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Abstract – Aqueous dielectrics are ubiquitous in soft- and bio-nano matter systems. The theoret-
ical description of such systems in terms of continuum (“macroscopic”) theory remains a serious
challenge. In this perspective we first review the existing continuum phenomenological approaches
that have been developed in the past decades. In order to describe a path to advance continuum
theory beyond these approaches we then take recourse to the Onsager-Dupuis theory of the di-
electric behaviour of ice, which, for the case of a solid dielectric, exemplified important conceptual
issues we deem relevant for the development of a more fundamental continuum theory of liquid
dielectrics. Subsequently, we discuss our recently proposed continuum field theory of structured
dielectrics, which provides a generalized approach to the dielectric behavior of such systems.

perspective Copyright c© 2022 EPLA

Introduction. – Aqueous dielectrics, especially con-
fined at and/or between macromolecular surfaces and
interfaces [1–5], while being ubiquitous in soft- and
bio-matter systems [6,7], still pose a challenge in terms of a
consistent macroscopic description. Grosso modo the for-
mal difficulties are tied to the dielectric response of water,
which is strongly non-local and/or non-linear, and cannot
be exhaustively described by a local dielectric approxima-
tion. The dielectric properties of aqueous solvent are per-
tinent to almost every facet of the long-range nanoscale
interactions [8], since both of the fundamental compo-
nents, the van der Waals interaction [9] as well as the
electric double layer interaction [10], depend importantly
on the static as well as the dynamic dielectric response of
the aqueous medium.

The pursuit of the continuum, macroscopic description
of the dielectric properties of water can be roughly parti-
tioned into the phenomenological non-local dielectric func-
tion methodology developed extensively by Kornyshev and
collaborators [11–14], as well as the Landau-Ginzburg–
type free energy functionals describing the non-local di-
electric response in spatially confined dielectrics [15–17],

(a)E-mail: ralf.blossey@univ-lille.fr (corresponding author)

the two approaches being of course equivalent in their
linear limiting forms in the bulk but differing in confined,
inhomogeneous systems.

In this short perspective we first briefly review these
approaches and some of their recent applications. Subse-
quently, we argue that a continuum field theory approach
to structured liquid dielectrics can be designed by taking
recourse to an exemplary theory for the dielectric proper-
ties of solid ice, the Onsager-Dupuis theory [18,19]. Fol-
lowing a concise description of this theory of the solid
phase of water we then present the key essentials of our
recent formulation of a general field theory of liquid aque-
ous dielectrics. In particular we stress the fundamental
similarity of both non-local and non-linear theories.

Phenomenological theories. – Phenomenological
functionals of polarization have featured prominently in
the development of the electrostatic theory of structured
dielectrics starting from the seminal contributions of Mar-
cus in the 1950s on electron transfer theory based upon
the local dielectric response theory [20,21], also discussed
in detail by Felderhof [22]. These theories describe po-
larization on the basis of harmonic functionals in which
dielectric properties are local. However, on the nanometer
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scales relevant to bio-nano systems, we want to address
the dielectric response which is non-local and needs to be
described in terms of a non-local constitutive relation for
the dielectric displacement field,

D(r) =

∫
d3r′ε(r, r′)E(r′), (1)

expressed as a space integral over the two-argument dielec-
tric function ε(r, r′), or, in Fourier space D(q) = ε(q)E(q),
which makes the scale-dependent dielectric behaviour even
more transparent. The function ε(q) typically drops from
the water bulk value ε ∼ 80 to a value of about 20 at
the Bjerrum length of a monovalent ion [16], while at even
smaller length scales it diverges and becomes negative, so
that a first level of treatment of non-local dielectric proper-
ties resides in the approximations made for ε(q) [14,23,24].

