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Abstract – We consider the Dirac cones and higher-order topological phases in quasi-continuous
media of classical waves (e.g., photonic and sonic crystals). Using sonic crystals as prototype
examples, we revisit some of the known systems in the study of topological acoustics. We show the
emergence of various Dirac cones and higher-order topological band gaps in the same framework
by tuning the geometry of the system. We provide a pedagogical review of the underlying physics
and methodology via the bulk-edge-corner correspondence, symmetry-based indicators, Wannier
representations, filling anomaly, and fractional corner charges. In particular, the theory of the
Dirac cones and the higher-order topology are put in the same framework. These examples and
the underlying physics principles can be inspiring and useful in the future study of higher-order
topological metamaterials.

perspective Copyright c© 2022 EPLA

Introduction. – The past few years have witnessed the
rapid development in a new frontier of topological phases
of matter [1,2] which are termed as the higher-order topo-
logical insulators (HOTIs) [3]. HOTIs are firstly indicated
by the existence of chiral hinge states in axion insulators
in magnetic fields [4,5] and then come into sight after the
birth of the celebrated multipole insulators [6,7]. Several
concrete models and theories of HOTIs have been pro-
posed in the last few years [3,8–34]. Prototypes of HOTIs
include the two-dimensional (2D) second-order topological
insulators which host one-dimensional (1D) gapped edge
states and zero-dimensional (0D) in-gap topological cor-
ner states. Here, the term “second-order” means the pro-
tected topological boundary states have a co-dimension of
two (i.e., the topological boundary states have two dimen-
sions lower than the bulk states). Such HOTIs generalize
the conventional bulk-edge correspondence to the bulk-
edge-corner correspondence and unveil a unprecedented
regime of multidimensional topological physics. Unlike the
conventional topological insulators which are protected
by the time-reversal symmetry, HOTIs are protected by
the crystalline symmetry and characterized by the bulk
topological invariants such as the quantized multipole
polarizations [6,7]. HOTIs represent a large category
of topological crystalline insulator phases which widely
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emerge in natural [3,35–43] and artificial [44–86] materials.
In many cases, the nonzero polarizations in HOTIs man-
ifest the filling anomaly [18] of the bulk states in finite
systems, which, from a real-space perspective, can be re-
vealed via the Wannier centers of the Bloch bands [18,31].

What makes HOTIs particularly attractive for material
scientists are their rich topological phenomena across di-
mensions. Topological phenomena at different dimensions
in the same material could provide multiplexing applica-
tions. For instance, the gapped surface states in three-
dimensional HOTIs can provide surface states with high
density of states to accelerate surface chemical reaction
processes. Meanwhile, the bulk, through filling anomaly,
gives rise to high-density surface charges. In addition, the
gapless hinge states offer robust transport on 1D hinge
channels. In photonic HOTIs, it has been shown that
edge states can provide 1D waveguide channels [87], while
the 0D corner states can serve as robust cavities that may
enable ultra-low threshold lasing [88–91].

On the other hand, Dirac cones [92] that emerge in var-
ious photonic and phononic metamaterials (such as pho-
tonic crystals and phononic crystals) have been the focus
of researches in the study of metamaterials, because of
their unique properties. For instance, in photonic crys-
tals, Dirac cones can be utilized to realize all-dielectric
zero refractive index medium that has low dissipation and
enables extraordinary manipulation of light [93–96].
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Fig. 1: Acoustic analogue of various Dirac cones in SCs with (a) sixfold (C6), (b) threefold (C3), (c) fourfold (C4) and (d)
twofold (C2) rotation symmetries. Only the unit-cells of the SCs are illustrated where the rotatable acoustic scatterers and the
air regions are denoted by the white and green regions, respectively. Except for the rotation angle θ of scatterers, the other
geometric parameters l1 = 0.49a in (a), l2 = 0.89a in (b), l3 = 0.375a, h1 = 0.2a in (c) and l4 = 0.4a, h2 = 0.1a in (d) are fixed.
Here, a denotes the lattice constant for all cases. (e)–(f) The corresponding acoustic band structures for SCs in (a)–(d) with a
double Dirac cone at the Γ point (e), a Dirac cone at the K point (f), a spin-1 Dirac cone at the M point (g) and a generalized
Dirac cone at the M point (h). The respective rotation angle θ is listed on the top-left corner of each figure. Insets show the
Brillouin zone and the 3D band dispersion around the degenerate points.

