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Abstract – In 1992, Scholtz et al. (Ann. Phys., 213 (1992) 74) showed that a set of non-
Hermitian operators can represent observables of a closed unitary quantum system, provided only
that its elements are quasi-Hermitian (i.e., roughly speaking, Hermitian with respect to an ad hoc
inner-product metric). We show that such a version of quantum mechanics admits a simultaneous
closed-form representation of the metric ΘN and of the observables Λk, k = 0, 1, . . . , N + 1 in
terms of auxiliary operators Zk with k = 0, 1, . . . , N . At N = 2 the formalism degenerates to the
well-known PT -symmetric quantum mechanics using factorized metric Θ2 = Z2Z1, where Z2 = P
is parity and where Z1 = C is charge.

Copyright c© 2022 EPLA

Introduction. – PT -symmetric quantum mechanics
of review [1] offers one of the best known examples of
technical and conceptual merits of the use of a nontrivial
Hilbert-space inner-product metric Θ, which is assumed
to be factorized

ΘPT = PC �= I. (1)

The underlying abstract formulations of quantum mechan-
ics using any nontrivial inner-product metric Θ �= I are
known as quasi-Hermitian quantum mechanics [2], or as
pseudo-Hermitian quantum mechanics [3]. Once one adds
the specific factorization ansatz (1), operators P and C are
interpreted, most often, as parity and charge, respectively.
Still, also certain less specific forms of the factors P and
C forming the metric can be found discussed in the lit-
erature [4–7]. In our present letter we intend to reveal
and describe an unexpected new connection between the
abstract mathematics of the Hilbert-space-metric factor-
ization as sampled by eq. (1) and the realistic requirements
in physics where one often has to demand the generic
consistent coexistence of several non-commutative non-
Hermitian quantum observables (say, Λj).

The challenge of non-commutativity. The challenging
nature of all of the mutually more or less equivalent ap-
proaches to quantum dynamics based on the nontriviality
of the physical Hilbert-space metric (1) can be illustrated

(a)E-mail: znojil@ujf.cas.cz (corresponding author)

by the Bagchi’s and Fring’s conjecture [8] that the use of
such a formalism could enrich even the study of quantized
gravity. The latter authors argued that the use of Hilbert
spaces with Θ �= I could lead to a new and consistent de-
scription of quantum systems which admit the existence of
an observable minimal length and/or of some innovative
forms of experimentally verifiable uncertainty relations.

In the latter, most ambitious physical project the main
technical obstacle has later been found to lie in the neces-
sity of reflecting the non-commutative nature of the sets
of the relevant observables [9]. In fact, this was bad news
which still belong among the key motivating forces in our
present letter. The more so because earlier, the obstacle
had already been encountered as serious in the framework
of the abstract theory [2] as well as in several very con-
crete calculations and pragmatic studies, say, in condensed
matter physics [10] or in nuclear physics [11].

At present, the technical subtlety of the non-Hermitian
non-commutativity still belongs, in spite of an enormous
recent progress in the field, among the main limiting fac-
tors and open questions in the otherwise highly promising
and fairly rapid developments in the field of the non-
Hermitian coupled-cluster method (see, e.g., the recent
progress reports in [7,12]), etc.

The challenge of technical feasibility. In general,
it is really tempting to expect that using the quasi-
Hermitian (QH) quantum theory one could really achieve a
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conceptual compatibility between a manifestly non-
Hermitian operator of momentum (say, Λ0) with another,
still non-Hermitian operator representing position (say,
Λ1), etc. The more explicit technical realization of such
an idea and project appeared, unfortunately, to be more
difficult than expected. In [9], in particular, we demon-
strated that “whenever we are given more than one can-
didate for an observable (i.e., say, two operators Λ0 and
Λ1) in advance”, the consistent QH theory “need not exist
in general”. The methodical as well as phenomenological
scepticism implied by such a discouraging result is to be
weakened in our present letter.
Our present encouragement of a return to optimism will

rely upon letter [13] in which we proposed a specific re-
formulation of the PT -symmetric quantum mechanics of
ref. [1]. Moreover, we will also incorporate the results
of paper [14] where we generalized ansatz (1) and where
we considered a more flexible version of the QH quantum
theory which admits any number N of factors forming the
metric