Maggs and Everaers [16] showed that the non-local ap-
proach can be equivalently formulated in terms of free en-
ergy functionals of the type

U =
1

2

∫
d3r(D(r)−P(r))2

+
1

2

∫
d3rd3r′P(r)K(r, r′)P(r′), (2)

where the integral kernel K relates to ε via

εij(q) = δij +K−1
ij (q), (3)

with the standard decomposition

Kij(q) = K‖(q)
qiqj
q2

+K⊥(q)

(
δij −

qiqj
q2

)
(4)

in Fourier space. Looking at the stationary points of func-
tional equation (2) under the constraint of Gauss’ law,
these authors could show that the functional equivalent
to the Marcus functional can be derived as

Up =
1

2

∫
d3rd3r′

∇P(r) ·∇P(r′)

|r− r′|

+
1

2

∫
d3rd3r′P(r)K(r, r′)P(r′) + U(P,E0), (5)

where the last term contains contributions from the bare
electric field E0 generated by the free charges in vacuum.
Equation (5) can now serve as the basis for a vari-

ety of phenomenological models via appropriate choices
of the kernel Kij in terms of a Ginzburg-Landau expan-
sion. A general choice of the harmonic term with kernel
Kij is provided by the expression

UK ≡ 1

2

∫
d3r

[
KP2(r) + κl(∇ ·P(r))2

+ κc(∇×P(r))2 + α(∇(∇ ·P(r)))2
]
. (6)

For this model this leads to longitudinal and transverse
dielectric susceptibilities χ‖(q), χ⊥(q) in Fourier space of
the form

χ‖(q) ≡ 1− 1

ε‖(q)
=

1

1 +K + κlq2 + αq4
(7)

and

χ⊥(q) ≡ ε⊥(q)− 1 =
1

K + κcq2
, (8)

where ε‖(q) and ε⊥(q) are the corresponding longitudinal
and transverse dielectric functions. Model (6) has been
used by Berthoumieux and Maggs to discuss fluctuation-
induced structural interactions [25].
Further examples of functionals defined in this vein have

recently been discussed by Berthoumieux and collabora-
tors. This series of works deals with the formulation of
a Gaussian water model based on a two-order-parameter
description in terms of fluid density and polarization [26]
following the early work by [15]. A non-local and nonlin-
ear theory of water solvation of ions was discussed in [27].
The Landau-Ginzburg continuum approach was also val-
idated against explicit molecular simulations [28] and
applied to water confined between surfaces at nanoscale
separations [29], by complementing the non-local Landau-
Ginzburg continuum approach in the bulk with local sur-
face terms, very much in the philosophy of the general
Landau-Ginzburg theories of surface phase transitions.
Subsequent work considered the effect of polarization satu-
ration which is required if one wants to properly describe
high excitations fields [30]. Nonlinear polarization func-
tionals can be derived if one starts from the dual formula-
tion of soft matter electrostatics in which one introduces
the polarization field via a Legendre transform starting
from the Poisson-Boltzmann theory [31,32].
While these results are already promising in terms of

applications of the phenomenological approach to differ-
ent physical situations, these essentially symmetry-based
models still lack the key feature of a systematic deriva-
tion. Before we discuss our recent proposal of how this
can be achieved in the case of liquid dielectrics, and thus
define a path to formulate very general continuum models
containing all physically relevant effects, we first make a
little detour and turn to the Onsager-Dupuis theory of the
dielectric properties of crystalline ice.

Onsager-Dupuis theory of dielectric properties
of ice. – In crystalline ice at a finite temperature the po-
larization and electrostatic fields are coupled by the struc-
tural interaction mediated by the free and salt-ion bound
Bjerrum structural defects in the ideal hydrogen bonded
lattice of ice, see fig. 1. A mean-field statistical mechanical
formulation of the dielectric properties of ice was proposed
by Onsager and Dupuis [18,19] and later further elabo-
rated and generalized by Gruen and Marčelja [33,34].
The total polarization can be decoupled into its atomic

(Pa = ε0(ε∞ − 1)E) and configurational (Pc) contri-
butions, where E is the electric field vector. The two,
in distinction to the phenomenological theories, therefore
represent independent degrees of freedom. The origin of
ε∞ is the atomic polarization of the water molecules. The
total polarization is then given by

P = ε0(ε∞ − 1)E+Pc. (9)
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Fig. 1: D and L Bjerrum defects, with two (“doppelt”) or
no (“leer”) protons between neighboring water molecules, as
well as the Bernal-Fowler fully bonded water molecule, in a
hexagonal ice. One molecule and its first four neighbors are
shown. The Bjerrum defects are then sources and sinks of
configurational polarization, eq. (11), with polarization charge
of ±eB .

