or less
relative2 it will influence the nuclear binding energies to
the same degree and to measure a shift in the gamma
energy at the ppm-level should be reachable in a not too
far future, in a robotic mission close to Jupiter.

Planck case. We define the Planck length lPl as

l2Pl

κ
≡ hc → lPl = 2.0 · 10−19 fm, (44)

where κ = 8π
c4 GN is the strength of mutual influence be-

tween the energy-momentum tensor Tμν and the metric
gμν in Einstein’s general theory of relativity [2]

Rμν − 1

2
gμνR = −κTμν . (45)

Here Rμν is the curvature tensor derived from the met-
ric and R its contraction over spacetime indices μ, ν =
0, 1, 2, 3. One may think of (44) as expressing an exchange
of one unit of space action hc between the gravitational
sector and a certain quantum sector. In the present con-
nection that would be the strong interaction sector and
the choice

ε =
l2Pl

a2
(46)

2For a neutronic Slater determinant with no period doubling in
the sines, eq. (40) yields 4.9 · · · instead of 6.18 · · · so some differences
are expected in the effects on neutrons as compared to protons.
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would express a ratio between Gaussian curvatures

Ka

KPl
=

1/a2

1/l2Pl

. (47)

We thus interpret the choice (46) as the case for the
quantisation of gravity. From the vanishingly small value
≈ 4 · 10−38 it follows that the effect of the gravitational
term in (30) on the eigenvalues of baryon mass eigentates
would not be detectable in any foreseeable future. Any
consequences of the gravitational term would have to be
topological to be detectable and would otherwise remain
(only) conceptually unifying. Note that (47) signifies a
second-order effect in κ since κ is already making its in-
fluence on the metric in (45).

Empirical case. We stated a plus sign for the grav-
itational term in (30) in analogy with the phenomenon
of gravitational redshift of photons, for instance emitted
from the surface of the Sun at r2 and received on the Earth
at r1,

Δν

ν
= φ(r2)− φ(r1) < 0. (48)

It amounts to 2.1 ppm and was confirmed already in 1959
by measurements [2,19]. Thus, the photons have a higher
energy near the surface of the Sun than at a distance away
from it. Analogously we chose the plus sign for the grav-
itational effect on massive particles. But there might be
surprises and ε would have to be determined experimen-
tally. In case other consequences of the gravitational term
can be derived, it would make the opportunity to find out
if ε does have a unique value.

Conclusion. – We developed concepts on metrics and
quantum fields to introduce a gravitational term in a the-
ory for baryon mass eigenstates. The theory is based on
an intrinsic configuration space, the Lie group U(3). The
effect is an increase in eigenvalues of mass eigenstates at
the 51 parts per billion level at the “surface” of the planet
Jupiter and we discussed possible experiments to test it.
A confirmation would imply the entrance of general rela-
tivity into the realm of elementary particles.

Appendix A: first quantisation. – The conjugacy
of the coordinate forms dxj to the coordinate fields ∂

∂xj

geometrises the commutation relations between conjugate
variables in quantum mechanics. Thus

dxi

(
∂

∂xj

)
= δij ∼ [x̂i, p̂j ] = i�δij (A.1)

both express the basic relation of first quantisation and
generalises to the global relations on the configuration
space

dθi(∂j) = δij (A.2)

If the expressions in (A.2) and (B.1) seem like com-
pletely new territory, the reader is advised to consult [20]
or appendix A10 in [8]; otherwise the present appendices
will be incomprehensible.