ΘN = ZN ZN−1 . . . Z2 Z1. (2)

After the transition from the specific ansatz (1) to its gen-
eral form (2), and after a brief outline of our basic idea
in the following section, our present main message will
concern the metric-factorization–related systematic con-
struction of the sets

Λ0, Λ1, Λ2, . . . , (3)

of the admissible non-Hermitian (i.e., QH) operators rep-
resenting the observables. The details of the construction
will be formulated in the third to sixth sections and sum-
marized in the last section.

The concept of physical inner-product metric. –
The origin of the idea of the possible usefulness and con-
sistency of quantum mechanics using a nontrivial operator
metric Θ �= I can be traced back to the year 1992 when
the authors of the review paper [2] declared the conven-
tional use of trivial metrics Θtextbook = I “somewhat re-
strictive”. They showed that under suitable mathematical
conditions a broader class of “consistent quantum mechan-
ical systems” can be described using a certain “set of non-
Hermitian operators” representing observable quantities.
In other words, these operators (see eq. (3) above) had
to be compatible with the metric-dependent observability
alias quasi-Hermiticity condition

Λ†
k Θ = ΘΛk, k = 0, 1, . . . . (4)

In this light, the PT -symmetric quantum mechanics can
be perceived as one of the most successful realizations of
the amended formalism with the formal and trivial ob-
servable Λ0 = I, with the observable charge C = Λ1 and
metric PC = Λ2 of eq. (1), and, for unitary systems, also
with the observable QH Hamiltonian, Λ3 = H.

Inspiration: antilinear symmetries. The inspiration
of our present letter may be traced back to the Bender’s
and Boettcher’s conjecture of an upgrade of quantum

theory [15] which made the abstract QH formalism
user-friendlier. The goal has been achieved via a rather
unconventional assumption that a given non-Hermitian
Hamiltonian H can be made acceptable when required to
exhibit certain auxiliary antilinear symmetries.
These symmetries were of two forms. One was

the parity-time-reversal antilinear symmetry alias PT -
symmetry

HPT = PT H. (5)

It combined, successfully, a phenomenological appeal of
the linear parity P with the antilinear time reversal T .
In comparison with the abstract QH approach of Scholtz
et al. [2], the updated theory based on the ad hoc techni-
cal assumption (5) proved much more intuitive and more
friendly in applications (see, e.g., the collection of reviews
in [6] for details).
Another, less well-known but much more fundamental

antilinear symmetry of the Hamiltonian has been found in
its parity-charge-time alias PCT symmetry [16],

H P C T = P C T H. (6)

In a way explained in [3] the action of the time-reversal
operator T in both of these antilinear symmetries has pre-
cisely the same meaning as Hermitian conjugation. This
means that eq. (6) can be given the following equivalent
form:

H† P C = P CH. (7)

In what follows we will prefer the latter notation conven-
tion.

Physics: quasi-Hermitian observables. Before we pro-
ceed to the description of details let us point out that the
originally purely formal nature of ansatz (2) as introduced
in [14] will be complemented here by the turn of attention
to physics. The QH quantum dynamics will be assumed
based, in the spirit of ref. [2], not only on the specifi-
cation of the Hamiltonian H but also of a multiplet of
candidates for the other, phenomenologically potentially
relevant observables.
Our attention will be paid to a constructive guarantee

that all of the latter operators (3) admit the standard
probabilistic experimental interpretation. According to
assumptions as formulated in [2], our knowledge of H and
of the set (3) has to represent a dynamical input informa-
tion about the system in question. All of these operators
will have to satisfy the quasi-Hermiticity relations

Λ†
� ΘN = ΘN Λ�, � = 0, 1, 2, . . . , (8)

of course. In paper [2] we read the reason: “for the given
set of non-Hermitian observables”, the essence of the QH
model-building recipe lies in the “construction of a met-
ric (if it exists)”. In this context, the additional, more
specific recommendation of the construction of the met-
ric as inspired by eq. (1) and as generalized in paper [14]
can be read as a requirement that the metric entering the
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hidden-Hermiticity condition (4) should have a factorized
form. In our present letter we are going to turn attention
to physics behind such a factorization.