Since there are plenty of studies on how to construct
HOTIs from tight-binding models, here we emphasize the
construction of HOTIs in the Bragg scattering regime.
In this regime, which we denote as the quasi-continuous
regime [86], waves are nearly free, while the Bloch bands
are formed by multiple Bragg scatterings. Examples in-
clude photonic crystals, sonic crystals (SCs) and phononic
crystals (including phonons in natural and artificial solid
lattice systems). In such a regime, although there is no
tight-binding picture, HOTIs can still be realized and ma-
nipulated by tuning the geometry of the scatterers in each
unit-cell. Here, by revisiting some of the recently studied
acoustic systems, we show that Dirac cones and HOTIs
can be realized in the same system in quasi-continuous
media. We further illustrate how to obtain the topologi-
cal invariants (i.e., the symmetry indicators of the Bloch
bands, the filling anomaly from the Wannier orbital pic-
ture, and the fractional corner charges) that characterize
the higher-order topology of the Bloch bands.

Dirac cones in 2D SCs. – We specifically consider
four 2D airborne SCs with Cn rotation symmetries (n =
2, 3, 4, 6) as illustrated in figs. 1(a)–(d). The rotation sym-
metries play an essential role in the theory of higher-order
topological phases [7,9,13,18–20,32]. In these SCs, the
band inversion at one of the high symmetry points (HSPs)
can be triggered by tuning the rotation angles of the scat-
terers θ. Such band inversions lead to topological transi-
tions and the emergence of various Dirac cones.

Here, we focus on 2D airborne SCs where the acous-
tic scatterers are arranged in the air background.
The dynamic equation for the acoustic waves is
given in detail in the Supplementary Material
Supplementarymaterial.pdf (SM). The scatterers
are considered as made of epoxy that is compatible with
the 3D printing technology. As depicted in figs. 1(a)–(d),
four designed SCs are introduced, which separately enjoy
the sixfold (C6), fourfold (C4), threefold (C3) and twofold
(C2) rotation symmetries.

It is found that at certain angles, those SCs host vari-
ous Dirac cones (see figs. 1(e)–(h)). For instance, a dou-
ble Dirac cone with fourfold degeneracy can appear in the
C6-symmetric SC at the Brillouin zone center. At each
corner of the hexagonal unit-cell, there is a scatterer (see
fig. 1(a)), which is an equilateral triangle with the side
length l1 = 0.49a. While keeping the C6 rotation symme-
try and rotating the scatterers, the acoustic bands can be
tuned. At the rotation angle θ = 21.6◦, a double Dirac
cone emerges at the Brillouin zone center (fig. 1(e)). Such
a double Dirac cone is initially studied for zero-index meta-
materials [94] and then plays an pivotal role in the discov-
ery of the analogous spin Hall effect in various photonic,
and phononic systems [97,98].

The SC with the C3 rotation symmetry in fig. 1(b) is
known for the acoustic valley Hall insulators [84,99,100].
In these SCs, there is a single scatterer at the center of
the unit-cell. This scatterer is an equilateral triangle with
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Fig. 2: Schematic of the topological phase transitions of bulk states and the emergent gapped edge states. (a)–(d) The
topological phase diagrams of bulk states for the SCs in figs. 1(a)–(d). The frequencies of the concerned states with different
symmetry representations vs. the rotation angle are plotted as the red dashed and green solid curves, respectively. Separately,
the symmetry representations are E1 and E2 in (a), 2E and 1E in (b), E and B in (c) and B and A in (d), as labelled on the top
of each figure. The labels of the representations are based on the character tables on the Bilbao Crystallographic Server [104].
Insets illustrate the location of real-space Wannier centers of the lower-frequency Bloch bands below the opened band gap. The
red dots denote the Wyckoff positions. (e)–(h) The corresponding projected band structures along the wave vectors calculated
from the ribbon-shaped structures as sketched on the top of each figure. The domain walls in one direction are between two
topologically distinct phases with specific rotation angles. The periodic boundary condition remains in the other direction. The
orange curves denote the gapped edge states whose wave functions localize at the domain walls. The blue regions represent the
frequency ranges of the edge band gaps. Insets schematically illustrate the Wannier centers around the domain-wall boundaries.

the side length l2 = 0.89a. At θ = 0◦, Dirac cones emerge
at the K and K ′ points (see fig. 1(f)).

