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Abstract – In this paper, we consider the gravitational tests for the extended uncertainty principle
(EUP) metric, which is a large-scale quantum correction to Schwarzschild metric. We calculate
gravitational redshift, geodetic precession, Shapiro time delay, precession of Mercury and S2 star’s
orbits. Using the results of experiments and observations, we obtain the lower bounds for the EUP
fundamental length scale L∗. We obtain the smallest bound L∗ ∼ 9 × 10−2 m for gravitational
redshift, and the largest bound L∗ ∼ 4 × 1010 m for the precession of S2’s orbit.

Copyright c© 2022 EPLA

Introduction. – Modifications of Heisenberg uncer-
tainty principle (HUP) play a vital role in gravitational
physics. There are two kinds of modifications. The first
kind of modification takes into account the quantum grav-
ity effects near the Planck scale, and is called the gener-
alized uncertainty principle (GUP). The simplest form of
GUP is given by [1]

ΔxΔp ≤ 1 + βL2
PlΔp

2, (1)

where β is a dimensionless GUP parameter1. Apart from
GUP, a second kind of modification takes into account
a long scale correction, and is called the extended uncer-
tainty principle (EUP). The simplest form of EUP is given
by [2]

ΔxΔp ≤ 1 +
α

L2∗
Δx2, (2)

where L∗ is a fundamental length scale and α is a dimen-
sionless EUP parameter2.

Since GUP includes quantum gravity effects, it has been
intensively studied in the literature. Various GUP models
were proposed [1,3–6]. GUP may totally prevent the black
hole evaporation. Therefore, black hole thermodynamics
can be considered in the context of GUP [7–10]. Investi-
gations of GUP can be extended to different applications

(a)E-mail: ozgur.okcu@ogr.iu.edu.tr (corresponding author)
(b)E-mail: ekrem.aydiner@istanbul.edu.tr

1We use the units � = c = 1 through the paper. We only restore
the physical constants for the numerical calculations.

2Taking into account both momentum and position uncertainty
corrections to HUP, a third kind of modification is also possible. It
is called generalized extended uncertainty principle (GEUP), and is
given by ΔxΔp ≤ 1 + βL2

PlΔp2 + α
L2∗

Δx2.

of cosmology [11–14], deformed quantum and statistical
mechanics [6,15–17], etc.3.

On the other hand, EUP affects large scale gravitational
physics since it includes quantum effects at large distance.
Recently, much attention has been focused on EUP. In
ref. [19], Bambi and Urban derived EUP from a gedanken
experiment in de Sitter spacetime. Another derivation,
which is based on the modified commutation relation from
a non-Euclidean space, can be found in ref. [20]. A new
type of EUP was proposed in ref. [21]. The author stud-
ied the deformations of classical mechanics, calculus, and
quantum mechanics for the new type of EUP. Just like
GUP, EUP also gives some interesting results for the mod-
ification of black hole thermodynamics and Friedmann
equations. In ref. [22], Dabrowski and Wagner obtained
EUP relations for Rindler and Friedmann horizons. They
studied black hole temperature and entropy for both re-
lations. They showed that temperature decreases while
entropy increases. In ref. [23], Moradpour et al. inter-
estingly showed that the EUP correction to black hole
entropy is similar to Rnyi entropy. Considering the Bohr-
like approach, they also studied the stable-unstable phase
transition for an excited black hole. In another paper [24],
Chung and Hassanabadi studied Schwarzschild black hole
thermodynamics and Unruh effect for EUP. Unlike GUP
case, they found a lower bound for the black hole tempera-
ture. They also showed that Unruh temperature increases
for the EUP correction. In ref. [25], Giné and Luciano ob-
tained the modified inertia for two EUP relations. They
showed that EUP may provide a natural explanation for

3The literature on GUP is comprehensive. The interested reader
may refer to the review in ref. [18].
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MoND. EUP can also be considered thermodynamics of
the Friedmann-Robertson-Walker (FRW) universe. For
example, Zhu et al. studied Friedmann equations for GUP
and EUP [26]. They found corrected entropy of apparent
horizon for GUP and EUP. They obtained modified Fried-
mann equations from modified entropy and first law of
thermodynamics at apparent horizon. It is also possible
to consider EUP corrections for conventional thermody-
namics systems. In ref. [27], EUP modified number of mi-
crostates was obtained to investigate the thermodynamics
of monatomic and interacting gas models.

