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Abstract – It is well known that the outbreak of infectious diseases is affected by the diffusion of
the infected. However, the diffusion network is seldom considered in the network-organized SIR
model. In this work, we investigate the effect of the maximum eigenvalue on Turing instability and
show the role of network parameters (the network connection rate, the network’s infection, etc.)
on the outbreak of infectious diseases. Meanwhile, stability of network-organized SIR is given
by using the maximum eigenvalue of the network matrix which is proportional to the network
connection rate and the networks infection rate. The bridge between the two rates and Turing
instability was also revealed which can explain the spread mechanism of infectious diseases. In
the end, some measures to mitigate the spread of infectious diseases are proposed and the feasible
strategies for prevention and control can be provided in our paper, the data from COVID-19
validated the above results.

Copyright c© 2022 EPLA

Introduction. – After COVID-19 was first reported
in December 2019, some researchers investigated the early
transmission dynamics and its assessment through data-
driven models [1,2]. However, the available data is often
incomplete or insufficient in such a short interval. There-
fore, the mathematical model is an important tool for
analyzing the spread and prevention of epidemic and pan-
demic diseases [3–8] through bifurcation [9,10]. Stolerman
et al. tried to deal with the propagation of disease epi-
demics in highly populated cities through the SIR-network
model [11]. Dottori and Fabricius investigated the quasi-
stationary state of a SIR model on a dynamical network
and found rescaling the rate of infective contacts of the
model could absorb network effects partially [12]. And
the propagation of SIR disease on random networks with
spatial structure was studied, which provided a theoretical
modeling framework for disease propagation [13]. Then
Ball et al. investigated a stochastic SIR network epi-
demic model with the preventive dropping of edges to
show the importance of the connection between nodes [14].
Although the diffusion network was treated as an im-
portant factor of infectious diseases [15,16], the diffusion

(a)E-mail: xcjwshen@gmail.com (corresponding author)
(b)E-mail: hsux3@nwpu.edu.cn

network’s role in the distribution of the infected was sel-
dom investigated, especially in the SIR model with the
random network [17,18]. Therefore, spatial considerations
have been included in this study.

Since the Turing pattern was first proposed in 1952 [19],
many researches about pattern formation [20–22] were car-
ried out to explain some biological mechanisms. It was
found that cellular networks also played a vital role in the
Turing instability, and some extensive networks were pro-
posed as well [23–25]. Recently, some theoretical research
methods of the network-organized Turing pattern about
the un-directed and directed network were provided, which
laid the basis for the study of network-organized pattern
dynamics [26–29]. The subsequent research showed key
features (like stability, pattern formation) of Turing sys-
tems are determined purely by the network topology in the
network-organized system [30–32]. However, the pattern
dynamics of the SIR model with the diffusion network was
never investigated.

It is well known that human relations in society can be
treated as an extensive network, the epidemic can spread
along with the network when infectious diseases occur.
In general, the spreading along the network could induce
the outbreak of infectious diseases, especially COVID-19.
However, the diffusion (network) does not work in the
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stability of the reaction-diffusion SIR system. Namely,
traditional diffusion no longer explains the spread of in-
fectious diseases in the SIR model. Therefore, some dy-
namics mechanisms and biological mechanisms should be
proposed to investigate the epidemic’s diffusive behavior.
To understand the dynamical and biological mechanism of
the outbreak of infectious diseases and explore the practi-
cal measures, we will investigate the dynamic behavior of a
modified SIR model and the effect of the random network
on the distribution of infectious diseases. We first propose
a modified SIR model based on the characteristic of in-
fectious diseases, analyze why the outbreak of infectious
diseases occurs, and show the importance of the strate-
gies. Furthermore, we construct a network-organized SIR
model, show the connection probability and the infection
rate of network that play an essential role in the Turing
instability. Also, we find the maximum of the network ma-
trix’s eigenvalues, which is proportional to the connection
probability and the infection rate of the network, affects
the Turing system’s stability directly. The Turing insta-
bility is important due to spatial consideration, which is
specifically important in the outbreak of infectious dis-
eases. Finally, the evolution of the infected cases of the
COVID-19 epidemic is analyzed.