In addition one also has the standard Poisson equation in
the form

∇ ·D = e0N (c+ − c−) , (10)

with D = εε∞E + Pc, where c+, c− are the relative con-
centrations of the ice-dissolved cations and anions, while
N is the concentration of the water moelcules in ice.

One furthermore notes that in an ideal ice according
to the Bernal-Fowler rules, stipulating that each water
molecule is neutral and fully hydrogen bonded to its four
nearest neighbors, one has ∇ ·Pc = 0. However, at finite
temperatures the D (“doppelt”) and L (“leer”) structural
Bjerrum defects, see fig. 1, present the sources of configu-
rational polarization, leading to [18,19]

∇ ·Pc = eBN (cL − cD + n(c+ − c−)) , (11)

where eB is the “polarization charge” given by the dipo-
lar moment of the water molecule and the oxygen-oxygen
distance in the ice lattice. Onsager and Dupuis calcu-
late eB =

√
3μ/d, where d is the distance between wa-

ter molecules and μ is the dipole moment, leading to
eB � 0.35e0, where e0 is the electronic charge [35]. The
“hydration number“ n is the number of Bjerrum defects
associated with dissolved anions and cations, assumed to
have identical hydration shells, and cL, cD are relative con-
centrations of the Bjerrum defects. In what follows we will
simplify the matter by considering the “hydration num-
ber” as zero, i.e., n = 0, pertaining to ions without any
hydration shell.

The interactions between all the effective charges, the
dissolved ions as well as the Bjerrum defects, are assumed
to be of the Coulomb form,

u(x− x′) = (1/4πε∞ε0) |x− x′|−1
, (12)

but with the high frequency dielectric constant.

Evaluating the partition function of ice with local non-
vanishing polarization and structural defects on the mean-
field level (equivalent to neglecting the formation of rings

of water molecule in the crystal-dendritic lattice), one ends
up with the free energy density in the form [33,34]

F =
1

2
ε0ε∞E2 − kBT log

W (cD, cL, c+, c−)

W0

+
∑

i=D,L,+,−
μiN(ci − ci0), (13)

where W (cD, cL, c+, c−) is the number of configurations
of polarized ice with a given configuration of D,L defects
and cations, anions, W0 is the number of configurations
of ideal ice and μi are the chemical potentials of the i =
D,L,+,− species (D and L Bjerrum defects, ice dissolved
cations and anions). Index zero in concentrations refers
to the reservoir assuming cD0 = cL0 and c+0 = c−0 = cI0.
Note also that the electrostatic part of the free energy, the
first term in eq. (13), is given by the Coulomb interaction
screened with the high-frequency dielectric constant.
Assuming furthermore a homogeneous crystal and by

minimizing the above free energy with respect to the exter-
nal field, one derives the dielectric constant of the Slater-
Takagi-Bethe form [35],

ε0(ε− ε∞) =
Nμ2

kBT

1− cD0

1 + cD0
, (14)

where ε is the full dielectric constant with the ice config-
urational component included. Minimizing now the total
free energy then yields two equations for the electrostatic
and the polarization potentials,