Appendix B: spacetime fields as exterior deriva-
tives. – Imagine a scalar state ϕ with intrinsic configu-
ration variable u. We read off intrinsic momenta πj(u)
by applying dϕ to a basis ∂

∂xj
induced from laboratory

space,

πj(u) = −i� dϕu

(
∂

∂xj

)
=

−i�

a
∂j |u[ϕ]. (B.1)

The dynamics inherent in the time-dependent
Schrödinger equation (12) can be embedded in U(1)⊗U(3)
based on four-dimensional representations like

T0 =

⎧⎪⎪⎨
⎪⎪⎩
i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎬
⎪⎪⎭ , T3 =

⎧⎪⎪⎨
⎪⎪⎩
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎫⎪⎪⎬
⎪⎪⎭ . (B.2)

and

S3 =

⎧⎪⎪⎨
⎪⎪⎩
0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎫⎪⎪⎬
⎪⎪⎭ , M3 =

⎧⎪⎪⎨
⎪⎪⎩
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎫⎪⎪⎬
⎪⎪⎭ . (B.3)

Embedding in a product U(1) ⊗ U(3) with the time di-
mension separated from the intrinsic configuration space
U(3) allows for time not to be a dynamical quantum vari-
able [21] and at the same time to have a four-dimensional
formulation of the fields in spacetime projection. We now
consider projections along the torus U(1)⊗U0(3) given by

ũ = eiθ0T0+iθ·T, T = q1T1 + q2T2 + q3T3 =
a

�
p, (B.4)

with the three iTj as the toroidal generators of U(3) and
θ = (θ1, θ2, θ3). The space projection dR for R —which
would correspond to (B.1) —is then replaced by the space-
time projection

dR ≡ a

−i�
πμdθμ, μ = 0, 1, 2, 3. (B.5)

If we want to project the structure inherent in the so-
lution R on a given basis at a particular event in the
Minkowski spacetime we must consider the directional
derivative at a fixed basis {iTμ}, i.e.,

(iTμ)ũ [R] = dRũ(iTμ). (B.6)

From the left invariance

∂μ|ũ = ũ∂μ|e (B.7)

of the coordinate fields ∂μ, we have

dRũ(iTμ) = dRũ(ũ
−1∂μ) = ũ−1dRũ(∂μ) = ũ−1 a

−i�
πμ(ũ),

(B.8)
where the latter expression uses (B.5) and

dθμ(∂ν) = δμν . (B.9)
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Fig. 2: Derivation of a function f at point p in a manifold M
is defined by using a local smooth map x : M → Rm to pull
back the problem to an ordinary derivation on Rm using the
pullback function f ◦ x−1. Figure from [8,22].

From the pull-back R∗ of R from U(1)⊗U0(3) to R⊗R
3

given by (see fig. 2)

R∗ = R ◦ exp: R⊕ R
3 → U(1)⊗ U0(3) → C (B.10)

we also have the directional derivative using (B.8)

dRũ(iTμ) = ũ−1 ∂R∗

∂θμ

(
Et
�
,
p1x

1

�
,
p2x

2

�
,
p3x

3

�

)
. (B.11)

We use θ0 = ict/a from (13), introduce q0 = E/Λ = a
�

E
c

and get for the phase factor

ũ−1 = exp(q0θ0 − iq · θ) = exp

(
i
Et
�

− i
p · x
�

)
≡ exp(iωt− ik·x) ≡ eik·x (B.12)

with �ω = E and �k = p.
In the pull-back (B.10) we have used the coordinate

fields as induced base

∂μ|ũ =
∂

∂θμ

∣∣∣∣
ũ

= d(exp)exp−1(ũ)(eμ), (B.13)

where {eμ} is a basis in the parameter space, i.e., a basis at
the event in Minkowski space, see fig. 2 where the manifold
M in the present case could be U(1) ⊗ U(3), the inverse
map x−1 = exp, and the complex-valued function f would
be the measure-scaled wave function R introduced in (18).

