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received 27 July 2021; accepted in final form 15 November 2021
published online 24 May 2022

Abstract – Dirac fermions in solid state are defined through a homogeneous dispersion relation of
degree one. Consequently, the group velocity, having a superior bound, becomes invariant under
spatial scaling. This fact allows considering the dynamics of a family or set of Dirac fermions
at different spatial dimensions and subjected to an external field and dissipation. From the de-
generation of the stationary states, the non-Hermitian dynamics allows defining the configuration
entropy. With the applied external field being the control parameter, an inflection point becomes
associated with entropy. Consequently, an effective-mass phase transition is conjectured includ-
ing the usual Dirac fermions in a graphene sheet. The critical field and the critical angle are
analytically calculated.
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Introduction. – Over the last decade, it became clear
that the hermiticity of operators is not a requirement for
real spectra [1–10]. And although the subject has prolifer-
ated during these years, it has been known for far longer.
For instance, Galitski et al. [11] described some sim-
ple cases and mentioned the non-orthogonality of eigen-
functions. This matter is also related to PT -symmetry
in the sense that non-Hermitian systems exhibiting PT -
symmetry are good candidates for a real spectrum in some
regions —a topic also applied to Rabi oscillations [12].
Additionally, dissipative Caldirola-Kanai theory [13–20] is
related to a time-dependent quantum Hamiltonian, where
formally the Planck constant diminishes exponentially
with time in the full (time-dependent) Schrödinger equa-
tion. It is connected to dissipation and comparable to the
approach developed in this article (eqs. (3), (4)).

The present work is devoted to generic Dirac fermion
dynamics with dissipation. For frequency ω, in spatial di-
mension D, consider the homogeneous dispersion relation
of degree one

ω = vf

(
|�kx|n + |�kT |n

)1/n

, (1)

(a)E-mail: cflores@uta.cl (corresponding author)

where n is a real number and vf becomes the so-called
Fermi velocity1. The wave vector is partitioned as

�k = �kx + �kT (2)

and direction x is privileged in advance since a fixed exter-
nal field F x̂ will be considered. For convenience, the angle
between the two vectors is defines as tan (θ) = kT /kx.

Equation (1) is not a prerequisite for more broad ho-
mogeneous dispersion relations of degree one. Indeed,
any function ω(�k) of degree one satisfied a relation like
ω = vfkx (Dirac fermions) in direction x when the wave
vector transversal component is zero (�kT = 0). I use
eq. (1) because of its simplicity to consider dissipation
plus an external field, which is the focus of this work.

A physical example of dispersion equation (1) is
graphene [21–27] where n = 2 and which has spatial di-
mension D = 2. Similarly, the case n = 1 with D = 1 has
been strongly employed such as carbon-nanotubes. More
all-purpose materials similar to graphene, and including
gaps, have also been considered in solid state [28].

Figure 1 shows different Dirac cones for values n = −2;
n = 2 and n = 6. The figure in the middle corresponds to
the usual graphene sheet.

1Under the non-canonic transformation |�kx| = x2/n; |�kT | = y2/n

and E2 = ωn, eq. (1) is transformed into E = vf

√
x2 + y2 corre-

sponding to usual Dirac fermions structure.
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Fig. 1: Three Dirac cones at spatial dimension D = 2 related
to frequencies spectrum eq. (1) and corresponding to param-
eter values n = −2; n = 2 and n = 6 (from bottom to top,
respectively). Figures are shifted from (0, 0) to improve the
visual aspect. Graphene corresponds to the middle figure (i.e.,
D = 2 and n = 2).

Furthermore, in the field direction, assume the particle
is subjected to dissipation −γvg related to group velocity
vg with a non-negative dissipation coefficient γ ≥ 0. For-
mally, the system of equations [29–32] corresponding to
this non-reversible motion becomes

vg(�k) =
∂ω

∂kx
, (3)

�
dkx

dt
= −γvg(�k) + F (4)

with the main interest in the stationary solution. The
group velocity, in direction x, is given explicitly by

vg
2 = vf

2

(
1 +

|�kT |n
|�kx|n

) 2
n (1−n)

(5)

which is a homogeneous function of degree zero as ex-
pected and, consequently, invariant under spatial scaling
and requiring D ≥ 2. Importantly, eq. (5) depends only on
the polar angle in dimension three. Further, the condition
for which the Fermi velocity is an upper bound provides a
constraint on parameter n:

|vg| ≤ vf ⇐⇒ (n < 0 or n ≥ 1) . (6)

This work emphasizes a possible phase transition corre-
lated to eqs. (1)–(5). This transition is not (apparently)
related to aggregation of matter and is studied in the out-
of-equilibrium context [32–35]. Therefore, the concept of
configuration entropy will be used as a practical tool and
the transition will be associated with an existing entropy
inflection point. The control parameter is the external
field F and there is a definite critical field related to the
inflection point.