E = −∇φ and Pc = ε0(ε− ε∞)∇φc, (15)

that can be rewritten as

∇ ·Pc =
∂

∂φc
p(φ, φc),

ε0ε∞∇ ·E = − ∂

∂φ
p(φ, φc), (16)

where p(φ, φc) is the osmotic pressure of the ice which
in the Onsager-Dupuis theory is given by the van ’t Hoff
expression in terms of the ion and Bjerrum defect density,

p(φ, φc) = 2kBT nD0 coshβeB(φ+ φc)

+2kBT coshβe0φ. (17)

It is possible to show that this osmotic pressure is a lim-
iting form of a more general expression equivalent to a
lattice gas pressure, if one considers explicitly the finite
number of crystalline sites [36]. The Euler-Lagrange equa-
tions, eqs. (16), can be rewritten in the form of two coupled
Poisson-Boltzmann–type equations

ε0(ε− ε∞)∇2φc = 2nD0eB sinhβeB(φ+ φc),

ε0ε∞∇2φ = 2nI0e0 sinhβe0φ (18)

+2nD0eB sinhβeB(φ+ φc),

first derived in this specific form by Babcock and
Longini [37]. Above nI0 = NcI0 and nD0 = NcD0 are the
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bulk concentrations of the Bjerrum defects and salt ions.
Linearizing the non-linear system of Poisson-Boltzmann
equations, eq. (19), one obtains a system of two coupled
linear equations for the conjugated potentials,

∇2φc = ξ−2
B (φ+ φc),

∇2φ =
ε

ε∞
λ−2
D φ+

(
ε

ε∞
− 1

)
ξ−2
B (φ+ φc), (19)

derived first by Onsager and Dupuis by a different
route [18,19], and also rederived later [38–40]. The above
two equations clearly attest to the two independent de-
grees of freedom: the configurational polarization and the
electric field.
Obviously one can now introduce two screening lengths:

the Debye length λD and the structural length ξB as

λ−2
D =

2βe20 nI0

ε0ε
and ξ−2

B =
2βe2B nD0

ε0(ε− ε∞)
, (20)

and the solution of the linearized equations then leads to
exponentially decaying solutions with the characteristic
exponents obtained from

λ4 − λ2
(
λ2
D +

ε∞
ε

ξ2B

)
+ (ξBλD)

2
= 0, (21)

implying in addition a non-local dielectric function of the
form

ε(k) = ε∞ +
ε− ε∞

1 + ε
ε∞

(ξBk)2
+

ε

(λDk)2
, (22)

equivalent to a linear superposition of the Inkson non-
local (static) dielectric response of the Lorentzian type for
the structural component [41] and the Debye electrostatic
screening of ionic charges [11].
The Onsager-Duipuis theory therefore describes the

electrostatic interactions between ions and the structural
interactions between mobile and ion-associated Bjerrum
defects in ice, via an effective electrostatic interaction
between Bjerrum polarization charges. Obviously the
Onsager-Dupuis theory embodies not only non-local di-
electric effects but also the non-linear dielectric response
of a system. It leads to two coupled equations for the elec-
trostatic field and the dielectric polarization field, and in
general cannot be reduced to either the non-local dielec-
tric function methodology or the local Landau-Ginzburg
polarization functional.

A field theory of structured liquid dielectrics. –
In liquid dielectrics one cannot define structural defects
because the liquid is disordered. The consideration of its
statistical and dielectric properties thus necessarily starts
from a different vantage point. This has been first con-
sistently formulated in ref. [42] by assuming a mixture of
dipolar solvent molecules and monopolar electrolyte ions,
interacting via electrostatic and non-electrostatic struc-
tural interactions.