Model of the modified SIR system. – It is well
known that the death rate of infectious diseases for S
(susceptible individuals), I (infectious individuals), R (re-
moved or recovery individuals) is different [33]. Mean-
while, the infection rate of those diagnosed with infec-
tious diseases is also different from the participant infec-
tion rate (i.e., that could infect others), because most of
the infected can be isolated. Nevertheless, the incubation
of the infectious diseases is difficult to check, and it is in-
fective when it is in the incubation stage, so the amount
of the participant infection is different from the final diag-
nosis. Due to the characteristic of infectious diseases and
the existing SIR model [5], a modified SIR model can be
written as

dS

dt
= α− β1S − γ1SI,

dI

dt
= γ2SI − β2I − δI, (1)

dR

dt
= δI − β3R,

where β1, β2, β3 is the death rate of S, I,R, and β3 ≤ β1 ≤
β2 generally holds because the natural mortality rate is
relatively low and the mortality rate of those infected is
relatively high; γ1 is the infection rate (including both
isolated and un-isolated infected individuals), γ2 is the
infection rate of the participant infection (including the
incubation and the un-isolated infected individuals) next,
(γ1 − γ2)SI (γ1 ≥ γ2) infectious individuals may be iso-
lated or hospitalized, who cannot infect the others next,
namely only the infected who could make a difference to
the outbreak of infectious diseases are considered; δ is the
recovery rate.

Fig. 1: The stability and bifurcation of system (2). (a) The
bifurcation about α. (b) The bifurcation about β2. (c) The
bifurcation about γ2. (d) The bifurcation about δ.

There are two equilibrium points (S∗, I∗, R∗): E1 =

( α
β1
, 0, 0) and E2 = (β2+δ

γ2
, αγ2−β1δ−β1β2

γ1(β2+δ) , δ(αγ2−β1δ−β1β2)
γ1β3(δ+β2)

)

making the right-hand side of system (2) equal to zero.
In general, the equilibrium point E1 means the infectious
diseases disappears, and the equilibrium point E2 means
the outbreak of infectious diseases. Then, we analyze the
stability of E1, E2 through linear stability analysis. The
characteristic values are the solution of the characteristic
equation, the system is stable when all the eigenvalues are
negative and the system is unstable when a positive eigen-
value exists. The characteristic equation can be expressed
as |λE −A| = 0, where A is the Jacobian matrix and the
linear part of system (2)

A =

⎛
⎜⎜⎜⎝

−β1 − γ1I
∗ −γ1S

∗ 0

γ2I
∗ γ2S

∗ − β2 − δ 0

0 δ −β3

⎞
⎟⎟⎟⎠ .