For the C4-symmetric SC in fig. 1(c), in a unit-cell, there
is a single scatterer at the center. This scatterer is de-
signed to be a cross shape characterized by the length
l3 = 0.375a and the width h1 = 0.2a. By tuning the rota-
tion angle to θ = 24.8◦, a spin-1 Dirac cone with threefold
degeneracy, emerges at the M point (fig. 1(g)). The spin-
1 Dirac cone is composed of two linear bands intersecting
with a nearly flat band and has been studied with great
interest as a candidate for double-zero index metamateri-
als [93,96,101,102].

The C2-symmetric SC in fig. 1(d) is originally proposed
and experimentally realized as a second-order topological
insulator [49]. There are four scatterers in each unit-cell.
The topological transition takes place at θ = 0◦ where a
generalized Dirac cone with fourfold degeneracy emerges
at the M point. We use the term of “generalized Dirac
cone” here due to the existence of other nodal lines cross-
ing it. Note that at the transition point, the unit-cell is
no longer the primitive cell and the band folding comes
into play. However, the band folding does not account
for the whole evolution of the bands, which is a global
and more important feature. If we reduce the symme-
try to avoid the band folding, e.g., by breaking the mir-
ror symmetries while preserving the C2 symmetry and the

glide symmetries along the x- and y-directions, the gen-
eralized Dirac cone still emerges but at non-vanishing ro-
tation angles (see SM). Finally, we remark that the lin-
ear dispersion of all the Dirac cones discussed above can
be illustrated by the k · p method near the degenerate
points [103].

Topological transitions and edge states. – We
note that the periodicity of the rotation angle is 120◦

for both the C6- and C3-symmetric SCs, while 90◦ and
180◦ for the C4- and C2-symmetric SCs, respectively. By
tuning the angle θ while preserving the rotation symme-
tries, the band gaps can be closed and reopen, leading to
the topological transitions. This process is well captured
by the flip of the eigen-frequencies of the Bloch states
with different symmetry representations, as shown in
figs. 2(a)–(d).

Specifically, for the C6-symmetric SC, the parity in-
version occurs between two doubly degenerate represen-
tations E1 and E2 of the C6 point group. The parity
inversion leads to the emergence of the double Dirac cone
at the Γ point at θ = 21.6◦ for the parameters adopted
here.

For the C3-symmetric SC, tuning the rotation angle θ
can trigger the inversion between the nondegenerate rep-
resentations 1E and 2E at the K and K ′ points. The tran-
sition leads to the emergence of the Dirac cones at θ = 0◦
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where the 1E and 2E representations become degenerate.
In the case of the C4-symmetric SC, by tuning the an-

gle θ, inversion of the doubly degenerate representation E
and the nondegenerate representation B can be triggered
at the Brillouin zone corner (i.e., the M point). At the
transition point, θ = 24.8◦, the E and B representations
are degenerate, leading to a triply degenerate Dirac cone.

The C2-symmetric SC experiences a parity inversion at
the M point when the rotation angle θ is tuned. This is as-
sociated with the flip of the doubly degenerate 2B and 2A
representations. At the transition point, the degeneracy
of the 2B and 2A representations leads to the generalized
Dirac cone at the M point.

The band topology of the Cn-symmetric insulators can
be distinguished by the rotation symmetry representations
of the bulk Bloch states at the HSPs in the Brillouin zone,
which contribute to several topological indices [18]. The
topological indices of different phases for the four SCs are
provided in detail in the SM.

We present in figs. 2(e)–(f) the calculated acoustic edge
states. The corresponding ribbon-shaped supercells are
schematically depicted on the top of each figure, where the
domain wall is between two topologically distinct SCs with
specific rotation angles. Specifically, the zigzag domain-
wall boundaries are formed in the C6- and C3-symmetric
cases. The projected bands for all cases exhibit two
branches of edge states which are gapped because there
is no symmetry at the edge that enforces them to be gap-
less. Finally, we remark that the edge band gap can be
closed for the C3- and C2-symmetric SCs, when the edge
boundary has an emergent glide symmetry, as shown in
refs. [49,82]. The edge gap closing yields a topological
transition that is independent of the bulk topological prop-
erties [49,82].