Besides the above mentioned studies, EUP may modify
the black hole solutions. EUP black hole solution was
proposed by Mureika [2]. He obtained the modified black
hole characteristics such as horizon radius, ISCO, and
photosphere. It was shown that if L∗ is 1012–1014 m,
EUP will become relevant for the black holes in the
range 109–1011M�. Finally, he calculated the Hawking
temperature of an EUP black hole, and found that an
EUP black hole temperature has a smaller than standard
temperature. Recently, EUP black holes were considered
for gravitational lensing [28], shadow and weak deflection
angle [29,30].

In this paper, we would like to find lower bounds of
the new fundamental length scale L∗. Therefore, we will
study some astrophysical tests such as gravitational red-
shift, geodetic precession, Shapiro time delay, precession
of Mercury and S2 star’s orbits for EUP metric4. Get-
ting constraints on L∗ may provide us with a better un-
derstanding of large scale EUP effects. Besides, finding
bounds on EUP from experiments and observations is
sparse in the literature. In the GUP case, the studies on
this direction are not new. There are a lot of studies aimed
to obtain upper bounds from various experiments and ob-
servations [4,35–54]. As for the EUP case, constraints on
EUP were studied in refs. [28,54–56]. In ref. [28], Lu and
Xie obtained constraints on L∗ from gravitational lens-
ing. In ref. [54], Aghababaei et al. set bounds on GUP
and EUP from Hubble tension. In ref. [55], Nozari and
Dehghani found bounds on EUP for both Newtonian and
relativistic cosmologies based on Verlinde’s entropic grav-
ity. In ref. [56], assuming equality between EUP and grav-
ity sector of Standart Model Extension modified Hawking
temperatures, Illuminati et. al. found bounds on EUP
dimensionless parameters.

The rest of the paper is arranged as follows. In the next
section, we briefly review the EUP metric and derive ef-
fective potential of a particle around orbit in EUP metric.
In the third section, we use the EUP metric to compute
gravitational redshift, geodetic precession, Shapiro time
delay, precession of Mercury and S2 star’s orbits. Finally,
we discuss our results.

The extended uncertainty principle metric. –
In this section, we review the EUP metric proposed in

4Astrophysical tests may provide constraints for various modifed
theories of gravity. The reader may refer to refs. [31–34].

ref. [2]. Considering the confinement of N gravitons to
Schwarzschild radius ΔX ∼ rS = 2GNM , each graviton
momentum uncertainty Δpg is given by [2]

Δpg ∼ 1
2GNM

(
1 +

4αG2
NM

2

L2∗

)
, (3)

where M is the black hole mass. If the total mass of N
gravitons is considered, then we have N

2GN M . Therefore,
total momentum uncertainty ΔP is given by

ΔP ∼ M

(
1 +

4αG2
NM

2

L2∗

)
. (4)

One may interpret eq. (4) as EUP corrected mass

MEUP = M

(
1 +

4αG2
NM

2

L2∗

)
, (5)

and assume that EUP correction corresponds to the stress-
energy tensor,

MEUP =
∫

d3x
√
g(T 0

0GR + T 0
0EUP ). (6)

Replacing M with MEUP leads to EUP corrected
Schwarzschild metric, i.e.,

F (r) = 1 − 2GNM

r

(
1 +

4αG2
NM

2

L2∗

)
, (7)

and the event horizon of EUP metric is given by

rH = 2GNM

(
1 +

4αG2
NM

2

L2∗

)
. (8)

At this point, we give some comments on dimensionless
EUP parameter α. It is assumed that α is taken to be
of the order of unity. So, we only get bounds on the new
fundamental length scale L∗. Choosing α = −1 seems
problematic. If α is negative, there is a maximum mass
for rH = 0. Another problem arises as repulsive potential
for sufficiently large masses. (Please see ref. [2] for more
details.) Therefore, we exclude the negativity of α, and
consider α = 1.