The characteristic equation for E1 is (λ+ β1)(λ+ β3)(λ−
γ2

α
β1

+ δ + β2) = 0 and the characteristic equation for E2

is (λ1 + β3)(λ
2 + (β1 + γ1I

∗)λ + γ1γ2S
∗I∗) = 0. There

are two states for the epidemic in this paper, the out-
break of infectious diseases, and eventually, disappearance
with time. According to the characteristic value of E1, E2,
E1 is stable when αγ2 ≤ β1δ + β1β2, E2 is stable when
αγ2 ≥ β1δ + β1β2. It is well known that the infectious
diseases can be effectively controlled when the equilib-
rium E1 of system (2) is stable and the infectious dis-
eases will spread far and wide when the equilibrium E2 is
stable. In this paper, the default parameters of our sim-
ulations are α = 0.1, β1 = 0.01, β2 = 0.1, β3 = 0.01, γ1 =
0.8, γ2 = 0.1, δ = 0.1 and initial value (1, 1, 1). E1 will
tend to be stable (the infectious diseases disappear) for
lower birth rate, and E2 is stable (outbreak of infectious
diseases) when α becomes larger (fig. 1(a)). We are more
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concerned about the death rate β2 of the infected people.
Although the higher death rate can induce the disappear-
ance of infectious diseases (fig. 1(b)), it is an unacceptable
way to prevent contagious diseases. The theoretical results
show that γ1 does not affect the stability of the equilib-
rium E1. If we decrease the infection rate of the partic-
ipant infection (i.e., γ2) from 0.1 to 0.01, the outbreak
disappears (fig. 1(c)). Moreover, the outbreak of infec-
tious diseases may occur when the incubation time is large
because the incubation of infectious diseases could infect
others. Therefore testing the incubation of people on a
large scale and the isolation of the infected are important
strategies for the prevention of the infection, especially in
some places where the number of infected grows exponen-
tially (fig. 1(c)). For the recovery rate δ of the infected, the
lower recovery rate is not good for the prevention of infec-
tion (fig. 1(d)). The 10 fold increase of the recovery rate
(δ) (i.e., from 0.1 to 1.0) could make the infectious diseases
disappear quickly (fig. 1(d)). We notice that the recovery
rate is a vital factor to prevent the outbreak (fig. 1(d)).
The higher recovery rate (including self-cure) could also
lead to the generation of herd immunity, which enhances
the immune system of the recovered against the infectious
diseases. It is also explained that the vaccine and isola-
tion strategies are an effective measure to take control of
the spread of infectious diseases. Although high-efficacy
drugs are challenging to obtain for this current epidemic,
it is crucial to deal with future epidemic. From fig. 1, we
know only the endemic disease or the disappearance of in-
fectious diseases happens in the general SIR model. Still,
we cannot explain the secondary outbreak of infectious
diseases in the social network. Therefore, we investigate
the network-organized SIR system in the following.

Model of the network-organized SIR system. – In
fact, traditional diffusion no longer explains the spread of
infectious diseases in the SIR model. Therefore, we try to
transfer eq. (2) into the network scheme. And we combine
the dynamics of the SIR model and the infection network
to investigate the infection’s dynamical behavior. For the
random network [28], we can transfer it into a symmet-
ric matrix A1. First, a null matrix A1 is given; then if
node i and j connect in a loop, A1(i, j) = 1, A1(j, i) = 1
are assigned. Finally, we repeat the above process till a
symmetric matrix A1 is obtained. Suppose ri is the i-th
row sum (degree) of A1, and A2 = A1 − diag(r1, . . . , rN )
(the degree) is a Laplacian matrix (the elements of the
main diagonal represent the spreading rate of the network
through diffusion and the other non-zero element is the
infection rate by the receipt of diffusion). We treat ma-
trix A2 as a diffusion matrix. Meanwhile, the number of
the infected is invariable (all row sums are zero). Finally,
assume Δ = A2 + qdiag(r1, . . . , rN ) and q is the infection
rate through the network (we know that the amount of
susceptibility, infection, and recovery varies in the infec-
tious process, we redefine the ratio of the spreading rate
and the receipt in the diffusive matrix). Meanwhile, q can

be treated as the perturbation of the social network. Here
the social distance p is different from the isolation in this
paper. Although the social distance may decrease the in-
fection rate, it could infect some people, and it may not
even work for a highly contagious disease q. The isolation
here means there is no contact.
In general, the number of the infected will increase by

diffusion. After this consideration, system (2) (suppose
the infected are not isolated and move freely in the 1st
place) on the network can be written as

dSi

dt
= α− β1Si − γ1SiIi + d1

N∑
j=1

ΔijSj ,

dIi
dt

= γ2SiI1 − β2Ii − δIi + d2

N∑
j=1

ΔijIj , (2)