Framework: QH quantum mechanics. – In the
two most elementary special cases with N ≤ 1 there is
in fact no factorization. At N = 0, in particular, the
degenerate factorization ansatz (2) yields trivial Θ0 = I.
This choice leads to the conventional quantum mechan-
ics of textbooks. Relation (8) then means that all of
the admissible and eligible observables (3) must be self-
adjoint. Their selection (hinted, typically, by the hypo-
thetical quantum-classical correspondence [17]) remains
formally unconstrained.

Bra-ket notation. At any N > 0 the acceptability of
operators (3) is only constrained by their QH property (8).
One might recall paper [14] and, using the terminology
of functional analysis, notice that the traditional N = 0
Hilbert space of textbooks becomes split into the doublet
of the two formally non-equivalent Hilbert spaces Hphys

and Hmath (in [14] we recommended the abbreviations
Hphys = R0 and, at any preselected N , Hmath = RN ).
The latter space is to be interpreted as auxiliary, strongly
preferred in calculations but manifestly unphysical. Only
the former Hilbert space R0 provides the correct proba-
bilistic picture of the quantum system in question.
The less friendly space R0 differs from its partner RN =

Hmath by the less elementary inner product,

(ψa, ψb)phys = (ψa,Θψb)math. (9)

This means that the Dirac’s bra-ket notation must be used
here with due care. In what follows, it will still be used in
the preferred manipulation space RN = Hmath,

(ψa, ψb)math = 〈ψa|ψb〉. (10)

The transition to R0 = Hphys can be then represented, at
any N , by the formula

(ψa, ψb)phys = 〈ψa|ΘN |ψb〉. (11)

This means that the measurable predictions (i.e., the
relevant physical matrix elements) can always be evalu-
ated without ever leaving the user-friendlier representa-
tion space RN = Hmath.

The choice of N = 1 and the QH formalism without
factorization. One returns to the standard QH formu-
lation of quantum mechanics when choosing N = 1. In
its framework one deals with a nontrivial Hermitian and
positive definite metric Θ1 alias Z1 which is self-adjoint
(i.e., Z1 = Z†

1) and, in principle, eligible as an observable
(so that we can set Λ1 = Z1 in (3)). Such an operator be-
comes nontrivial (i.e., Z1 �= I) whenever our preselected
observable quantum Hamiltonian H alias Z0 alias Λ2 is
chosen non-Hermitian, Z0 �= Z†

0 . Naturally, as long as the
Hamiltonian carries information about the closed-system
dynamics, one must know or prove that its spectrum is
real, i.e., compatible with the unitarity of the evolution.

Once such a spectrum is shown real (and also dis-
crete, see the reasons discussed in [18]), one arrives at
the fundamental (one could say Dieudonné’s [19]) Hamil-
tonian hidden-Hermiticity condition (8),

Z†
0 Z1 = Z1 Z0, N = 1. (12)

This condition becomes tractable as an equation to be
solved. All of its Hamiltonian-dependent solutions Θ1 =
Z1(Z0) are the formally eligible metric operators (see the
list of their necessary mathematical properties as listed in
eq. (2.1) in [2]). Any one of these Hilbert-space metrics de-
fines a different, conceptually consistent quantum system.
All of them would lead to the experimental predictions in
a way which would vary with the different choices of the
sets of the operators (3) representing measurable quanti-
ties. In this setting it makes sense to prove the following
simple but important result.