Particle motion in the EUP metric. We begin to con-
sider a particle in the equatorial plane θ = π/2. We give
the Lagrangian of the particle [57],

L =
1
2
gμν ẋ

μẋν =
1
2

[
−F (r)ṫ2 +

ṙ2

F (r)
+ r2φ̇2

]
, (9)

where ẋμ = dxμ/dλ, and λ is the affine parameter. Fol-
lowing the standard procedure, constants of motion can
be obtained,

pt =
∂L
∂ṫ

= −F (r)ṫ = −e =⇒ ṫ =
e

F (r)
, (10)

pφ =
∂L
∂φ̇

= r2φ̇ = 	 =⇒ φ̇ =
	

r2
, (11)

where e and 	 denote the energy and angular momen-
tum of the particle, respectively. Employing the above
expressions in gμν ẋ

μẋν = −k (k = 0 for masseles particle

39002-p2
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and k = 1 for massive particle), we find

− e2

F (r)
+

ṙ2

F (r)
+
	2

r2
= −k. (12)

Using eq. (7), the above expression can be rearranged as

e2 − k

2
=

1
2
ṙ2 + Veff, (13)

where the effective potential Veff is given by

Veff = −kGNM

r
+

	2

2r2
− GNM	2

r3
−α

4G3
NM

3

L2∗r

(
k +

	2

r2

)
.

(14)

Astrophysical tests of the EUP metric. – In this
section, we focus on gravitational tests of EUP metric.
Comparing our results with observations and experiments,
we find bounds for the fundamental length scale L∗.

Gravitational redshift. Let us first consider the grav-
itational redshift of electromagnetic signal. If the elec-
tromagnetic signal travels from point A to point B in a
gravitational field, then gravitational redshift is defined
by [57]

νB

νA
=

√
F (rA)
F (rB)

. (15)

For EUP metric in eq. (7), the above expression is given
by

νB

νA
=

√√√√√1 − 2GN M
rA

(
1 + 4αG2

N M2

L2∗

)
1 − 2GN M

rB

(
1 + 4αG2

N M2

L2∗

) . (16)

Expanding eq. (15), the frequency shift is given by

Δν
νA

=
GNM(rA − rB)

rArB

[
1 +

GNM(3rA + rB)
2rArB

+
4αG2

NM
2

L2∗

(
1 +

GN (3rA + rB)
rArB

)]
, (17)

where Δν = νB − νA.
In order to get a bound for L∗, we refer to the Pound-

Snider experiment [58] which was carried out in a tower
with height h = 22.86 m. The relative deviation of fre-
quency is

Δν
νA

−
(

Δν
νA

)GR

(
Δν
νA

)GR
< 0.01. (18)

Using eq. (17) in eq. (18) yields

α

L2∗
<

c4

4G2
NM

2

(
1

100
− GNM(3rA + rB)

2rArBc2

)
×
(

1 +
GNM(3rA + rB)

c2rArB

)−1

, (19)

where M = M⊕ = 5.972 × 1024 kg, RA = R⊕ = 6378 km,
and RB = R⊕ + h. The lower bound of L∗ is given by

9 × 10−2 m � L∗. (20)

