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Abstract – Recently it was demonstrated that the long-known transition between the gap and
gapless superconducting states in the Abrikosov-Gor’kov theory of superconducting alloy with
paramagnetic impurities is of the Lifshitz’s type, i.e., at zero temperature this is the 2 1

2
order

phase transition. Since transitions of this kind in a normal metal are always associated to cer-
tain topological changes, then below we clarify the topological nature of the transition under
consideration. Namely, we demonstrate that the topological invariant which in process of the
transition undergoes the change is nothing but the Euler characteristic. Alternatively, in terms
of the theory of catastrophes one can relate this transition to appearance of the cuspidal edge at
the corresponding surface of the density of states as the function of energy and superconducting
order parameter. The concept of experiments for the confirmation of 2 1

2
order topological phase

transition is proposed. The obtained theoretical results can be applied for the explanation of
recent experiments with lightwave-induced gapless superconductivity, for the interpretation of the
disorder-induced transition s±-s++ states via gapless phase in two-band superconductors, and the
emergence of gapless color superconductivity in quantum chromodynamics.

Copyright c© 2022 EPLA

Introduction. – The study of topological phase tran-
sitions is becoming one of the hot research areas in
condensed matter physics. The term topological phase
transition firstly appeared in the condensed matter being
related to the Lifshitz’s transitions [1–4], where the num-
ber of the components of topological connectivity of the
Fermi surface (FS) undergoes changes under the effect of
different factors: pressure, magnetic field, doping, etc. In
the thermodynamic description such a transition is mani-
fested by the specific square root singularity in the third
derivative of the free energy over the parameter governing
transition. It is why, according to the Ehrenfest termi-
nology [5], the latter was labeled by Lifshitz as the phase
transition of fractional, 2 1

2 , order. The Lifshitz transition
leads to observable anomalies in the electron character-
istics of metals such as heat capacity and conductivity,
while the Seebeck coefficient experiences the giant singu-
larity [6–9].

Nowadays there are plenty of exotic materials that ex-
hibit nontrivial topological properties: topological insula-
tors, topological superconductors, topological superfluids,
Dirac and Weyl semimetals, etc. To this end a whole zoo
of topological invariants such as winding numbers, Chern

(a)E-mail: yuriyyerin@gmail.com (corresponding author)

numbers, Betti numbers and Euler characteristics is ex-
ploited to quantify and classify different phases of matter
and topological transitions between them [10]. The im-
portant hallmark of all topological invariants mentioned
above characterizing this or that transition is their insensi-
tivity to smooth deformations of the phase space on which
they are defined. Consequently, a topological phase tran-
sition between two distinct phases can be described as a
change in the topological invariant at the transition point.
Along with that from the physical point of view, topolog-
ical transitions are remarkable by the fact that they are
usually accompanied by the collapse of a gap in the energy
spectrum of the system.
It is all the more surprising that, against the background

of such complex phenomena, it was recently discovered [11]
that the transition between the well-known gap and gap-
less states of a superconductor with magnetic impurities
belongs to the Lifshitz type, i.e., has the character of the
2 1
2 phase transition, and therefore, one should expect that

some topological changes can be also associated with it.
As a matter of fact the phenomenon of gapless supercon-

ductivity was predicted by Abrikosov and Gor’kov (AG)
as a result of the extension of the theory of superconduct-
ing alloys [12] to the case of paramagnetic impurities [13].
One of the important consequences of the AG theory was

16005-p1

https://orcid.org/0000-0002-6026-5700


Yuriy Yerin et al.

the statement that the initial identification of the super-
current flow with the presence of a gap in the quasiparti-
cles spectrum by the authors of the BCS theory was too
restrictive.

The transition between gap and gapless regimes is
driven by the concentration of paramagnetic impurities in
the frameworks of the original AG theory [13–15]. Gap-
less superconductivity occurs in the very narrow interval
of impurity concentrations 0.912nc < n < nc, where nc

is the concentration that completely suppresses the su-
percurrent flow. Later it was recognized that the gapless
regime in a superconductor can be induced also by dif-
ferent mechanisms breaking the time-reversal symmetry:
magnetic field [15], flowing current itself [15], proximity
effect [16] and the light [17].