An aqueous electrolyte solution is first of all described
by two independent “order parameters”, corresponding to
two independent degrees of freedom, the polarization

P = D− ε0E, (23)

and the total charge density

∇ ·D = e0(n+ − n−) +∇·P, (24)

where n+, n− are the densities of the univalent ions, and
D,E are the standard dielectric displacement and electric
field vectors. Instead of the Coulomb interactions between
the ions and the structural defects, we now have the non-
local structural interactions

1

2

∫ ∫
V

dxdx′ Pi(x)ũij(x− x′)Pj(x
′), (25)

where we assumed that the tensorial part ũij(x− x′) is a
short-range, non-electrostatic potential, and the standard
electrostatic interaction, given by the standard Coulomb
form

1

2

∫ ∫
V

dxdx′ ∇ ·D(x) u(x−x′) ∇′ ·D(x′). (26)

Equations (25), (26) imply a Coulomb dipolar interaction
(∇i∇′

ju(x−x′)) and pure non-local structural interaction
(ũij(x−x′)) (see fig. 2). Here, we take the Coulomb inter-
action with the non-configurational high-frequency dielec-
tric constant, ε∞ as in the Onsager-Dupuis model, i.e.,

u(x− x′) = (1/4πε∞ε0) |x− x′|−1
. (27)

The free energy density on the mean-field level is then
obtained as

F = −1

2

∫
Ei(x)ũij(x− x′)Ej(x′)d3x′

−1

2
ε0ε∞(∇φ)2 − p(φ, E), (28)

where p(φ, E) is related to the single-particle partition
function, while E and φ are auxiliary (Lagrange fields)
potentials defining the polarization and the charge density.
Minimizing the total free energy then yields the following
two equations: the constitutive relation

P = −∂p(φ, E)
∂E (29)

and the Poisson equation

ε0∇ ·E = −∂p(φ, E)
∂φ

−∇
(
∂p(φ, E)

∂E

)
, (30)

where p(φ,E) = p(E + E, φ) = p(E − ∇φ, φ) is now the
osmotic pressure of the aqueous solution, composed of the
Langevin dipolar and the ion contributions [43]

p(φ, E) = λ
sinhβp |E −∇φ|
βp |E −∇φ| + 2λs coshβe0φ, (31)
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Fig. 2: Interaction between two solvent molecule dipoles (cylin-
drical arrows) in a structured dielectric: Coulomb dipolar
interaction (∇i∇′

ju(x− x′)) and pure non-local structural in-
teraction (ũij(x− x′)), eqs. (25), (26).

with λ, λs the absolute activities of the dipolar solvent and
the dissolved ions. It is related to the van ’t Hoff expres-
sion, eq. (17), for the osmotic pressure of ions and Bjerrum
defects in the Onsager-Dupuis theory. The auxiliary field
E is defined as

E(x) = −
∫
V

dx′ũij(x− x′)Pj(x
′) = E [P], (32)

and obviously pertains to the non-electrostatic struc-
tural component of the interactions, featuring explictly
in eq. (31). Assuming the osmotic pressure of the form
eq. (31), the two saddle-point equations for the auxiliary
fields can then be cast as

−P = λp2
1

u

d

du

( sinhu
u

)
(E [P]−∇φ) ,

∇
(
ε0ε∞∇φ+P

)
= 2βeλs sinhβe0φ, (33)

with u = |E [P]−∇φ|. Clearly the first equation above
plays the role of the first equation of eq. (16), but in this
case it amounts to a non-linear and non-local constitu-
tive equation. In the case of purely electrostatic cou-
pling, i.e., E = 0, the above equation reduces to the
Langevin-Poisson-Boltzmann equation that corresponds
to a Coulomb gas in a dipolar solvent [43] and was in-
vestigated intensively in different contexts [44–48].
After linearizing the above equations and introducing

the polarization potential φc defined in eq. (15), we then
approximate the structural dipolar interaction as

ũij(x− x′) = ũP (0)
(
δij + ξ̂2 ∇′

j∇i

)
δ(x− x′) + . . . ,

where ũP (0), ξ̂ are the model constants, so that instead of
the Slater-Takagi-Bethe form of the dielectric function of
ice, we end up with

ε0(ε− ε∞) =
1
3λp

2

1 + uP (0)
1
3λp

2
, (34)

allowing us to write

P = ε0(ε− ε∞)∇φc. (35)

Note the difference in the definition of φc above and in
eq. (15), where the polarization potential is connected only
with the configurational part of polarization. We are then
led to a system of two linearized equations [42] for two
independent degrees of freedom,

∇2φc = ξ−2 (φc − φ) , (36)

∇2φ =
ε

ε∞
λ−2
D φ+

(
ε

ε∞
− 1

)
ξ−2 (φ− φc) ,

in which the inverse square of the Debye length is de-
fined by λ−2

D ≡ 2(βe)2λs/εε0 and the structural cor-

relation length is defined as ξ2 = (ε − ε∞)ε0uP (0)ξ̂
2.