Geodetic precession. Let us consider a gyroscope ro-
tating in an orbit around a spherical massive body. Gen-
eral relativity predicts that the spin direction of gyroscope
changes. This phenomenon is called geodetic precession.
A gyroscope with a spin four-vector s is characterized
by [59]

dsα

dτ
+ Γα

μνs
μuν = 0, (21)

where Γα
μν is the Christoffel symbol. We call eq. (21) gy-

roscope equation. It determines the components of spin
vector. The spin four-vector s and velocity four-vector u
satisfy the following conditions:

s · u = gμνs
μuν = 0, s · s = gμνs

μsν = s2∗, (22)

where s∗ is the magnitude of spin. Choosing equatorial
plane (θ = π/2) and circular orbit (ṙ = 0 = θ̇) obviously
simplifies the problem. The components of the velocity
four-vector are given by

u = ut(1, 0, 0,Ω), (23)

where Ω = dφ/dt is the orbital angular velocity. Since ṙ
vanishes for the stable circular orbits, eq. (13) yields

e2 − 1
2

= Veff, (24)

and circular orbit radius R is found from

dVeff

dr
= 0. (25)

From eqs. (24) and (25), one gets

e2 =
[
1 − 2GNM

R

(
1 +

4αG2
NM

2

L2∗

)]2
×
[
1 − 3GNM

R

(
1 +

4αG2
NM

2

L2∗

)]−1

, (26)

	2 = GNMR

(
1 +

4αG2
NM

2

L2∗

)[
1 − 3GNM

R

×
(

1 +
4αG2

NM
2

L2∗

)]−1

, (27)

Ω =
dφ
dτ

dτ
dt

=
F (R)
R2

	

e
=

√
GNM

R3

(
1 +

4αG2
NM

2

L2∗

)
.

(28)

Now, let us begin to solve the gyroscope equations.
We suppose that s is radially directed at the beginning,
i.e., only sr(0) �= 0. From the orthogonality condition in
eq. (22), the relation between components st and sφ is
given by

st = ΩR2

[
1 − 2GNM

R

(
1 +

4αG2
NM

2

L2∗

)]−1

sφ. (29)
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Özgür Ökcü and Ekrem Aydiner

From eqs. (23) and (29), the gyroscope equations are given
by

dsr

dτ
+ Ω

[
3GNM

(
1 +

4αG2
NM

2

L2∗

)
−R

]
sφut = 0, (30)

dsθ

dτ
= 0, (31)

dsφ

dτ
+

Ω
R
srut = 0. (32)

It is clearly seen that sθ remains zero due to sθ(0) = 0.
Since ut = dt/dτ , eqs. (30) and (32) can be rearranged as

dsr

dt
+
[
3GNM

(
1 +

4αG2
NM

2

L2∗

)
−R

]
Ωsφ = 0, (33)

dsφ

dt
+

Ω
R
sr = 0, (34)

respectively. Substituting eq. (34) into eq. (33) leads to a
second-order differential equation,

d2sφ

dt2
+ Ω̃2sφ = 0, (35)

where Ω̃ is defined by

Ω̃ =

√
1 − 3GNM

R

(
1 +

4αG2
NM

2

L2∗

)
Ω. (36)

One can solve eqs. (33) and (35) which give the results

sr = s∗

√
1 − 2GNM

R

(
1 +

4αG2
NM

2

L2∗

)
cos
(
Ω̃t
)
, (37)

sφ = −s∗
Ω

Ω̃R

√
1 − 2GNM

R

(
1 +

4αG2
NM

2

L2∗

)
× sin(Ω̃t), (38)

where we employ the conditions s · s = s2∗ and st(0) =
sφ(0) = 0.

The spin initially starts along a unit vector er̂. After
one complete rotation in a time P = 2π/Ω, the change of
spin direction is given by[

s

s∗
· er̂

]
t=P

= cos

(
2πΩ̃
Ω

)
. (39)

Therefore, the geodetic precession angle is given by

ΔΦgeodetic = 2π − 2π

√
1 − 3GNM

R

(
1 +

4αG2
NM

2

L2∗

)
,

(40)
which can approximately be written as

ΔΦgeodetic ≈ ΔΦGR

(
1 +

4αG2
NM

2

c4L2∗

)
, (41)

where ΔΦGR = 3πGN M
Rc2 is predicted by general relativity.