To clarify the topological nature of the transition be-
tween the gap and gapless states, we propose an alter-
native (with respect to the fundamental article [1]) view
at the problem by studying the topological evolution of
the surface of the quasiparticle density of states (DOS)
N(ω,Δ0) as a function of the paramagnetic impurities
concentration in superconductor. We choose the energy
(ω) and the value of the order parameter (Δ0) of the su-
perconductor in the absence of impurities as the phase
space for determining this function. We will demonstrate
that the Euler-Poincaré characteristic undergoes the jump
in the transition point between the gap and gapless states.

Finally, we propose a strategy for the experimental con-
firmation and the verification of the topological nature of
such a transition.

Free energy. – The expression for the free energy in
the vicinity of the transition between gapless and gap
regimes at T = 0 (see [15,18]) is given by

Fs−n=−
N (0)Δ2

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− π

2
ζ+

2

3
ζ2, ζ ≤ 1,

1−ζ arcsin ζ−1+ζ2
(
1−

√
1−ζ−2

)
,

−1

3
ζ2

(
1−

(
1−ζ−2

)3/2)
, ζ >1,

(1)

where Δ = Δ(τs) is the order parameter in the presence
of impurities (Δ ∈ R) and N(0) = mpF

π2�3 is the density of
states (DOS) at the Fermi level. The parameter

ζ = (τsΔ)−1, (2)

with τs as the electron spin-flip scattering time due to the
presence of paramagnetic impurities, governs the transi-
tion between the gap and gapless states. For 0 < ζ < 1
the energy gap Δg in the quasiparticle spectrum of super-
conductor has a nonzero value, while for ζ ≥ 1 Δg ≡ 0: the
gapless state is realized. At the same time the value of or-
der parameter Δ in this regime remains different fromzero

Fig. 1: The third derivative of the free energy eq. (1) with re-
spect to ζ given by eq. (3). The essential discontinuity is clearly
observed at ζ = 1. Cyan and magenta colors in the background
of the plot separate gap and gapless states, respectively.

and the phenomenon of supercurrent flow occurs. The
critical point ζ = 1 separates the gap and the gapless
states.
To make sure that the gap-gapless transition is the Lif-

shitz phase transition of the 2 1
2 order it is enough to cal-

culate the third derivative of the free energy (eq. (1)) over
the parameter ζ that drives the transition. One can see
that the first and the second derivatives remain continuous
functions at ζ = 1, while the third derivative

∂3Fs−n

∂ζ3
= N (0)Δ2

⎧⎨
⎩
0, ζ ≤ 1,

1

ζ4
√
ζ2 − 1

, ζ > 1,
(3)

clearly shows the essential discontinuity with the square
root singularity from the gapless side (see fig. 1). This
behavior is completely analogous to the Lifshitz 21

2 order
phase transitions in metals. The similarity is also con-
firmed by the quasiparticle DOS dependence on the pa-
rameter ζ. It was shown [14,15,18] that the quasiparticle
DOS of a superconductor Ns (ω) is finite at ω = 0 and has
a typical cusp for 2 1

2 order phase transition at ζ = 1,

Ns (0) = N (0)

√
ζ + 1

ζ

√
ζ − 1. (4)

Topological interpretation. – So we made sure that
the transition between the gap and gapless states in super-
conductor has the nature of the Lifshitz transition, how-
ever its topological interpretation is missing. In the case of
a normal metal the latter is trivial: the topological mod-
ification of the FS occurs when the chemical potential μ
reaches a certain critical value μc. As a result the num-
ber of components of topological connectivity of the FS
changes. At this point the parameter z = μ − μc govern-
ing the transition passes through its zero value [2–4,9].
At this point we should note that the FS does not mani-

fest itself directly in the phenomenon of superconductivity.
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Fig. 2: Topological evolution of the quasiparticle DOS in the ω-Δ0 phase space (a)–(c) combined with the similar evolution of
the FS in the momentum space for the Lifshitz transition (d)–(i). Panel (a) with ζ = 0.1 is topologically equivalent to panel
(d) and (g) with z < 0; panel (b) with ζ = 1 is topologically equivalent to panel (e) and (h) with z = 0 and panel (c) with
ζ = 2 is topologically equivalent to panel (f) and (i) with z > 0. For a better understanding of the DOS topology, a video is
also available at [22].

