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Abstract – The Mpemba effect denotes an anomalous relaxation phenomenon where a system
initially at a hot temperature cools faster than a system that starts at a less elevated temperature.
We introduce an isothermal analog of this effect for a system prepared in a non-equilibrium steady
state that then relaxes towards equilibrium. Here, the driving strength, which determines the
initial non-equilibrium steady state, takes the role of the temperature in the original version.
As a paradigm, we consider a particle initially driven by a non-conservative force along a one-
dimensional periodic potential. We show that for an asymmetric potential relaxation from a
strongly driven initial state is faster than from a more weakly driven one at least for one of the
two possible directions of driving. These results are first obtained through perturbation theory
in the strength of the potential and then extended to potentials of arbitrary strength through
topological arguments.
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Introduction. – For any initial preparation, a closed
system will finally relax to an equilibrium state. Such re-
laxation processes feature a variety of intriguing and in
parts counter-intuitive phenomena. One example is an
asymmetry in heating and cooling processes where under
certain circumstances the former is faster than the lat-
ter [1–4]. Furthermore, introducing memory can give rise
to anomalous relaxation processes characterized by power
laws instead of exponentials [5,6]. One of the most promi-
nent examples for a surprising relaxation phenomenon is
the Mpemba effect, which describes the observation that
under certain conditions warmer water takes less time to
freeze than colder one [7]. Since its discovery there has
been extensive research concerning this particular phe-
nomenon [8] with a multitude of possible origins such as
different solute concentrations [9], supercooling [10–12],
water hexamers [13], natural convection [14], evapora-
tion [15], breaking of energy equipartition [16] and hy-
drogen bonds [17,18].

The Mpemba effect is not unique to water. While
there is still some debate concerning water [19], this ef-
fect has recently been reported for a variety of different
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systems [20–27]. Furthermore, it can also be found in
systems, which fall into the regime of stochastic ther-
modynamics [28–34]. These system are small enough
for thermal fluctuations to be prominent in contrast to
the macroscopic systems for which the effect was first
documented. For these mesoscopic systems, a specific
framework has been developed to quantify the Mpemba
effect [28,29].

The wide range of systems which show the Mpemba ef-
fect suggests that its appearance may not be attributed
to a specific property of the system but may be based on
a more general mechanism. In fact, the question arises
whether the Mpemba effect is specific to thermal relax-
ation or whether other kinds of relaxation processes can
show a similar feature.

In this letter, we address this question by considering
relaxation from a non-equilibrium steady state into equi-
librium. A system reaches a non-equilibrium steady state
if it is subject to some form of time-independent driving.
One of the major paradigms of stochastic thermodynamics
is a Brownian particle driven by an external force. Under
periodic boundary conditions, this system is arguably the
simplest one reaching a non-equilibrium steady state, as
illustrated in fig. 1. Many theoretical predictions from
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Fig. 1: Illustration of the system and the isothermal analog of
the Mpemba effect. (a) The system consists of a particle on
a ring. The orange particle is driven by a weak force fl and
the green one is driven by a strong force fh. (b) Sketch of a
section of the initial non-equilibrium steady state distributions
for both the green and the orange particle and the equilibrium
distribution (blue). The distribution corresponding to fh is
further from the equilibrium one. (c) Sketch of a section of
the distributions for the green and orange particle after some
relaxation time and the equilibrium distribution. The distri-
bution corresponding to fl is now further from the equilibrium
one.

stochastic thermodynamics [35] have been experimentally
verified using this system [36–39]. Here, we will study
the relaxation from its non-equilibrium steady state to
equilibrium. We will demonstrate that an isothermal ana-
log of the Mpemba effect is generic for this system. This
Mpemba-like effect refers to the phenomenon that a sys-
tem that is driven out of equilibrium by a stronger force
relaxes faster than a system that is driven out of equilib-
rium by a weaker one, exemplarily illustrated by the two
particles in fig. 1. Intuitively, one would expect the con-
trary similar to the expectation that initially hot water
takes longer to cool than less hot one.