In order to get a bound for L∗, we refer to measurements
of Gravity Probe B (GPB) [60], which was a satellite in
a orbit around the Earth. Considering GPB was located
at 642 km altitude and had 97.65 min orbital period, the

general relativity predicts ΔΦGR = 6606.1 mas/year. The
measurement of GPB is given by

ΔΦgeodetic = (6601.8 ± 18.3)mas/year, (42)

which gives 6620.1 mas/year and 6583.5 mas/year. Since
later value imposes α = −1, we consider the maximum
value, i.e., 6620.1 mas/year. Therefore, we found

2 × 10−1 m � L∗. (43)

Up to now, we have considered Earth-based experiments
to constrain L∗. In the rest of the paper, we consider
gravitational tests for Solar system and beyond.

Shapiro time delay. If an electromagnetic signal trav-
els in a gravitational field, the travel time of signal takes
longer than the travel time of the same signal in flat space-
time. This effect is called Shapiro time delay [61]. In this
section, we follow the arguments of ref. [57].

Let us consider that the electromagnetic signal travels
from a point A to point B in the Solar system. Without
loss of generality, we again consider the equatorial plane,
i.e., θ = π/2. Employing

dr
dλ

=
dr
dt

dt
dλ

=
dr
dt

e

F (r)
, (44)

Equation (12) can be rearranged as

e2

F (r)3

(
dr
dt

)2

+
	2

r2
− e2

F (r)
= 0, (45)

for massless particles. For r = rO (the closest distance to
the Sun), one gets

	2 =
er2O
F (rO)

. (46)

Employing eq. (46) in eq. (45), we find

dt = ± dr√
F (r)2

(
1 − F (r)r2

O

F (rO)r2

) . (47)

Expanding in rS/r and rS/rO, eq. (47) can ben given in
the integral form as follows:

t =
∫

dr√
F (r)2

(
1 − F (r)r2

O

F (rO)r2

)
≈
∫

rdr√
r2 − r2O

+
∫ (

1 +
r2S
L2∗
α

)
×
(

r2rS
(r2 − r2O)3/2

+
rrOrS

2(r2−r2O)3/2
− 3r2OrS

2(r2−r2O)3/2

)
dr. (48)

So, we find the travel times from point A to point O and
point O to point B,

tAO =
√
r2A − r2O+

(
1+

r2S
L2∗
α

)

×
⎛⎝rS

2

√
rA−rO
rA+rO

+rS ln

⎛⎝rA+
√

r2
A −r2O

rO

⎞⎠⎞⎠, (49)
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tBO =
√
r2B −r2O+

(
1+

r2S
L2∗
α

)

×
⎛⎝rS

2

√
rB − rO
rB +rO

+rS ln

⎛⎝rB +
√

r2
B −r2O

rO

⎞⎠⎞⎠ , (50)

respectively. The total travel time of signal is given by

ttot = 2(tAO + tBO). (51)

For flat spacetime, it is given by

t̃tot = 2
(√

r2A − r2O +
√
r2B − r2O

)
. (52)

Considering rO � rA, rB, the time delay is given by

δt = ttot − t̃tot = 4GNM

(
1 +

4αG2
NM

2

L2∗

)
×
(

1 + ln
(

4rArB
r2O

))
. (53)

In order to get a bound on L∗, we compare eq. (53) with
the time delay which is defined in parameterized post-
Newtonian (PPN) formalism [62],

δtPPN = 4GNM

(
1 +

(
1 + γ

2

)
ln
(

4rArB
r2O

))
, (54)

where γ is a dimensionless PPN parameter. We refer to
measurements of Cassini spacecraft [63]. The constraint
on γ is |γ−1| < 2.3×10−5. Comparing eqs. (53) with (54),
we get

8αG2
NM

2

c4L2∗

⎛⎝1 +
1

ln
(

4rArB

r2
O

)
⎞⎠ = |γ − 1| < 2.3 × 10−5.