At the same time in a metal undergoing the Lifshitz tran-
sition side by side with the topological change of the FS a
gap appears in the quasiparticle DOS energy dependence.
This fact should be manifested in the topological proper-
ties of the corresponding surfaces (yet, to the best of our
knowledge, these changes were not classified). It is why
below we turn to the study of the topological properties of
the quasiparticle DOS surface in the phase space of ω-Δ0

based on the general expression for N (ω,Δ0) [13,14]

N (ω,Δ0) = N (0,Δ0) ζ
−1 Imu, (5)

where u is given by the implicit function

ω

Δ
= u

(
1− ζ√

1− u2

)
, (6)

and the expression for the order parameter Δ at T = 0 [13,
15]

ln

(
Δ

Δ0

)
=

⎧⎪⎪⎨
⎪⎪⎩
−π

4
ζ, ζ ≤ 1,

− arcosh ζ − 1

2

(
ζ arcsin ζ−1 −

√
1− ζ−2

)
,

ζ > 1,

(7)

where we recall that Δ0 �= 0 is the value of the super-
conducting order parameter in the absence of magnetic
impurities.

Three topologically dissimilar surfaces for ζ < 1, ζ = 1
and ζ > 1 are shown in fig. 2(a)–(c) respectively. Fig-
ure 2(a) corresponds to the gap state with 0 < ζ < 1
and with the characteristic narrowing “valley” between
two sheets of the DOS surfaces. When ζ = 1 the collapse
of the energy gap occurs with the formation a topolog-
ical feature known as the cuspidal edge [19] at ω = 0
(fig. 2(b)), indicating the emergence of the catastrophe
phenomenon in the ω-Δ0 space over the gap-gapless phase
transition [20,21]. Figure 2(c) corresponds to the gap-
less state (ζ > 1) and exhibits the gradual degradation
of the DOS curved surface to a plane as ζ → ∞. In this
representation one can freely “travel” over each surface
N(ω,Δ0) by changing the variables ω and Δ0 while keep-
ing ζ = ζ(Δ0, τs) =const and adjusting the value of τs
for each Δ0 to satisfy the constancy of the given value of
ζ. The manipulation of τs for each Δ0 in order to carry
ζ = const for the given DOS surface is not an artificial
procedure. In some sense during the study of the Lifshitz
transition the experimentalists do the same, for example,
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during the investigation of the anomalous behavior of ther-
mopower in Li1−xMgx alloy in a dependence of x close to
transition at x = 0.19 [7]. The corresponding movies with
the rotated DOS surfaces were created for visualization of
their topology [22].
The subsequent topological interpretation of the gap-

gapless transition can be performed by introducing the
topological invariant called the Euler (or Euler-Poincaré)
characteristic χ to describe the evolution of the function
N(ω,Δ0) (see fig. 2(a)–(c). Generally speaking, the Euler
characteristic is determined by the integral of the Gaussian
curvature over the whole surface via the Gauss-Bonnet
theorem [23]. The Gaussian curvature can be calculated
with the use of asymptotic expressions for Ns (ω,Δ0) for
the gap state (0 < ζ < 1,Δg �= 0) [15]

Ns (ω,Δ0)=N (0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, ω < Δg,

ζ−
2
3

(
1−ζ

2
3

)− 1
4

√
2

3

ω −Δg

Δ
,

ω ≥ Δg,

(8)

for the gapless state (ζ > 1,Δg = 0)

Ns (ω,Δ0) = N (0)
[(
1− ζ−2

)1/2
+
3

2
ζ−4

(
1− ζ−2

)−5/2
( ω

Δ

)2
]
, (9)

and for the special case of ζ = 1

Ns (ω,Δ0) = N (0)

√
3

2

[(
2ω

Δ

)1/3

− 1

24

(
2ω

Δ

)5/3
]
,

(10)
to avoid a singularity problem with the divergence at the
“suspicious” line ζ = 1 in eq. (9).