dRi

dt
= δIi − β3Ri,

where i = 1, . . . , N , only the infected in the first city

(or place) affect others and
n∑

j=1

Δijv
k
j = Λkv

k
i , Λk, v

k =

(vk1 , . . . , v
k
n) are the k -th eigenvalue of Δ and the cor-

responding eigenvector, respectively. Substituting Si =
n∑

k=1

cke
λktvki , Ii =

n∑
k=1

bke
λktvki , Ri =

n∑
k=1

ake
λktvki into

the linear part of system (2) [26], we obtain the Jaco-
bian matrix of system (2), the characteristic equation
(λk + β1 − d1Λk)(λk + β3)(λk − γ2

α
β1

+ δ+ β2 − d2Λk) = 0
at E1; and Turing instability occurs when d1Λk > β1 or
d2Λk > δ + β2 − γ2

α
β1

holds. The characteristic equa-

tion for E2 is (λ2 + akλ + bk)(λ + β3) = 0, and ak =
−d1 Λ− d2 Λk + γ1 I

∗ + β1, bk = Λk
2d1 d2 − Λk d2 γ1 I

∗ +
γ1 S

∗γ2 I
∗ − Λk β1 d2. The corresponding characteristic

values are λk1,2 =
ak±

√
a2
k−4bk

2 , λk3 = −β3. And the

Turing instability occurs when λk1 =
ak+

√
a2
k−4bk

2 > 0
holds [26,34].
Here we assume Λ1 ≤ Λ2 ≤ . . . ≤ Λn. If A is a Laplacian

matrix (q = 0), the corresponding eigenvalues are Λ1 ≤
Λ2 ≤ . . . ≤ Λn = 0. It is easy to know that system (2)
is stable at E1 because λk1 = −β1 + d1Λk < 0, λk2 =
−β3 < 0, λk3 = γ2

α
β1

− δ−β2+d2Λk < 0 when system (2)

is stable. For E2, λk1,2 =
ak±

√
a2
k−4bk

2 < 0 always holds
because ak > 0, bk > 0 is true for Λk ≤ 0. Namely, the
diffusive network could not induce outbreak of infectious
diseases, which is not consistent with the actual situation.
Therefore, A is considered in this paper, which can be
treated as the perturbation of the Laplacian matrix.
From the above analysis, we know that the eigenval-

ues of the network matrix play an important role in the
stability of the network-organized system (2), especially
the maximum eigenvalue. So the stability of system (2)
depends on

dSi

dt
= α− β1Si − γ1SiIi + d1ΛiSi,
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dIi
dt

= γ2SiI1 − β2Ii − δIi + d2ΛiIi, (3)

dRi

dt
= δIi − β3Ri.

Namely Turing instability occurs when d2Λmax > δ+β2−
γ2

α
β1

> 0 or d1Λk > β1 holds. And the stability of sys-

tem (3) with i = 1 can be determined by the following
system:

dS

dt
= α− β1S − γ1SI + d1ΛmaxS,

dI

dt
= γ2SI − β2I − δI + d2ΛmaxI, (4)

dR

dt
= δI − β3R,

where Λmax is the maximum of Λi, and it is the reduced
system for a network-organized system.
Although the network matrix is generated randomly

with p, the range of its eigenvalues can be estimated.
Based on the Gershgorin circle theorem [35], the eigen-
value qri − 2ri ≤ Λi ≤ qri ≈ Npq, and Λmax ≈ Npq. So
system (4) is approximate to the following system:

dS

dt
= α− β1S − γ1SI + d1gNpqS,

dI

dt
= γ2SI − β2I − δI + d2gNpqI, (5)

dR

dt
= δI − β3R,

where g is uncertain and related to A. And the system is
unstable when dgNpq > δ + β2 − γ2

α
β1

> 0, otherwise, it
is stable.
According to the above analysis, we have the following.