Lemma 1 The knowledge of Hilbert-space metric Θ = Θ†

enables us to define all of the eligible observables as the
operator products

Λ = M Θ, (13)

with arbitrary M = M†.

Proof. Referring to the list of the necessary mathematical
properties of the Hilbert-space metrics (see, e.g., [2]), and
having in mind, for the sake of the simplicity of the proof,
just the special models living in finite-dimensional Hilbert
spaces, we leave, to the readers, all of the necessary care
to be paid, in the general case, to the domains of the
operators, etc. (see, e.g., the dedicated reviews in [20]).
Then, once we insert expression (13) in the criterion (8)
of observability

Λ† Θ = ΘΛ,

we obtain the relation

Θ† M† Θ = ΘM Θ,

and recall the Hermiticity and invertibility of the
metric. �
Quantum models with parity-times-charge met-

rics. – AtN = 2, the QH-based quantum mechanics is de-
scribed and discussed in [13]. In factorization formula (2)
the two new operators can be interpreted as traditional
charge (Z1 = C) and parity (Z2 = P), both, possibly,
generalized [5]. In the language of physics the theory re-
lies upon a pre-selection of the Hamiltonian H denoted
here, alternatively, by the zero-subscripted symbol Z0 and
determining the quantum evolution dynamics in the QH
Schrödinger picture,

i
d

dt
|ψ(t)〉 = Z0 |ψ(t)〉, |ψ(t)〉 ∈ Hmath. (14)

In [13] the corresponding quantum theory with N = 2 was
dubbed “intermediate-space Schrödinger picture” (ISP).
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From the point of view of mathematics its three opera-
tors Zk were shown constrained, solely, by the triplet of
relations

Z†
0 (Z2 Z1) = (Z2 Z1)Z0, (15)

Z†
1 Z2 = Z2 Z1, (16)

Z†
2 = Z2 (17)

(see table 1 in [13]).

These equations guarantee the unitarity of the evolu-
tion. Directly, this feature of the system is only controlled
by the Hamiltonian-containing equation (15) where one
can immediately identify Z2 Z1 ≡ Θ2(H). Still, the role
of the other two relations is also related and nontrivial. For
explanation it makes sense to return to the PT -symmetric
quantum mechanics of review [1] in which a very specific
parity-times-charge factorization of the metric

Θ2 = PC = Z2 Z1 = Θ†
2 (18)

has been introduced and shown useful in applications.
On this background an understanding of the amendments
provided by the N = 2 formalism of ref. [13] lies in an
enhancement of the economy of assumptions. Indeed,
among relations (15)–(17) one does not find the popular
PT -symmetry assumption (5) even when, in our present
notation, re-written as the P-pseudo-Hermiticity condi-
tion H† P = P H. A minor but interesting generalization
of the conventional PT -symmetric quantum mechanics is
obtained. Even though the relation between H and P
remains unspecified, the ISP theory is consistent. The
operator P itself is purely auxiliary, not carrying any im-
mediate physical meaning at all.

The latter non-observability paradox is caused by the
fact that in the framework of ISP we have, in general,
P† Θ2 �= Θ2 P. Such a statement looks counter-intuitive.
Still, its intuitive acceptability can be supported by the
well-known observation that even the coordinate itself is
not an observable quantity in general [9]. Although the
coordinate is often assumed to be measurable, the con-
struction of its operator representation appeared to be
a difficult task even in the most elementary QH square-
well models (see, e.g., an example of the construction
in [21]). As a consequence, the generalized parity oper-
ator constrained by Hermiticity (17) is just a freely vari-
able “parameter” specifying the quantum model via its
observables [2].