Being a function of two variables eqs. (8)–(10) allow to
evaluate the Gaussian curvature at the given point of the
surfaces by means of the formula

K =

∂2N
∂ω2

∂2N
∂Δ2

0
−
(

∂2N
∂ω∂Δ0

)2

(
1 +

(
∂N
∂ω

)2
+
(

∂N
∂Δ0

)2
)2 , (11)

and after that to take a surface integral according to the
Gauss-Bonnet theorem∫

Ω

Kdσ = 2πχ, (12)

where the integration are carried out over the DOS surface
Ω and where dσ is the element of area of Ω.

Based on eqs. (11) and (12) one can find that during
the topological transformation throughout the gap-gapless
phase transition, the Euler characteristic changes from
χ = 2 (gap state) to χ = 1 (gapless state). We follow
the numerical procedure for the calculation of the surface
integral eq. (12) described in detail in [24] (see chapter

5.3.1 therein adopted for 2D case) with the implementa-
tion by means of Matlab1.

It is worth noting that one can evaluate the value of χ
in a much simpler way, just performing the polygonization
of DOS surfaces and calculating χ = V −E+F by means
of Euler’s formula. Here V , E, and F are respectively
the numbers of vertices (corners), edges and faces of the
circumscribed polyhedron [23].

We would like to underline that the numerical evalu-
ation of the Euler characteristic by means of the Gauss-
Bonnet theorem was performed to ensure the validity of
the obtained result and to compare it with the much easier
approach based on Euler’s formula.

To illustrate how the concept of the Euler characteristic
can be applied to other topological transitions we consider
the case of the Lifshitz transition and the topological evo-
lution of the FS in the momentum space (fig. 2(d)–(i)). In
fig. 2(f) a one-sheet hyperboloid is not compact. Its defor-
mation retracts onto a circle, and the Euler characteristic
is a homotopy invariant, so χ = 0. By tightening the neck
of the hyperboloid, it is deformed into a cone as shown in
fig. 2(e). The cone could be simplexized into 6 singular
2-simplexes giving χ = 1. By detaching the pieces of the
cone and smoothing it (fig. 2(d)), one finds a two-sheet
hyperboloid, where each sheet is topologically equivalent
to the disc with χ = 1. The Euler characteristic of the
disjoint union of two discs is the sum of their Euler char-
acteristics, so χ = 1 + 1 = 2. Therefore, throughout the
Lifshitz transition in fig. 2(d)–(f) the Euler characteristic
changes from 2 to 1 and then to 0.

The same interpretation of the Lifshits transition can
be done for fig. 2(g)–(i). Here the Euler characteristic
changes from χ = 2 because of the sphere (fig. 2(i)) to χ =
2 + 1 = 3, where we consider the additive contributions
from the sphere and the point (fig. 2(h)). Finally, for
fig. 2(g) there are two spheres and correspondingly χ =
2 + 2 = 4. As a result, we observe the alteration of the
Euler characteristic from 4 to 3 and then to 2.

Therefore, one can conclude that instead of the param-
eter z that governs the Lifshitz transition and controls the
corresponding transformation of an open FS into a closed
one (fig. 2(d)–(i)) with the emergence of the corresponding
gap, the driving parameter for the topological modification
under consideration is the value of (ζ − 1).