Theorem 1. In the network-organized system (2), the
Turing instability occurs for the equilibrium E1 when
d2Λk > δ + β2 − γ2

α
β1

or d1Λk > β1 holds. The turing in-
stability occurs for the equilibrium E2 when λk > 0 holds.
Meanwhile, the stability of system (2) is determined by
system (5).
Proof. Please refer to the stability analysis of system (2)
and system (5).
It is well known that the social network and trans-

regional diffusion of infectious diseases can induce the
increase of the infected, even global outbreak. In con-
trast, the infectious diseases will approach to zero when
the social network and trans-regional diffusion is small
(figs. 2–8). In our simulation, system (2) is stable when all
Ii tend to zero, and system (2) is unstable (Turing instabil-
ity) when Ii does not approach zero [d2Λk > δ+β2−γ2

α
β1
].

Here d1 = 0.01, d2 = 1 are set. For example, we can
make the infected of infectious diseases gradually disap-
pear by decreasing the susceptible rate (α = 0.01) and
the social contacts (p = 0.01) when the social contacts
exist in the system (fig. 2(a) shows that the pattern for-
mation is stable). The excessive contacts (p = 0.1) of
the infected lead to more infected (fig. 2(b)) and show
the occurrence of Turing instability. Although the higher

Fig. 2: The stability of system (2) about p when q = 0.02.
(a) The system is stable when p = 0.01, α = 0.01. (b) Turing
instability occurs when p = 0.1, α = 0.01. (c) The system is
stable when p = 0.1, β2 = 1.5. (d) Turing instability occurs
when p = 0.7, β2 = 1.5.

Fig. 3: The stability of system (2) about p when q = 0.02.
(a) The system is stable when p = 0.01, β1 = 0.1. (b) Turing
instability occurs when p = 0.1, β1 = 0.1. (c) The system is
stable when p = 0.01, γ2 = 0.01. (d) Turing instability occurs
when p = 0.1, γ2 = 0.01.

death rate of the infected could cut off the resource of the
infection (p = 0.1, β2 = 1.5), and make the infected ap-
proach to zero (fig. 2(c)). Surprisingly, even if the death
rate (β2 = 1.5) is high, but through human exposures
(p = 0.7) the infectious diseases spread rapidly, which
lead to more deaths eventually (fig. 2(d)). Meanwhile,
so is the death rate of the susceptible (fig. 3(a), (b)).
In ancient times, maybe increasing the death rate was a
way to prevent the spread of infection diseases because
of medical constraints and poor transportation. However,
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Fig. 4: The stability of system (2) about p when q = 0.02. (a)
The system is stable when p = 0.1, δ = 1. (b) Turing instability
occurs when p = 0.5, δ = 1. (c) The bifurcation about p when
γ2 = 0.01. (d) The bifurcation about p when α = 0.01.

Fig. 5: The bifurcation about p when δ = 1 and q = 0.02.

human civilisation is now advanced with better techno-
logical innovations. Isolation can effectively prevent the
spread of the disease (fig. 3(c)). However, just a few in-
fected cause an infection in the whole community through
social contact (fig. 3(d)). Therefore, isolation and the de-
crease of social contacts are necessary to stop the spread
of infectious diseases. Moreover, increasing the recovery
(self-cure) rate is the best way to prevent the spread of
infectious diseases (fig. 4(a)). This is not easy to achieve
due to the development of a vaccine. The other option is
to live with infectious diseases. If no symptoms or mild
symptoms for most of the infected exist, or most of the in-
fected can recover quickly by the treatment, eventually al-
most all the people live with infectious diseases (fig. 4(b)).
So the herd immunity also depends on a strong health
care system. In addition, fig. 4(c), (d) and fig. 5 show
the variation of the equilibrium about p. The equilib-
rium gradually becomes non-zero with the variation of p
(fig. 4(c), (d)) when we stabilize system (2) through the
isolation (γ2) and the susceptible rate α. Figure 5 shows
that the strategy of increasing the recovery has a better
resistance for the spread of infectious diseases. By com-
paring (fig. 4(c), (d)) and (fig. 5), we know the strategy of
increasing the recovery of the infected is better than the