Once we accept the ISP Hamiltonian Z0 as an observ-
able which is given in advance, we are prepared to specify
the necessary Hermitian metric (18) as one of the eligible
solutions of eq. (15). This step being completed, we are
left with the single mathematical constraint (16). Never-
theless, it is trivial to see that this is just an identity, i.e.,
just an equation which is equivalent to the Hermiticity of
the solution Θ2(H) of eq. (15). This means that the ac-
ceptable generalized charge Z1 = C is not arbitrary, being

fully defined in terms of the metric and of the preselected
parity,

C = P−1 Θ2, N = 2. (19)

The multiplication of the identity (16) by Z1 from the
right yields the new, equivalent formula

C† Θ2 = Θ2 C, N = 2. (20)

It says that operator (19) called generalized charge is
not only PT symmetric (see eq. (16)) but also quasi-
Hermitian. It can consistently be used as representing
a measurable physical quantity. In eq. (3) we may iden-
tify, in such a case, Λ1 = Z1 = C. Formula (19) can be
read as a sample of eq. (13) with M ≡ P−1. Finally, an
entirely analogous argument implies that also the metric
itself could play an analogous role of another observable,
Λ2 = Z2 Z1 = Θ2. Once more, it is also possible to add
Λ3 = Z0 = H.
We may conclude that at N = 2, a fully consistent uni-

tary quantum system is obtained. In terms of the input
information represented by the “suitable physical” oper-
ator H and its “arbitrary mathematical” operator-valued
parameter complement P, we are able to define the met-
ric Λ2 = Θ2(H) (as any solution of eq. (15)) and via
eq. (19), the charge, Λ1 = C. Such an explicit constructive
specification of the operators of observables converts all
of the three obligatory consistency constraints (15), (16)
and (17) into mathematical identities.

Non-standard quantum models with N = 3. –
Table 2 in [14] samples the one-to-one correspondence
between the factorization of metric and the unitarity
of evolution of a quantum system in the generalized
Schrödinger picture (GSP) using a preselected N . At N =
3, with the physical Hilbert-space metric Θ3 = Z3 Z2 Z1,
the internal consistency of the GSP quantum theory has
been shown guaranteed by the quadruplet of constraints

Z†
3 = Z3, (21)

Z†
2 Z3 = Z3 Z2, (22)

Z†
1 (Z3 Z2) = (Z3 Z2)Z1, (23)

Z†
0 Θ3 = Θ3 Z0. (24)

The physical meaning of the last item (24) is obvious be-
cause it guarantees the hidden Hermiticity of our pres-
elected Hamiltonian H = Z0. Using this equation one
can determine and select one of the eligible solutions
Θ3 = Θ3(Z0) of this equation and assign it the role of
the correct physical Hilbert-space metric.
The first, simplest constraint (21) is imposed upon

the “generalized parity” Z3 = P which remains, in a
parallel to the previous N = 2 scenario, unobservable.
This enables us to treat such a (necessarily, self-adjoint)
operator, as before, as a carrier of a “dynamical in-
put information”. Its unconstrained variability can be
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used to characterize the differences between various phe-
nomenologically non-equivalent quantum systems which
are sharing the same Hamiltonian (i.e., the same form of
the operator of energy).
The interpretation of the next constraint (22) remained

purely formal in [14]. The product Z3Z2 has been iden-
tified there with a new operator Y3 which happens to be
self-adjoint, Y3 = Y †

3 . This operator cannot be treated as

an observable because Y †
3 Θ3 �= Θ3 Y3 in general. It enters

the GSP theory, therefore, simply as another, freely vari-
able operator parameter of the model. From this point of
view, eq. (22) degenerates to an identity in which, in terms
of the already available operators Z3 and Y3, the unique
“unobservable quasiparity” Z2 = Q is defined as follows:

Q = Z−1
3 Y3.

In the last step we are left with constraint (23). After its
pre-multiplication by (presumably, non-singular factor) Z1

from the right it acquires the equivalent form

Z†
1 Θ3 = Θ3 Z1.