Setup and theory. – First, we define the system and
its parameters. We consider a one-dimensional system
with a continuous degree of freedom on a ring of length
L. The particle is subject to a non-conservative constant
force f in addition to the potential landscape V (x) with
V (x) = V (x + L). The evolution of the probability to
find the particle at position x at time t is governed by the
Fokker-Planck equation. With energy given in units of
kBT with T the temperature and kB the Boltzmann con-
stant and by rescaling the time coordinate t = Dt̃, where
t̃ is the original one and D the diffusion constant, this
equation reads

∂tp(x, t) = −∂x (F (x)− ∂x) p(x, t) = Lp(x, t) (1)

with the Fokker-Planck operator L and the force F (x) =
f − ∂xV (x). Due to its periodicity, the potential can be

expressed as a Fourier series,

V (x) = ε

∞∑
k=1

[ck sin (2πkx/L) + dk cos (2πkx/L)] , (2)

with the Fourier coefficients {ck, dk} and a parameter ε
that sets its overall scale.
In the absence of a driving force, this system has a

unique equilibrium state defined by the potential V (x).
We calculate the speed of relaxation towards this equi-
librium as a function of the driving force following what
was done in [28] for the thermal Mpemba effect. The so-
lution of the Fokker-Planck equation (1) for a relaxation
process towards equilibrium can formally be expressed by
the series

p(x, t) = peq(x) +
∑
n≥2

anvn(x)e
λnt, (3)

with the eigenvalues λn ≤ 0 and corresponding real right
eigenvectors v(x) of Leq, coefficients an determined by
the initial distribution, and the equilibrium distribution
peq(x) = e−V (x)/N eq where N eq provides the normaliza-
tion. Leq denotes the Fokker-Planck operator without
driving, i.e., for f = 0. It is advantageous to transform
Leq into a self-adjoint operator

H≡eV (x)/2Leqe−V (x)/2=∂2
x−

(∂xV (x))2

4
+
∂2
xV (x)

2
(4)

with eigenvectors ψn(x). The eigenvalues of H and Leq

coincide and the eigenvectors are related via

ψn(x) = eV (x)/2vn(x). (5)

This allows us to calculate the coefficients an as

an =

∫ L

0

dxp(x, 0)eV (x)/2ψn(x), (6)

where p(x, 0) is the initial distribution. For sufficiently
long time, the relaxation is dominated by the term in
eq. (3) that corresponds to the second largest eigenvalue.
We assume the eigenvalues are labeled in descending or-
der 0 = λ1 > λ2 ≥ λ3 ≥ . . .. Which of two given initial
distributions relaxes faster towards the equilibrium state
is therefore determined by the corresponding coefficients
a2.
In our case, the initial distribution is the steady state

p(x, 0) = pss(x; f), which is determined by the driving
strength f . Therefore, we are interested in the mono-
tonicity of the relaxation amplitude a2(f). For simplic-
ity, we omit the superscript and denote the steady state
distribution by p(x; f) ≡ pss(x; f). Systems for which
the relaxation amplitude a2(f) is not monotonic show an
isothermal analog of the Mpemba effect. Note that the
steady state to f = 0 is the equilibrium distribution, which
implies a2(0) = 0.
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Perturbation theory. – Even for this minimal model,
calculating a2(f) analytically is not possible in general.
Therefore, we first treat the above system with the addi-
tional assumption that the amplitude of the potential is
small, i.e., V (x) = εṼ (x) with ε � 1. The assumption of
a small potential allows us to employ perturbation theory.
The ansatzes for the steady state distribution as well as
the eigenvectors are

p(x; f) = p(0)(x; f) + εp(1)(x; f) +O(ε2), (7)

ψn(x) = ψ(0)
n (x) + εψ(1)

n (x) +O(ε2). (8)

Inserting these into eq. (6) leads to the expansion

a2(f) =

∫ L

0

dx

{
p(0)(x; f)ψ

(0)
2 (x) + ε

[
p(1)(x; f)ψ

(0)
2 (x)

+ p(0)(x; f)ψ
(0)
2 (x)

Ṽ (x)

2
+ p(0)(x; f)ψ

(1)
2 (x)

]}
+O(ε2).