Fig. 6: The stability of system (2) about q. (a) Turing in-
stability occurs when p = 0.01, q = 0.1, α = 0.01. (b) Turing
instability occurs when p = 0.1, q = 0.15, β2 = 1.5. (c) Turing
instability occurs when p = 0.01, q = 0.1, β1 = 0.1. (d) Turing
instability occurs when p = 0.01, q = 0.1, γ2 = 0.01.

Fig. 7: The stability of system (2) about q. (a) Turing insta-
bility occurs when p = 0.1, q = 0.1, δ = 1. (b) The bifurcation
about q when p = 0.01, γ2 = 0.01. (c) The bifurcation about
q when p = 0.1, δ = 1. (d) The bifurcation about q when
p = 0.01, α = 0.01.

isolation and the decrease of the susceptible rate. Because
the increase of p means the isolation is not enough, and
the susceptible rate increases. Now we consider the infec-
tion rate q of the network under the stable circumstances
about p. As we all know, the system is stable when the in-
fection rate q = 0.02 of the network is small (fig. 2(a), (c),
fig. 3(a), (c), fig. 4(a)). Figures 6 and 7(a) show the Tur-
ing instability induced by q, namely the Turing instability
occurs when the infection rate of the network becomes
larger (fig. 6 and fig. 7(a)). But the condition that the
strategy of increasing the death rate stabilizes system (2)
(fig. 6(b), (c)) is worse than other ways (fig. 6(a), (d),
fig. 7(a)). Namely, the infection rate q of the network
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Fig. 8: The relationship of Λmax and p, q. (a) The relationship
of Λmax and q when p = 0.1. (b) The relationship of Λmax and
p when q = 0.1. (c) The distribution of Λmax about p and q.
(d) The distribution of Npq about p and q.

also plays an important role in system (2). Also, although
the same initial conditions are set, the dynamical behavior
(fig. 6(d)) is different because the topology varies. Then
we obtain the bifurcation of Ii about p, q (fig. 7(b)–(d)
show the distribution of Ii about q). From the numerical
results, we know the isolation strategy (fig. 7(c)) is better
at preventing the network diffusion of infection diseases.
Although increasing the recovery rate (fig. 7(b)) and re-
ducing the susceptible rate (fig. 7(d)) is efficient at the
beginning, the infected will increase rapidly when the in-
fection rate of the network becomes large (fig. 7(b), (d)).
In addition, it is found that p, q are proportional to Λmax

(fig. 8). And it approaches the linearity relationship be-
tween Λmax and p, q (fig. 8(a), (b)). In other words, the
magnitude of p, q affects the stability of system (4). Mean-
while, the similar distribution (fig. 8(c), (d)) of Λmax and
Npq shows Λmax ≈ Npq holds.

The distribution of Λmax andNpq about p,q also verifies
that system (4) and system (5) are approximately equal
(fig. 8). Also, the stability of system (4) is consistent with
the stability of system (2) (fig. 9). Such as fig. 3(c), (d)
and 7(d) correspond to fig. 9(a), (b), (c), respectively,
which hare the same stability between system (4) and sys-
tem (2). Meanwhile the bifurcation about Λmax agrees
with the condition of the Turing instability of system (4)
(fig. 9(d)). In summary, although the infected of one city
are not isolated, this also could induce a secondary out-
break through the network. Finally, the evolution of the
infected cases of the COVID-19 epidemic is analyzed. Be-
cause of external factors, the system will not approach
an equilibrium point when the infected (freely) exist, and
even a secondary outbreak occurs (fig. 10), which is con-
sistent with our theoretical results (fig. 2–7]. From fig. 10,
the infected cases increase at the beginning, and decrease
when some measures are taken (figs. 2(a), (c), 3(a), (c),
4(a)). However, a secondary outbreak occurs because of