Wannier representations. – In the Wannier-
representable HOTIs studied in this work, the emergence
of the edge states can be associated with the real-space
Wannier orbitals. In other words, the two branches of the
edge states can be understood as evolved from the two
Wannier orbitals exposed at the edge boundary. The band
representation theories give the Cn-symmetric Wannier or-
bitals located at the HSPs of the unit-cell (i.e., Wyckoff
positions) according to the “band representations” (i.e.,
the symmetry representations of the Bloch bands). The
band representations are listed in detail in the Bilbao
Crystallographic Server [104]. The Wannier centers for
different gapped phases of the four SCs are illustrated in
the insets of figs. 2(e)–(f).

Specifically, for the C6-symmetric SC, there are always
three Bloch bands below the gap. The three correspond-
ing Wannier centers are at the center of the unit-cell (i.e.,
the Wyckoff position a) if θ ∈ (−21.6◦, 21.6◦), or the edges
of the unit-cell (i.e., the Wyckoff positions c, c′ and c′′)
if θ ∈ (21.6◦, 98.4◦). The former Wannier configuration
corresponds to the trivial atomic insulator, while the lat-
ter corresponds to an obstructed atomic insulator. For

the C3-symmetric case, only one Bloch band is below the
concerned band gap. The single Wannier center is at the
Wyckoff position c if θ ∈ (−60◦, 0◦), or at the Wyckoff po-
sition b if θ ∈ (0◦, 60◦). Such two gapped phases are both
topological, since for both of them the Wannier center is
away from the unit-cell center. For the C4-symmetric SC,
there is one band below the gap if θ ∈ (−24.8◦, 24.8◦).
However, if θ ∈ (24.8◦, 65.2◦), there are two Bloch bands
below the gap. In the former case, the Wannier center is
at the corner of the unit-cell (i.e., the Wyckoff position
b), whereas in the latter case, the Wannier centers are at
the edge centers of the unit-cell (i.e., the Wyckoff posi-
tions c and c′). Both gapped phases are topological, but
of distinct properties. For the C2-symmetric SC, there are
always two bulk bands below the gap. If θ ∈ (−90◦, 0◦),
the two Wannier centers are at the edge centers. In com-
parison, if θ ∈ (0◦, 90◦), one of the Wannier center is at the
unit-cell center, while the other is at the unit-cell corner.

For all the cases, there are two Wannier centers ex-
posed to the edge boundary within an edge supercell when
two SCs with topologically distinct band gaps are placed
together. This is schematically illustrated in the insets
in figs. 2(e)–(f) where the domain-wall boundaries are
marked with red lines. The two Wannier orbitals exposed
to the edge boundary are responsible for the emergence of
the edge states [18].

Higher-order topology, corner states and
fractional corner charges. – The corner states ap-
pear as a direct manifestation of the higher-order band
topology, as shown in fig. 3. Here, the rotation angles of
the inner and outer SCs are chosen as the same as those
in fig. 2. The calculated acoustic spectra of the finite
systems are presented in figs. 3(a)–(d) which manifest
the bulk-edge-corner correspondence. The localization of
the corner states are confirmed by the acoustic pressure
profiles in figs. 3(e)–(h). We remark that these features
remain intact if the inner SC exchanges with the outer SC
for each configuration. Note that in those calculations,
the hard-wall boundary condition is set at the outer most
boundary, to keep the whole system closed.

In addition to the above spectral signatures, there is
another robust topological property: the fractional cor-
ner charge induced by the filling anomaly. Here, filling
anomaly refers to the phenomena that in a finite system,
the number of bulk eigen-states is different from the num-
ber of Wannier orbitals as counted from the number of
unit-cells. The filling anomaly emerges when there are
Wannier orbitals located away from the unit-cell center.
These Wannier orbitals become localized edge or corner
states in finite systems and cause the filling anomaly. How-
ever, even when the edge and corner states merge into
the bulk bands, the filling anomaly still exists as a robust
property of HOTIs, because the crystalline symmetry and
charge neutrality cannot be fulfilled simultaneously when
Wannier orbitals are shifted away from the unit-cell center.