(55)
Finally, taking rA = 1AB, rB = 8.46AB and rO = 1.6R�,
one gets

9 × 105 m � L∗. (56)

Precession of Mercury and S2 star’s orbits. Now let
us turn our attention to the perihelion shift of Mercury
and precession of S2’s orbit. In this section, we follow the
arguments of ref. [64]. For a massive particle (k = 1),
eq. (12) can be rearranged as

ṙ = ±
√
e2 − F (r)

(
1 +

	2

r2

)
. (57)

Dividing eq. (11) by eq. (57), we have

dφ
dr

= ± 	

r2

[
e2 − F (r)

(
1 +

	2

r2

)]−1/2

. (58)

From eq. (58), one may write the orbital precession as

ψprec = 2
∫ r+

r−

	

r2

[
e2 − F (r)

(
1 +

	2

r2

)]−1/2

dr − 2π,

(59)

where r+ and r− are the maximum and minimum points,
respectively. Since dr/dφ vanishes for r = r±, eq. (58)
gives

1
r2±

+
1
	2

=
e2

	2F (r±)
. (60)

Solving these equations yields

e2 =
F (r+)F (r−)(r2+ − r2−)
r2+F (r−) − r2−F (r+)

, (61)

	2 =
r2+r

2
−(F (r−) − F (r+))

r2−F (r+) − r2+F (r−)
. (62)

Substituting eqs. (61) and (62) into the integral in eq. (59),
we have

ψprec = 2
∫ r+

r−
ζ−1/2 dr√

F (r)r2
− 2π, (63)

where ζ is defined by

ζ =
r2−
(

1
F (r) − 1

F (r−)

)
− r2+

(
1

F (r) − 1
F (r+)

)
r2+r

2−
(

1
F (r+) − 1

F (r−)

) − 1
r2

= C

(
1
r−

− 1
r

)(
1
r

− 1
r+

)
. (64)

Since ζ vanishes for r = r±, it can be expressed with the
second line in the above equation and the constant C can
be obtained in the limit r → ∞. It is given by

C =
r2−F (r+)(F (r−) − 1) − r2+F (r−)(F (r+) − 1)

r+r−(F (r+) − F (r−))

= 1 − 2GNM

(
1 +

4αG2
NM

2

L2∗

)(
1
r−

+
1
r+

)
, (65)

or we can approximately write

C−1/2 ≈ 1 +GNM

(
1 +

4αG2
NM

2

L2∗

)(
1
r−

+
1
r+

)
. (66)

Therefore, total precession is given by

ψprec = 2C−1/2

∫ r+

r−

(
1
r−

− 1
r

)−1/2

×
(

1
r

− 1
r+

)−1/2 dr
r2
√
F (r)

− 2π. (67)

This integral can be solved by choosing a suitable change
of variable. So, we introduce

1
r

=
1
2

(
1
r+

+
1
r−

)
+

1
2

(
1
r+

− 1
r−

)
sin ρ. (68)
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For eq. (68), the integral in eq. (67) is given by

ψprec = 2
[
1 +GNM

(
1
r−

+
1
r+

)(
1 +

4αG2
NM

2

L2∗

)]
×
∫ π/2

−π/2

1 +
GNM

2

[(
1
r−

+
1
r+

)
+
(

1
r+

− 1
r−

)
sinρ

]
×
(

1 +
4αG2

NM
2

L2∗

)
dρ− 2π. (69)

Finally, total precession is

ψprec = 3πGNM

(
1 +

4αG2
NM

2

L2∗

)(
1
r+

+
1
r−

)
, (70)

or

ψprec =
6πGNM

L

(
1 +

4αG2
NM

2

L2∗

)
, (71)

where we use the semilatus rectum L which is defined by

1
L

=
1
2

(
1
r+

+
1
r−

)
. (72)

In order to find a bound on L∗, we consider total preces-
sion in PPN formalism, which is given by [62]