(9)

We perform the calculations up to linear order explicitly
by inserting these expansions into the Fokker-Planck equa-
tion (1) and the eigenvalue problem

Hψn(x) = λnψ(x), (10)

respectively.
We first deal with the computation of the initial steady

state. In leading order, the Fokker-Planck equation yields
the equation for a particle on a ring without potential,
which results in a uniform distribution p(0)(x; f) = 1/L
independently of the driving force f . In linear order, the
steady state Fokker-Planck equation reads

0 = fp(1)(x; f)− ∂xṼ (x)p(0)(x; f)− ∂xp
(1)(x; f), (11)

where we use the normalization condition. The solution
to eq. (11) is given by

p(1)(x; f) = −
∞∑
k=1

2πk

f2L2 + 4π2k2
Fk(x), (12)

with

Fk(x) =

[
ckk

2π

L
+ dkf

]
sin

(
k
2π

L
x

)
(13)

+

[
−ckf + dkk

2π

L

]
cos

(
k
2π

L
x

)
.

Second, we need to solve the eigenvalue problem (10).
In leading order, this becomes the Schrdinger equation
for a free particle with periodic boundary conditions.

The ground state is ψ
(0)
1 (x) = 1/

√
L with the eigenvalue

λ
(0)
1 = 0 as expected. All further eigenvalues are twofold

degenerate in lowest order. Thus, we need to apply de-
generate perturbation theory. The first-order correction

to the eigenvalues lifts the degeneracy and leads to the
eigenvector corresponding to the second largest eigenvalue

ψ
(0)
2 (x) =

[
d2 +

√
c22 + d22

]
sin

(
2π

L
x

)
− c2 cos

(
2π

L
x

)
(14)

up to normalization. The last term in eq. (9) requires the
first-order corrections to the eigenvectors. This leads to
the result

ψ
(1)
2 (x) =

1√
8L

c1d2 + c1
√

c22 + d22 − d1c2√(
d2 +

√
c22 + d22

)2

+ c22

+G(x), (15)

where G(x) is the part of ψ
(1)
2 (x) that vanishes upon inte-

gration over a full period L. Since p(0)(x) is constant, only

the part of ψ
(1)
2 (x) that does not vanish upon integration

over one period matters for a2(f).
We finally have all the ingredients to evaluate the relax-

ation amplitude a2(f). We insert eqs. (12), (14) and (15)
into eq. (9) and obtain up to linear order

a2(f) =
ε√
2L

[
B − 2πL

f2L2 + 4π2

(
2π

L
B + fC

)]
(16)

with the constants

B =
c1d2 + c1

√
c22 + d22 − d1c2√(

d2 +
√

c22 + d22

)2

+ c22

, (17)

C =
d1d2 + d1

√
c22 + d22 + c1c2√(

d2 +
√

c22 + d22

)2

+ c22

. (18)

For now, we assume the generic case of B �= 0 and C �= 0
and deal with the special cases for which this is not true
separately below. The zeroth-order term of a2(f) vanishes
because it does not depend on f while it still has to fulfill
the condition a2(0) = 0. Since we are interested in the
monotonicity of a2(f), we consider its derivative

∂fa2(f) =
ε2π/

√
2L3(

f2 + 4π2

L2

)2
[
Cf2 +

4π

L
Bf − 4π2

L2
C

]
. (19)

Any change in sign of ∂fa2(f) implies a non-monotonic
relaxation speed as a function of f . Equation (19) shows
that the derivative vanishes for f → ±∞ and for

f1,2 = −2π

L

[
B

C
±
√
1 +

B2

C2

]
. (20)