Following ref. [18], the corner charges are formulated
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Fig. 3: Corner states as a direct demonstration of the higher-order band topology. (a)–(d) The corresponding eigen-spectra of
the finite box-shaped structures in (e)–(h). The corner states emerge in the edge band gaps. The bulk, edge and corner states
are denoted by the grey, blue and red dots, respectively. (e)–(f) The profiles of the acoustic pressure fields of one corner state
for the C6-, C3-, C4- and C2-symmetric cases, respectively. The profiles show the localization at corners. The rotation angles
of inner and outer SCs are labelled in the figures.

Fig. 4: Fractional edge and corner charges. The Wannier centers of inner and outer SCs in finite box-shaped structures are
denoted by green and orange dots, respectively. The hollow dots represent the Wannier centers occupied at the domain wall
between inner and outer SCs. In (a), for the C6-symmetric case, one unit-cell at each corner manifests the 1

2
charge. Similarly,

the fractional edge and corner charges are labelled for unit-cells in (b) for the C3-symmetric case and in (c) for the C2-symmetric
case. The C4-symmetric case is similar to the C2-symmetric case except for one more Wannier center occupied at the unit-cell
center of inner SCs which denote no fractional charges.

based on the topological indices, as given in the SM.
However, they still rely on the specific shapes of the sys-
tem [18]. Instead, it is convenient to utilize the Wannier
orbital distribution to determine the fractional edge and
corner charges. As depicted in fig. 4, the Wannier centers
of the inner and outer regions are denoted by the green
and orange dots, respectively. Specially, the Wannier cen-
ters occupied at the edges and corners are denoted by the
hollow dots. We consider the charges of each unit-cell,
which can be inferred by counting the number of Wannier
centers dropped in the unit-cell. For instance, as shown in
fig. 4(a) for the C6-symmetric SC, the single unit-cell in
the inner bulk region has six halves of the Wannier centers
and hence carries the 1

2 × 6 = 3 charges. At the corner
unit-cell, the hollow dots denote no charges and thus the
total corner charge is 1

2 ×3 mod 1 = 1
2 . The same analysis

can be applied to the C3-, C4- and C2-symmetric cases,

yielding the fractional charges in figs. 4(b) and (c). Note
that the filling anomaly may not lead to fractional bound-
ary charges. On the contrary, the fractional charges at
edges or corners always indicate the filling anomaly.

Conclusions and outlook. – In this paper, we revisit
the rotation symmetric higher-order topological phases in
quasi-continuous media. Using SCs as prototype exam-
ples, we show that the Dirac cones and the higher-order
topological insulator phases can emerge in the same frame-
work of SCs, upon tuning the geometry of the SCs. In
particular, we review the underlying physics and theoret-
ical methods used in the literature to analyze the higher-
order topology and Dirac cones in the a unified framework,
i.e., the symmetry-based analysis of the Bloch bands
and the underlying Wannier representations. In addition
to the known spectral bulk-edge-corner correspondence,
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we emphasize that the higher-order topological insulator
phases gives rise to filling anomaly and fractional charges
at the edge and corner boundaries. The results pre-
sented in this paper are useful for future studies on quasi-
continuous topological metamaterials.

We remark that often the phononic bands do not have
the chiral symmetry [51,105] and the corner states may
shift into the bulk continuum and disappear without
the chiral symmetry. One way to avoid this is to use
the domain-wall boundaries between topologically distinct
metamaterials. Besides, the corner states may remain ro-
bust under specific geometric parameters when the chiral
symmetry is approximately recovered [105]. Even when
the corner states disappear, higher-order topology can
still be probed by the fractional corner charges in experi-
ments [30,106]. Alternative experimental probes of higher-
order topology and filling anomaly were also proposed and
realized very recently (e.g., via the topological Wannier
cycles [107,108]).

Finally, we would like to mention that there are also
fragile topological insulators which are not Wannier rep-
resentable but also support the spectral bulk-edge-corner
correspondence, filling anomaly, fractional edge and cor-
ner charges [18,109–111]. From the experimental side, it
is hard to distinguish the difference between HOTIs and
fragile topological insulators. It would be very interesting
also to study the non-Hermitian regime for the higher-
order and Dirac cone phases. Due to their tunability and
subwavelength nature that are appealing for various ap-
plications, quasi-continuous media are expected to play an
important role in future fundamental studies and applica-
tions of higher-order topological metamaterials.

Data availablity statement : All data that support the
findings of this study are included within the article (and
any supplemantary files).
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