This confirms that Z1 can represent an observable. For
the sake of definiteness let us speak about a renormalized
charge, Z1 = R. As long as it is uniquely defined,

R = Y −1
3 Θ3, (25)

we may recall the list of the potentially eligible observ-
ables (3) and identify Λ1 = R.

In such an upgraded notation our N = 3 eq. (24) yields
the solution Θ3 = PQR = Θ3(H) which is required to be
self-adjoint, but this constraint appears precisely equiva-
lent to our last relation (23). In other words, the whole
set of constraints (24), (23) becomes converted into iden-
tities. In their light it is then easy to identify the other
two eligible observables, viz., Λ2 = QR and Λ3 = PQR
and, finally, Λ4 = H —see [14].

In the latter paper, unfortunately, the scenarios with
N > 3 remained unexplored. Here, we will describe the
explicit constructive identification of the potential opera-
tors of the phenomenologically relevant observables at any
preselected number N of factors in the general factorized
metric of eq. (2).

Non-standard quantum models with arbitrary
N . – In paper [14] the quasi-Hermiticity property

H† ΘN = ΘN H (26)

of a preselected Hamiltonian H = Z0 was assumed to
be satisfied by the factorized Hilbert-space metric ΘN =
ZN ZN−1, . . . , Z2 Z1 at an arbitrary N . The separate fac-
tors Zj were required to obey the set of the GSP theoret-
ical consistency requirements

Z†
1 (ZN . . . Z3 Z2) = (ZN . . . Z3 Z2)Z1 (= AN ≡ ΘN ),

(27)

Z†
2 (ZN . . . Z4 Z3) = (ZN . . . Z4 Z3)Z2 (= BN ), (28)

. . .

Z†
N−2 (ZN ZN−1) = (ZN ZN−1)ZN−2 (= XN ), (29)

Z†
N−1 ZN = ZN ZN−1 (= YN ), (30)

Z†
N = ZN . (31)

Recalling the last item (31) we deduce that YN = Y †
N

and, subsequently, that XN = X†
N and so on, until BN =

B†
N and AN = A†

N . One of the most important subtle
consequences of this observation is the following result.

Theorem 2 The set (8) of conditions of the quantum-
theoretical observability is satisfied by the set of the op-
erator products Λk = Zk Zk−1, . . . , Z2 Z1, with k =
1, 2, . . . , N .

Proof. First we notice that the right-hand side of eq. (27)
is equal to the metric, AN = ΘN . What is less obvious is
that after the multiplication of the next relation (28) by

Z†
1 ≡ Λ†

1 from the left we may recall the previous identity

and obtain the metric as well, Λ†
1 BN = ΘN . Similarly,

we have Λ†
2 CN = ΘN , etc., until Λ†

N−1 ZN = ΘN . Every
such a relation has the form

Λ†
k Mk = ΘN , k = 0, 1, . . . , N − 1,

where M0 = AN , M1 = BN , etc., and where we use

Λ0 = I at k = 0. After we multiply each of these equa-
tions by Λk+1 from the right, we reveal that Λ†

0 M0 Λ1 =

Λ†
1 ΘN , Λ†

1 M1 Λ2 = Λ†
2 ΘN and, in general, Λ†

k Mk Λk+1 =

Λ†
k+1 ΘN . In other words, we reveal that the result-

ing sequence of equations coincides with the QH condi-
tions (8). �

From this result we may immediately deduce that in the
GSP formulation of quantum mechanics at a fixed N , the
system under consideration is characterized, first of all, by
its Hamiltonian H (which is assumed observable) and by
the Hilbert-space metric which is, due to constraint (26)
(i.e., due to eq. (4) at k = 0), Hamiltonian dependent,
Θ = ΘN (H).
In the light of theorem 2 the subscript N character-

izes not only the number of factors in the metric-operator
ansatz (2) but also the size of the multiplet of the invert-
ible and freely variable self-adjoint operator-parameters
ZN , YN , XN , . . . , BN of the model as well the size of the
multiplet of the observables define in closed form. This is
our final result: their first few N -dependent lists are sam-
pled here in the form of the first few columns of table 1.