ψPPN
prec =

6πGNM

L

(
1 +

2γ − β̃ − 1
3

)
, (73)

where β̃ and γ are Eddington parameters. For the per-
ihelion shift of Mercury, the constraint on PPN parame-
ters provided by the Messenger spacecraft [65] is given by
|2γ − β̃ − 1| < 7.8 × 10−5. Therefore, we obtain

12G2
NM

2

c4L2∗
= |2γ − β̃ − 1| < 7.8 × 10−5, (74)

which approximately gives

5.8 × 105 m � L∗. (75)

On the other hand, the S2 star orbiting around Sagit-
tarius A∗ gives a laboratory to test general relativity in
the strong gravitational field. In our case, it can provide a
much larger lower bound for L∗. Recently, the GRAVITY
Collaboration [66] measured the precession of S2’s orbit
(2 + 2γ − β̃)/3 = 1.10 ± 0.19 which gives 1.29 and 0.91.
Since α = −1 for minimum value 0.91, we only consider
maximum value 1.29. So, we get

4G2
NM

2

c4L2∗
< 0.29. (76)

Taking M = 4.25×106M�, the lower bound on L∗ is given
by

4 × 1010 m � L∗. (77)

Discussions and conclusions. – EUP takes into
account position uncertainty correction to standard
uncertainty principle, and makes quantum effects available
at the large distance scale. In this paper, we investigated
the observational constraints for the EUP metric. We
studied gravitational redshift, geodetic precession, Shapiro

Table 1: Lower bounds of new fundamental length scale L∗.

Test L∗

Light deflection [28] 9.1 × 105 m
Strong lensing (Sgr A∗) [28] 2 × 1010 m
Strong lensing (M87) [28] 3 × 1013 m
Gravitational redshift 9 × 10−2 m
Geodetic precession 2 × 10−1 m
Shapiro time delay 9 × 105 m
Perihelion shift of Mercury’s orbit 5.8 × 105 m
Precession of S2’s orbit 4 × 1010 m

time delay, perihelion shift of Mercury and orbit preces-
sion of S2 star. Using the results of Solar system and S2
star orbiting around Sgr A∗, we obtained the lower bounds
of new fundamental length scale L∗. In table 1, we sum-
marized the lower bounds of L∗ from various observations.

As can be seen in table 1, the bounds from Earth-based
experiments such as gravitational redshift and geodetic
precession are the smallest bounds, 10−2–10−1 m. Solar
scale observations give much bigger bounds, 105–106 m.
Beyond the Solar system, the bound 1010 m from the pre-
cession of S2 star’s orbit is the biggest bound in this work.
Comparing our bounds with ref. [28], the lower bound
1013 m from strong gravitational lensing is the biggest
bound for the supermassive black hole in M87.

Before finishing the paper, we give some comments on
the nature of L∗. One may ask whether L∗ is universal
just like its counterpart Planck length LPl or depends on
a particular gravitational system. Although L∗ does not
have a well-defined value, one may expect that L∗ has one
value. In order to affect the physics of supermassive black
holes, the value of L∗ must be sufficiently large in this
case (L∗ ∼ 1010 m or beyond). In the second case, one
may consider L∗ depending on the mass of a particular
gravitational system. In this case, L∗ varies between 10−2

and 1013 m according to this work and ref. [28]. However,
the second case may not be favourable, because it is well
known that the Solar system tests are not sensitive tools
to set precise bounds on the large scale structures [67].

The observational constraints for EUP may open a new
window to understand the quantum features at large dis-
tance scale. Since the new fundamental length scale L∗
may play a key role in the properties of supermassive black
hole, more research is needed in the future.
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[25] Giné J. and Luciano G. G., Eur. Phys. J. C, 80 (2020)

1039.
[26] Zhu T., Ren J. R. and Li M. F., Phys. Lett. B, 674

(2009) 204.
[27] Chang W. S. and Hassanabadi H., Int. J. Mod. Phys.

A, 34 (2019) 1950041.
[28] Lu X. and Xie Y., Mod. Phys. Lett. A, 34 (2019) 1950152.
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