Apart from the inconsequential difference in the defini-
tion of φc, these equations are completely equivalent to
the Onsager-Dupuis equations [18] and the same is true
for the characteristic exponents as well as the non-local
dielectric function.
The foregoing analysis is straightforwardly generaliz-

able to more complex (higher order and/or non-quadratic)
structural dipolar interactions as well as to the effects of
ion hydration, i.e., bound dipolar shell surrounding the
ions [42,49].

Conclusions and outlook. – Based on the micro-
scopic theory of the dielectric properties of ice and with
the guidance of the continuum phenomenological theories
of non-local dielectrics, one can construct a field theory
that can describe the non-locality and non-linearity of the
dielectric response in aqueous media. The components
of this theory are the electrostatic interactions between
charges and the structural interactions between dipoles.
The statistical mechanical derivation then yields two cou-
pled mean-field (saddle-point) equations: a non-local and
non-linear constitutive equation connecting the polariza-
tion and the electric field vectors, and the generalized
Poisson-Boltzmann equation connecting the polarization
vector with the electrostatic potential.
These two equations clearly embody the fact that the

polarization and the electric field vectors correspond to
two independent degrees of freedom. In the case of no
structural interactions, they reduce and combine into a
single Langevin-Poisson-Boltzmann equation that was de-
rived before in the case of pure electrostatic interactions,
but represent a very different physics in the general case.
In some sense they are closely related to the two equa-
tions for the polarization and electrostatic potentials in
the Onsager-Dupuis theory of ice. The existence of these
two independent degrees of freedom has also important
repercussions in terms of the proper boundary conditions
which we relegate to a future publication [50]. We also
note that the steric constraints are easily implementable
in our formalism through the lattice gas model just as in
the case of an electrolyte [51] or an electrolyte in a dipolar
solvent [43]. This too will be discussed in more detail in a
future publication [50].
We expect that our non-local, non-linear theory of struc-

tured dielectrics as reviewed above should be particularly
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relevant and useful in the context of experiments on
surface and interface interactions. Surface force ap-
paratus (SFA), atomic force microscopy (AFM) or the
colloidal probe technique based on AFM have recently
demonstrated their value in probing the balance of
forces and their interdependence between short-range hy-
dration structural oscillatory forces and longer-ranged
Derjaguin-Landau-Verwey-Overbeek forces at solid-liquid
interfaces [52–56]. However, the measured interaction con-
tains many unrelated as well as related effects, stemming
in general from non-electrostatic couplings in the system1

such as the chemical nature of ions, their size and charge,
as well as polarizability, and solvent structuring hydrogen
bonds, to invoke just a few [55]. It seems to us that the
combination of experiments and a more systematic and
general theory will allow significant further advances in a
quantitative understanding of the complexities of liquids
at surfaces. In this sense analyzing theories in which these
various non-electrostatic effects can be systematically de-
coupled into various well-defined components of the total,
measurable interaction, seems like a worthwhile direction
to follow.
The deconstruction of the experimentally determined

interaction in aqueous dielectrics into component interac-
tions is thus a major remaining problem, as witnessed in
earlier work on the repulsion between membranes and po-
lar surfaces in aqueous electrolytes with comparisons of
molecular dynamics simulations and experiments [57] and
with a simple Ginzburg-Landau single-order-parameter
theory [58], highlighting several features not properly cap-
tured by the latter.
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