Discussion. – A decisive technical merit of all of the
existing QH quantum models is that their correct physical
Hilbert space Hphys is so easily represented in another,
extremely user-friendly Hilbert space Hmath. After the
mere amendment 〈ψa|ψb〉 → 〈ψa|Θ|ψb〉 of the inner prod-
uct the experimental predictions of the theory acquire the
standard probabilistic form which is, naturally, strictly
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Table 1: Observables Λk available for a given QH Hamilto-
nian H, integer N , Hilbert-space metric ΘN (H) and for an
(N − 1)-plet of invertible self-adjoint operator xparameters
ZN , YN , XN , . . . , BN . The first-line items Λ0 are trivial since
Y2 ≡ Θ2(H) at N = 2, etc. At any N , we also recalled the
observability status of the “input” Hamiltonian and added the
symbol ΛN+1 ≡ H.

N 2 3 4 5 . . .

Λ0 I I I I . . .
Λ1 Z−1

2 Θ2(H) Y −1
3 Θ3(H) X−1

4 Θ4(H) W−1
5 Θ5(H) . . .

Λ2 Θ2(H) Z−1
3 Θ3(H) Y −1

4 Θ4(H) X−1
5 Θ5(H) . . .

Λ3 H Θ3(H) Z−1
4 Θ4(H) Y −1

5 Θ5(H) . . .
Λ4 – H Θ4(H) Z−1

5 Θ5(H) . . .
Λ5 – – H Θ5(H) . . .
...

. . .
. . .

equivalent to its conventional (but, by assumption, pro-
hibitively complicated) textbook Schrödinger-picture al-
ternative [2,3].
Technically, this means that the unitary evolution of a

quantum system in question has to be described not only
by the kets |ψ(t)〉 and by the corresponding conventional
time-dependent Schrödinger equation,

i
d

dt
|ψ(t)〉 = H |ψ(t)〉, |ψ(t)〉 ∈ Hmath, (32)

but also, in parallel, by the metric-multiplied kets
|ψ(t)〉〉 = ΘN |ψ(t)〉 with the evolution controlled by an-
other Schrödinger equation in which the Hamiltonian is
replaced by its Hermitian conjugate,

i
d

dt
|ψ(t)〉〉 = H† |ψ(t)〉〉, |ψ(t)〉〉 ∈ Hmath. (33)

In the review [3] it has been emphasized that the use of the
QH language helped to elucidate several deep and long-
standing unresolved conceptual as well as technical puz-
zles, say, in the field of relativistic quantum mechanics or
in quantum cosmology. In several other physical contexts,
unfortunately, the abstract version of the QH theory has
been found “very difficult to implement”, with reasons ex-
plained on p. 1216 of ref. [3]. In this context, our present
letter is to be read as the description of one of the inno-
vative simplification strategies.
In a final remark let us add that the main starting-

point technicality of the GSP approach, viz. the choice
of the positive-definite solution ΘN = ΘN (H) of the
constraint (26) is, in general, ambiguous [22]. In this
sense, any choice can be considered and used as a starting
point of the GSP-based metric-multiplication strategy as
summarized in table 1. Naturally, every such an initial
selection of the physics-determining operator ΘN (H)
must satisfy all of the obligatory mathematical properties

as listed and discussed, say, in review [2]. In [13,14] we
emphasized that among them a key role is played by the
mathematical requirements imposed upon the separate
factors Zk of the metric. In the present paper the em-
phasis has been shifted to the physical aspects of these
factors. We revealed that the phenomenological informa-
tion carried by these factors is given by theorem 2, i.e.,
by their re-interpretation as factors in the candidates for
observables,

Λk = Zk Zk−1 . . . Z2 Z1, (34)

with k = 1, 2, . . . , N .

Data availability statement : No new data were created
or analysed in this study.
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