The asymptotic behavior for f → ±∞ is not related to a
change in sign of ∂fa2(f) and, therefore, does not imply
a non-monotonicity. Thus, generically, there is one posi-
tive and one negative finite value for f at which ∂fa2(f)
changes sign. This leads to our first main result. For a
generic small potential, a2(f) is not monotonic leading to
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Fig. 2: Relaxation amplitude a2(f) for small potentials. (a) Generic case: the black vertical lines mark the extrema of
a2(f). The grey bars (north west hatching) indicate areas without Mpemba effect. The blue bars (north east hatching)
indicate areas where the Mpemba effect occurs, which means stronger driving leads to faster relaxation. The red dash-dotted
vertical line marks the force fs, which fulfills a2(fs) = 0 and, thus, shows the strong Mpemba effect. Parameters for this
example {c1, c2, c3, c4} = {−0.82,−0.31, 0.57,−0.09}, {d1, d2, d3, d4} = {−0.17,−0.63,−0.25, 0.023}, L = 5 and ε = 10−3.
(b) Symmetric potential; case I: B = 0. The relaxation amplitude a2(f) is antisymmetric with respect to f and does feature
the Mpemba effect in both directions as marked by the blue bars (north east hatching). Parameters for this example ci = 0,
{d1, d2, d3, d4} = {0.45, 0.44,−0.98, 0.36}, L = 5 and ε = 10−3. Case II: C = 0. The relaxation amplitude a2(f) is symmetric
with respect to f . This is the only case where no Mpemba effect can be observed at all. Parameters for this example ci = 0,
{d1, d2, d3, d4} = {−0.16,−0.06,−0.70,−0.03}, L = 5 and ε = 10−3.

an isothermal analog of the Mpemba effect. Here, generic
means that the subspace of parameters that leads to a
different behavior has a lower dimension than the full pa-
rameter space.
A special case occurs for a2 = 0. In this case, the term

corresponding to the second largest eigenvalue in (3) van-
ishes and the third largest eigenvalue dominates the relax-
ation for sufficiently long times. This means that initial
distributions for which a2 = 0 relax exponentially faster
than those with a2 �= 0. For thermal relaxation, this ef-
fect has previously been called strong Mpemba effect [29].
We now want to analyze if an analog also occurs in our
systems. The finite fs for which a2(fs) = 0 obey

Bf2
s − 2π

L
Cfs = 0. (21)

This equation has one non-trivial solution fs �= 0 for the
general case of B �= 0 and C �= 0, which is either positive
or negative. The sign of f determines the direction in
which the particle is driven. This means that the strong
Mpemba effect occurs for a generic potential, but only for
one of the two possible signs of f . This is in contrast to our
findings concerning the normal Mpemba-like effect. While
both are generic, the normal Mpemba-like effect occurs for
both signs of f as the two possible solutions to eq. (20)
show.
Figure 2(a) summarizes the findings regarding the nor-

mal and strong Mpemba effect for the generic case.
There is one particular value for f indicated by the
red dash-dotted line for which the strong Mpemba
effect occurs. Then there are two intervals in which the
normal Mpemba effect occurs marked by the blue bars
(north east hatching). One of these intervals is finite and
bounded on one side by the force for which the strong

Mpemba effect occurs. The other interval is not bounded.
Here, the Mpemba effect is present for all forces beyond
some critical force.

In the above analysis of the normal and strong Mpemba
effect we assumed generic potentials and disregarded spe-
cial cases. More specifically, in both cases we assumed
B �= 0 and C �= 0 and neglected the special cases in which
this might not hold. We now examine these special cases,
which behave differently. Note that only the Fourier co-
efficients {c1, d1, c2, d2} of the first two terms of Ṽ (x) are
relevant for a2(f). For ease of description, we split the
potential

V (x) = V2(x) + Vr(x) (22)

into the part V2(x) that is relevant for the Mpemba effect
and into the irrelevant part Vr(x). As it turns out, either
of the conditions B = 0 and C = 0 implies that the po-
tential V2(x) is symmetric. Which of the two conditions
is met in the case of a symmetric potential depends on
its exact form. By symmetric potentials we denote any
potential with a symmetry V2(x0 + x) = V2(x0 − x) with
x0 ∈ [0, L], which accounts for the translation invariance
of the system. In fig. 2(b) the two possible cases B = 0
and C = 0 are sketched. As is obvious from eq. (16), the
relaxation amplitude a2(f) is antisymmetric for B = 0.
Thus, there still is the normal Mpemba effect but there is
no strong Mpemba effect. For C = 0 the relaxation am-
plitude a2(f) is symmetric and the system shows neither
the normal nor the strong Mpemba effect. This is the only
case where no Mpemba effect occurs at all.