Configuration entropy. – In principle, I shall con-
sider boundary conditions on all transverse spatial dimen-
sions (i.e., on �kT ). In the field direction, from eq. (4),
the dissipative stationary states are given by the simple
condition

vg(�k) = F/γ (7)

which defines, using eq. (5) in k’s space, a hyper-sphere of
radius R (n �= 1):

R =

((
F

γvf

) n
1−n

− 1

)1/n

. (8)

Note that the surface of a hyper-sphere in spatial dimen-
sion α is given by the expression

(
2πα/2/Γ(α/2)

)
Rα−1

where Γ denotes the gamma function. Importantly, in the
case of eq. (5) α corresponds to D − 1.

Degeneration N of the system is assumed proportional
to the hyper-sphere surface [36–40] and becomes

N = A

((
F

γvf

) n
1−n

− 1

)(D−2)/n

, (9)

where A = A(D) is related to the Gamma function and
does not depend on n. This term generates a residual
entropy, So, which is irrelevant for the following develop-
ments, i.e., the effective entropy corresponds to the differ-
ence ΔS. Remark, degeneration N depends on the spatial
dimension where D ≥ 2 is assumed.

The configuration entropy S is given by S = K × ln(N)
and its dependence on an external field F becomes

ΔS = K

(
D − 2

n

)
× ln

((
F

γvf

) n
1−n

− 1

)
. (10)

Figure 2(a) shows entropy equation (10) as a function of
the (quadratic) external field F for different positive values
of n with D > 2 (explicitly n = 1.5; 2; 3; 6). Remark, as a
function of the angle, ΔS ∝ ln(tann(θ)).

Entropy diminishes when the external field rises, i.e.,
an ordered situation becomes expected when F → γvf .
This is analogous to a thermodynamic system reaching
an energy upper bound and related to negative tempera-
tures [37,38]. Indeed, the first derivative of entropy ΔS is
negative (fig. 2(b)). From the point of view of dissipation,
and reasonably comprehensively, entropy diminishes when
dissipation also diminishes (fig. 2(a)).

Still related to fig. 2, there is an inflection point for the
entropy (fig. 2(c)). It will be considered in detail in the
next section, but such points are connected in thermody-
namic to phase transitions [36–40].

In brief, and this is the core of this work, in the system
described for the frequency spectrum eq. (1) and dissipa-
tion equations (3), (4), a kind of transition could be antic-
ipated at some critical external field (control parameter).
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Fig. 2: (a) Main graph, configuration entropy ΔS for n = 1.5; 2; 3; and 6 from top to bottom, respectively, and as a function
of the (quadratic) dimensionless external field F/γvf for spatial dimension D > 2 (remark, if γ reduces also ΔS). (b) The
inferior inner figure shows the first derivative of the entropy, as a function of F 2, being negative and equivalent to the concept
of negative temperature in thermodynamics. (c) The second derivative of entropy is also shown as a function of F 2. For every
curve in (a), there is an inflection point (a zero) at some critical field Fc (eq. (11)). An entropy inflection point can be correlated
with a phase transition. The superior constraint |F/γvf | ≤ 1 for the field comes from eqs. (6), (7).

Entropy inflection point: Critical field and polar
angle. – For clarity, I make derivatives with respect to the
quadratic external field (i.e., d/dF 2) since the quadratic-
group velocity and F 2 are expected to be proportional to
kinetic energy.

The second derivative of entropy ΔS (eq. (10)) has a
zero at the critical point Fc. This critical field is analyti-
cally given by

(
Fc

γvf

)2

=
(

3n − 2
2 (n − 1)

) 2(1−n)
n

. (11)

When n = 2 then, Fc/γvf = 1/
√

2 as previously stud-
ied [41]. In general terms, the critical point Fc does not
depend on the spatial dimension as expected from a mean-
field theory. Figure 3 shows the critical field eq. (11) as
a function of n. Formally, in the limit n → ±∞, then
Fc/γvf = 2/3.

From the expression for group velocity in eq. (3), which
is connected to the critical field by eq. (7), the transition is
likewise related to the angle θ between �kT and �kx. Namely,
the critical angle θc is given by the expression

1 + |tan (θc)|n =
3n − 2

2 (n − 1)
. (12)

The inner graph in fig. 3 shows this critical angle as a
function of parameter n (n < 0 and n ≥ 1). For n = 2,
i.e., graphene, the angle is ∼0.78 (= π/4).