Fig. 9: The stability of system (4). (a) E1 is stable when γ2 =
0.01, p = 0.01, q = 0.02 and Λmax = 0.0362. (b) E1 is unstable
when γ2 = 0.01, p = 0.1, q = 0.02 and Λmax = 0.2057. (c) E1 is
unstable when γ2 = 0.01, p = 0.01, q = 0.1 and Λmax = 0.2179.
(d) The bifurcation about Λmax.

Fig. 10: The infected cases of the COVID-19 epidemic. (a)
Switzerland from 2020.02.27 to 2020.8.20. (b) Austria from
2020.03.29 to 2020.8.20.

the diffusion network (like the imported cases, the effect
of other cities) (fig. 2(b), (d), fig. 3(b), (d), 4(b), 7(a)).
The above analysis means the theoretical results are in
agreement with some experimental results in the quali-
tative analysis. Different implementation measures have
produced different results; namely, the topology is differ-
ent (fig. 6). Finally, a general SIR model could show the
outbreak or the disappearance of COVID-19 [36], but it is
difficult to express the interaction between nodes (cities or
countries) and the secondary epidemic. Generally speak-
ing, the control of the network diffusion plays a vital
role in the prevention of COVID-19. Also, although the
same initial conditions are set, the dynamical behavior
is different because the topology varies. Meanwhile, the
topology is determined by the protection strategy of the
nodes. Therefore, we could prevent the spread of COVID-
19 through the connection between the nodes.

Conclusion. – To explain the mechanism of the
spread of infectious diseases, and to predict the effec-
tive strategy, a qualitative approach was applied to
explain the outbreak of infectious diseases due to the
characteristics of infectious diseases, and some measures
were provided and turned out to be effective for the
prevention of infectious diseases. In this paper, we first
show the modified SIR model’s stability under different
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conditions and analyze the feasibility of some measures
for infectious diseases in the actual situation. It is found
that the isolation measure is an important approach to
reduce the infection rate: reducing the birth rate of the
vulnerable by isolation and improving the rate of recovery
by good health care systems could make the system
stable (infectious diseases disappears), which shows that
these are effective strategies. Then the effect of the
random network on the distribution of infectious diseases
is shown by the connection probability p and the network
infection rate q, which overcomes the disadvantage that
the network does not affect the dynamical behavior of
infectious diseases in the network-organized SIR model.
Meanwhile, social distancing, along with higher recovery
rates and higher isolation, are effective measures because
of the higher connection probability, which means lower
social distancing, leading to the Turing instability. Also,
the maximum of the network matrix’s eigenvalues, which
is proportional to the connection probability and the
infection rate of the network, affects the stability of the
Turing system directly. Above all, some measures and
methods proposed may play a vital role in the outbreak
of infectious diseases and Turing instability based on
the theoretical analysis. In summary, although the
infection of one city is not isolated, it could also induce
a secondary outbreak through the network. Finally, the
reduced system method for a network-organized system
is proposed on the basis of Theorem 1, which is a novel
approach to investigate the complex system.
It will be better to carry out the analysis based on

the literature or estimates from accurate data. How-
ever, the SIR model is considered on the network, mak-
ing the estimation and collection of accurate data more
difficult. We only show the effect of the diffusion net-
work on the epidemic by evolving the infected cases of
the COVID-19 epidemic in Austria and Switzerland. And
the network-organized system we proposed could describe
the dynamical behavior of infectious diseases more accu-
rately. Because the system’s theoretical analysis holds
for any parameters, the modified SIR model is valid for
COVID-19. The validity of the model used in this paper
and another data-based model is predicated on having ac-
curate data. Therefore we may do some research about
actual data, directed network, multilayer network, etc., in
a subsequent study.
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