The fact that symmetric potentials pose an exception
is in agreement with the above generic findings about
the strong Mpemba effect. The symmetry V2(x0 + x) =
V2(x0 − x) makes both directions of driving equivalent
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Fig. 3: Qualitative illustration of the two alternatives for the re-
laxation amplitude a2(f) for a generic potential with arbitrary
strength. The solid parts are known features of the curves.
The dashed parts are unknown except for the fact that they
are continuous. The colored bars (north east hatching) indi-
cate where the Mpemba effect occurs. The grey bars (north
west hatching) indicate areas of normal relaxation. The red
dash-dotted lines mark the strong Mpemba effect. The main
difference between the two cases is that the green curve has
one extremum for each sign of f , whereas the blue curve has
two extrema for one sign and none for the other.

whereas we have derived that only one sign can show the
strong Mpemba effect. The above generic results are, thus,
valid for any potential that is not symmetric.

Beyond small potentials. – We will now argue that
these results obtained perturbatively for a small poten-
tial hold true even for an arbitrarily strong potential. We
show this by a topological argument using the asymptotic
behavior of a2(f) for strong driving and a2(0) = 0. Note
that the force dependence of a2(f) stems from the steady
state while the eigenvectors are a property of the equilib-
rium and, therefore, are independent of f . For large |f |,
the steady state solution of the Fokker-Planck equation
can be expanded in orders of 1/f , which leads to

p(x; f) =
1

L

(
1 +

1

f
∂xV (x)

)
+O

(
1

f2

)
. (23)

Inserting this expansion into a2(f) given by eq. (6) yields

a2(f) =

∫ L

0

dx
1

L
eV (x)/2ψ2(x) +O

(
1

f

)
(24)

and

∂fa2(f) = − 1

f2

∫ L

0

dx
1

L
∂xV (x)eV (x)/2ψ2(x) +O

(
1

f3

)
,

(25)

in leading order. Notably, both terms are independent of
the sign of f in leading order, which implies

lim
f→∞

a2(f) = lim
f→−∞

a2(f), (26)

lim
f→∞

∂fa2(f) = lim
f→−∞

∂fa2(f). (27)

Fig. 4: Relaxation amplitude a2(f) for various finite potential
strengths ε. All curves show at least two extrema as sketched
in fig. 3. The curves exhibit additional extrema for sufficiently
large amplitudes ε � 0.9. The inset shows the behavior for
strong driving. Here, the curves are shifted along the y-axis
with Δa2(f) ≡ a2(f) − a2(−20). Parameters: {c1, c2, c3} =
{−0.08, 0.63, 0.80}, {d1, d2, d3} = {0.55,−0.62,−0.88} and
L = 5.