Fig. 3: Dimensionless critical field (green) as a function of pa-
rameter n for Dirac fermions described by eq. (1) and dissipa-
tion. The inner figure is the (positive) critical angle θc, eq. (12),

between �kT and �kx also as a function of parameter n. This an-
gle can be related to the effective mass ratio between both
directions (appendix).

The dimensionless critical field eq. (11) is a function
of parameter n, also valid for a critical dissipation coef-
ficient γc. Namely, eq. (11) likewise is valid for F/γcvf

for a fixed arbitrary external field. From this point of
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view, it is natural that entropy diminished when the
dissipation coefficient also decreased (fig. 2). This ap-
proach is semi-classical [29–32]. Nevertheless, Chen [42]
proposed a full quantum dynamics for a fermionic
environment.

In brief, an ordered phase is expected when F > Fc

(or γ < γc). The physics related to this phase transi-
tion remains elusive. Nevertheless, the ratio between the
transverse and longitudinal effective mass also comprises
the angle θ between �kT and �kx. Consequently, the transi-
tion is possibly related to the effective mass behavior (see
appendix).

As long as the (inverse) mass tensor is related to the
angle θ with two eigenvectors (appendix), these vectors
can be also related to the order parameter. Namely, the
transition seems operative when the system goes from one
eigenvector to the other.

Conclusions. – This work has considered a set of
homogeneous dispersion relations of degree one, Dirac
fermions, indexed by a parameter n (for electrons in
graphene n = 2).

The usual motion equations of solid-state physics were
applied to the set for a given external field and dissipation.
Degeneration exists since the dissipative stationary solu-
tion is depending only on the ratio between the magnitude
of the transverse and longitudinal component of the wave
vector. Namely, in dimension three, the solution depends
on the polar angle, not the azimuthal one.

Degeneration allowed evaluating the configuration en-
tropy as a function of the dimensionless external field (con-
trol parameter) and different values of n in the set (fig. 2).
In every case, the entropy had an inflection point at some
critical field calculated explicitly (fig. 3). Usually, as oc-
curs in thermodynamics, an entropy inflection point stays
related to a phase transition.

In brief, for the non-Hermitian set of Dirac fermions
here considered (eqs.(1)–(4)), a phase transition was con-
jectured in some critical external field (eq. (11)). The
physics of this transition is related to the effective mass
alteration (appendix). Beyond the small wave vec-
tor approximation, the spectrum for graphene is not
isotropic [43],

�ω = t
∣∣eik·δ1 + eik·δ2 + eik·δ3

∣∣ , (13)

with δ1 = a
2 (1,

√
3); δ2 = a

2 (1, −√
3); δ3 = −a(1, 0). It

is an open question to determine, or not, a mass phase
transition in this case.

Finally, concerning eq. (1), a more symmetric homoge-
neous dispersion relation (degree one) is

ω = vf

(
D∑

i=1

∣∣∣�ki

∣∣∣n
)1/n

(14)

which does not privilege in advance a direction. For n = 2
and D = 2, both expressions in eqs. (1) and (14) coincide.

With dissipation and an external field, a phase transition
is also expected in this highly symmetric case of N -Dirac
fermions.

Data availability statement : No new data were created
or analysed in this study.

Appendix

The dispersion relation eq. (1) becomes associated with
the so-called (inverse) effective mass tensor 1/M con-
structed through second derivatives [29–32]. For n = 2,
and two dimensions (graphene), this tensor is

�

M
=

vF(
kx

2 + ky
2
)3/2

(
ky

2 −kxky

−kxky kx
2

)
,

with eigenvalues 0 and vF
2/ω (formally similar to E =

mc2). The ratio between diagonal masses becomes
Mxx/Myy = ky

2/kx
2 (= tan2(θ)) and is related to the

critical angle eq. (12). It suggests a transition related to
the effective mass.

In polar coordinates, kx = k cos(θ) and ky = k sin(θ),
the tensor is

k�

vF M
=

(
sin2 (θ) − sin (θ) cos (θ)

− sin (θ) cos(θ) cos2 (θ)

)

being the matrix a projector with eigenvalues 0 and 1 and
eigenvectors (cos(θ), sin(θ)) and (− sin(θ), cos(θ)), respec-
tively. Formally, for a given force �F = (F, 0), the acceler-
ation �a = 1

M
�F becomes

�a =
vF

�k
F

(
sin2 (θ)

−1
2

sin (2θ)

)

and ay is extreme at θ = ±π/4.
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