Appendix C: second quantisation. – Reading off
intrinsic momenta in (B.1) at different laboratory space
points x and x′ corresponds to generating conjugate fields
π(x) and π(x′). We take this as the origin of second quan-
tization: Read offs of intrinsic variables are independent
when done at different laboratory space points x. Below
we unfold some details of this conception [8].
From the commutators

[x̂i, p̂j ] = i�δij (C.1)

in (A.1), we introduce raising and lowering operators in
a coordinate representation (cf. p. 182 in [10], cf. also
appendix B in [22])

â†j =
1√
2

(
θj − i

a

�
p̂j

)
, âj =

1√
2

(
θj + i

a

�
p̂j

)
(C.2)

to rewrite the momentum component operators as

p̂j =
−i�

a

1√
2

(
âj − â†j

)
. (C.3)

Note that a without a hat is the length scale introduced
in (4) for the projection from the intrinsic, toroidal coor-
dinates to laboratory space.
We now return to the interpretation of momentum com-

ponents as directional derivatives in (B.11). By compari-
son with (B.8), we infer intrinsic momenta

pμ =
−i�

a

∂

∂θμ
|eR∗. (C.4)

Using (C.3) and (B.11) we have for a fixed basis projection
to space (j = 1, 2, 3)

dRũ(iTj) = eik·x
1√
2

(
âj(k)− â†j(k)

)
R∗|(ωt,k1x1,k2x2,k3x3).

(C.5)
We interpret (C.5) as Fourier components of a conjugate
momentum field

π(x) =

∫
d3k√
(2π)3

√
E(k)
2

(
â(k)− â†(k)

)
eik·x (C.6)

to be excited at the spacetime coordinate x where the
intrinsic momenta are read off according to (C.4). We
incorporated the 1/

√
2 prefactor on the annihilation and

creation operators into the standard normalization of the
momentum field and omitted a factor −i�/a.

If we uphold the canonical relation

φ̇(x) = π†(x), (C.7)

where “dot” represents derivation with respect to time t,
we get for the field φ conjugate to the momentum field π,
that

φ(x) = −i

∫
d3k√
(2π)3

1√
2E(k)

(
â(k)− â†(k)

)
e−ik·x.

(C.8)
It can be shown [8] that (C.8) yields a standard
propagator.

Appendix D: local gauge transformation equates
left translation in intrinsic space. – We require local
gauge invariance of a field Hamiltonian [23] constructed
from colour quark fields generated as3

ψj(u) = dRu(∂j) (D.1)

for use in

H =

∫
ψ† (−i�c α ·∇+ βmc2

)
ψ dx3, ψ† = (ψ∗

1 , ψ
∗
2 , ψ

∗
3).

(D.2)
Here we suppressed spinor indices which are mixed by the
4 × 4 Dirac matrices α = (α1, α2, α3) and β. The spinor

3This section is edited from [6,24].
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indices commute with the colour indices. Using left invari-
ance of the coordinate fields

∂j |u = uiTj = u∂j |e, (D.3)

we get in the mass term of (D.2)

ψ′(u′)†ψ′(u′) = (u′iTj [R])
†
(u′iTj [R]) =

(iTj [R])
†
(u′)†u′ (iTj [R]) = ψ(u)†ψ(u) (D.4)

provided the configuration variables are unitary, i.e.,
(u′)†u′ = u†u = 1. Next we impose the local gauge trans-
formation

ψ → ψ′ = g(x)ψ, g(x) ∈ SU(3), ∂μ → Dμ = ∂μ + Gμ

(D.5)
with colour gauge field, G = igsG [15] containing a strong
coupling gs

Gμ = igsG
k
μ

λk

2
, k = 1, · · · , 8,

Gk ∼ G(k)(e) = dΦe

(
i
λk

2

)
(D.6)

and transforming (when e → g(x) in G(k)) like in [25]

G′
μ = g(x)Gμg(x)

−1 − ∂μ(g(x))g(x)
−1 →(

D′
μψ

′)2 = (Dμψ)
2
. (D.7)

We thus have the basic ingredient colour fields for set-
ting up QCD. Choosing u = g(x) in (D.5) and in (D.3)
equates local gauge transformation in laboratory space to
left translation of the intrinsic coordinate fields,

ψj(u) = ∂j |u[Φ] = u∂j |e[Φ] = uψj(e). (D.8)

∗ ∗ ∗

I thank for referee queries about coordinate frames.
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