Additionally, we use the property that a2(f) vanishes for
f = 0. This is an immediate consequence of the fact that
the steady state defined by f = 0 is the equilibrium distri-
bution. With this knowledge we can infer crucial proper-
ties of a2(f). The relaxation amplitude a2(f) falls in one
of two classes illustrated in fig. 3. The derivative ∂fa2(f)
generically has at least two changes of sign because it is
identical for f → ∞ and f → −∞. These can either both
occur for the same sign of f as the blue curve indicates
or they can lie on different half-axes as for the green one.
Note that with this topological reasoning we assume noth-
ing specific about the dashed parts in fig. 3 except that
a2(f) is continuous. Thus, a2(f) can have more extrema
and zeros than the ones indicated; however, it cannot have
less. This means that even for an arbitrary potential we
generically predict the Mpemba effect for at least one of
the two signs of f . Regarding the strong Mpemba effect,
we conclude that a2(f) generically has at least one zero
besides the trivial one at f = 0. Thus, the strong Mpemba
effect is guaranteed for at least one sign of f , similar to the
case with a small potential. Exceptions from this generic
behavior arise if any of the ordinarily leading orders in
a2(f) or ∂fa2(f) in eqs. (24) and (25) vanish. A further
exceptional case occurs when the derivative ∂fa2(f) van-
ishes at f = 0, which allows a2(f) not to change its sign.
For these special cases the above implications do not nec-
essarily hold. As these results demonstrate, many of the
findings in the limit of a small potential thus carry over
to the general case.

Figure 4 shows a numerical case study for such a poten-
tial with various finite strengths. The results agree with
the above findings since for all parameter sets the relax-
ation amplitude a2(f) has at least two extrema and one
non-trivial zero. There are exactly two extrema in the
first three cases with ε ∈ [0.3, 0.6, 0.9], which, thus, fall
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into the class illustrated by the green curve in fig. 3. For
sufficiently large amplitudes ε � 0.9, the relaxation ampli-
tude a2(f) has two additional extrema for negative f and,
therefore, a further region showing the normal Mpemba-
like effect. Moreover, the inset of fig. 4 shows that the
behavior for strong driving is in agreement with eqs. (26)
and (27).

Concluding perspectives. – We have introduced an
isothermal analog of the Mpemba effect. The system is
initially prepared in a non-equilibrium steady state and
relaxes towards equilibrium. The driving force, which ul-
timately determines the steady state, takes the role of the
initial temperature in the classical Mpemba effect. If a
stronger initial driving force leads to faster relaxation, the
isothermal analog of the Mpemba effect arises.

We have shown that this Mpemba-like effect is generic.
We explicitly calculate all relevant quantities in the limit
of an arbitrary but small potential establishing both the
normal and the strong Mpemba effect. The only excep-
tions to these generic findings arise when the potential
is symmetric. Through topological arguments we have
extended these results to the case of an arbitrary poten-
tial for at least one sign of the non-conservative driving
force.

In this letter, we have considered a continuous over-
damped dynamics governed by a one-dimensional Fokker-
Planck equation. For such a dynamics in two or three
dimensions, or even for interacting Langevin particles, one
might expect a similar phenomenology which deserves to
be investigated in detail. Another interesting extension of
the present work is to consider an underdamped dynam-
ics. While we expect that the isothermal analog of the
Mpemba effect survives, it is an open question whether
it occurs generically. Moreover, it remains to be seen
whether similar results hold for a Markovian dynamics on
a discrete set of states. To address this question, a first
step would be to study the behavior for a unicyclic system.
While the occurrence of the present analog of the Mpemba
effect might still be generic, we suspect that there could be
qualitative differences to the results obtained within the
continuous model. The main reason is that the continuous
system behaves similarly in the limits of strong driving re-
gardless of the sign of the driving force. This symmetry
can generally not be expected in discrete systems that are,
e.g., driven by a non-equilibrium chemical reaction.

A potential further generalization of the Mpemba ef-
fect is to consider arbitrary initial states that relax to an
equilibrium state. One would then need a measure of the
distance of the different initial states from the final equilib-
rium state. One possibility is to use the Kullback-Leibler
divergence with the final equilibrium state as done, e.g.,
in [1] in a different context. Another one is to prepare the
initial state by adding a fixed perturbation to the final
distribution and to use its amplitude as a measure for the
distance. If then the initial state with the larger distance
relaxes faster, a Mpemba-like effect would occur.

Finally, it would be desirable to search for an experimen-
tal realization of the effect discussed here, which should be
feasible for the paradigmatic driven particle with extant
techniques as used in refs. [37–39].

Data availability statement : The data that support the
findings of this study are available upon reasonable request
from the authors.
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