1It may seem that the Euler characteristic for the DOS surface
corresponding of the gap collapse (ζ = 1, see fig. 2(b)) should intu-
itively take a fractional value between 1 and 2. Generally speaking,
topology admits the existence of geometrical objects, known as orb-
ifolds, with fractional values of the Euler characteristic. This is es-
pecially relevant for two-dimensional orbifolds [25–27]. In this case
we need to apply a generalized formula for the calculation of the
Euler characteristic, which takes into account the presence of the
nontrivial singular points for the given orbifold such as the corner
reflectors, the elliptic points, etc. However, despite the singularity
of cuspidal edge and the intuitive expectation of the fractional value
of χ, both our numerical calculations based on the Gauss-Bonnet
theorem and the naive approach based on Euler’s formula indicate
the value of the Euler characteristic χ = 1 for the DOS surface with
ζ = 1.
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We emphasize that the emergence of the nontrivial
topology in the form of the cuspidal edge in the gap-
less state of a superconductor occurs in the ω-Δ0 space.
This phase space differs from the “traditional” momen-
tum space applied for the description of gapless states of
topological superconductors [28].
Our conclusion remains valid also for finite tempera-

tures T less than the critical temperature T < Tc. For
T �= 0 the generalized expression for the free energy Fs−n

accounts for the temperature dependence of the order pa-
rameter and the Fermi distribution

Fs−n (ζ, T ) = Fs−n (ζ, T )

− 4T

∞∫
0

ln
(
1 + exp

(
−ω

T

))
(N (ω,Δ0)−N (0,Δ0)) dω

− 2Δ (T )N (0)

∞∫
0

Im
(

1√
1−u2

)
1 + exp

(
−ω

T

)dω,
(13)

where the first term functionally remains the same as in
eq. (1). We recall that the parameter u is determined by
eq. (6). The additive structure of eq. (13) points out that
even for finite temperatures the discontinuity of the third
derivative is preserved within the superconducting state.

Experimental proposals and extensions. – The
experimental verification of the topological phase transi-
tion can be performed with a ring, one half of which is
a gap superconductor with the concentration of magnetic
impurities close to the transition value ζ = 1 and the
other half is an arbitrary superconductor. In this case,
when superconducting contacts have different but close
to zero temperature, strong thermoelectric current is in-
duced in the ring and the detected magnetic flux should
deviate from the integer values of the magnetic flux quan-
tum Φ0 [11,29–32]. Alternative direction for the study
of the gap-gapless phase transition is the measurement of
the derivative of the specific heat capacity with respect
to the impurity concentration and the observation of the
appropriate kink in the dependence.
Our findings can be extended on other physical systems

where a gap-closing phenomenon takes place. First, these
results may pave a novel way toward the interpretation
of recent experiments with lightwave-driven gapless su-
perconductivity [17]. It was revealed that under a light-
wave THz radiation supercurrent-carrying states in Nb3Sn
evolve to long-lived gapless superconductivity with mini-
mal condensate quench.
The second important extension is related to the

disorder-induced transition s±-s++ states in two-band su-
perconductors [33–36], which are relevant to experimen-
tal studies in iron pnictides. According to the theoretical
predictions with increasing of the nonmagnetic impurities
concentration, one of the gaps is seen to close, leading to
a finite residual DOS, followed by a reopening of the gap.
The formation of gapless superconductivity as one of the

gaps vanishes allows to speculate about the topological
nature of s±-s++ transition.

Finally, the topological nature of the gap-gapless tran-
sition can be relevant to the phenomenon of gapless color
superconductivity in quantum chromodynamics and the
string theory [37]. For a color superconductor at zero tem-
perature and at some critical value of the strange quark
mass a transition to the gapless color-flavor-locked phase
occurs, where the energy gap in the quasiparticle spectrum
is not mandatory [37,38].

Conclusions. – We have revealed the topological na-
ture of the transition between the gap and the gapless
states of a superconductor. The corresponding topolog-
ical invariant, namely the Euler characteristic, has been
applied for the description of the transition. Moreover,
it has been found that this phase transition possesses an-
other interesting topological feature known as the cuspidal
edge and related to the catastrophe theory. This allows
us to classify this topological phase transition and the col-
lapse of the gap as the catastrophe phenomenon. Also,
we have proposed several concepts for the experimental
confirmation of the 2 1

2 order topological phase transition.
Finally, these results may help to provide new insights
into the experiments with lightwave-induced gapless su-
perconductivity and with the disorder-induced transition
s±-s++ pairing symmetries in two-band superconductors
as well as into the theory of gapless color superconductiv-
ity in quantum chromodynamics.
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