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Abstract – Wetting of surfaces depends critically on defects which alter the shape of the drop.
However, no experimental verification of forces owing to the three phase contact line deformation
at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces
by video microscopy. From the deformation of the contact line, we calculate the force acting
on a sliding drop using an equation going back to Joanny and de Gennes (J. Chem. Phys.,
81 (1984) 554). The calculated forces quantitatively agree with directly measured forces acting
between model defects and water drops. In addition, both forces quantitatively match with the
force calculated by contact angle differences between the defect and the surface. The quantitative
agreement even holds for defects reaching a size of 40% of the drop diameter. Our validation for
drop’s pinning forces at single defects is an important step towards a general understanding of
contact line motion on heterogeneous surfaces.
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Introduction. – A drop sliding over a surface forms
an advancing contact angle at the front Θs

a and a receding
contact angle at the rear Θs

r. The difference of both con-
tact angles is called contact angle hysteresis (CAH) [1–3].
CAH is the reason why drops can rest on inclined sur-
faces although gravity is acting on the drops. In addi-
tion, CAH is associated with topographical and chemical
heterogeneities of surfaces [4,5]. Inhomogeneities ranging
from the nanometer up to μm-scale play a major role [4].
They lead to pinning of the three-phase contact line, here-
inafter referred to as contact line. Pinning of the contact
line increases the CAH and therefore opposes forces lead-
ing to sliding of the liquid. Although models describing
pinning forces of liquids from a surface defect have ex-
isted for 40 years, no experimental validation of forces is
available. Therefore, we adapt a theory originated from
Joanny and de Gennes [6] and calculate and measure the
force acting between model defects and water drops.

Pinning of contact lines of surfaces containing a model
defect are typically studied by Wilhelmy plate experi-
ments. A flat substrate is drawn into or out of a bath
of liquid (fig. 1(a)) [4,6–9]. The interaction of the model
defect results in a contact line deformation (CLD) close to
the defect and changes the local potential arising from the

(a)E-mail: berger@mpip-mainz.mpg.de (corresponding author)

surface tension of the liquid. The latter causes a restoring
force due to fringe elasticity. Thus, the more the contact
line is pulled away from the equilibrium position in the
y-direction, the higher the force FCLD that acts on the
defect will be. Therefore, measurements of the shape of
the contact line η(x), for example by optical microscopy,
allow calculating the force acting on the defect [7].

Joanny and de Gennes derived a relation between the
shape of the contact line η(x) and the corresponding force
FCLD for an infinitely small defect on a hydrophilic surface
withdrawn from a liquid bath [6],

η (x) =
FCLD

πγΘ2
0

ln
(

L

x

)
=

FCLD

k
. (1)

Here γ is the surface tension, Θ0 is the equilibrium con-
tact angle of the liquid with the flat surface and L is a
large-scale cut-off length. The term k = πγΘ2

0/ ln (L/x)
with a unit N/m. Nadkarni and Garoff associated L to the
capillary length of the liquid λc =

√
γ/ρg (ρ is the den-

sity of the liquid and g is the gravitational acceleration),
which is about 2.73 mm for water in air at ambient tem-
perature [7]. Later on, alternative theoretical derivations
confirmed eq. (1) [10].

Several groups studied CLD at defects on otherwise
flat substrates upon removing the substrate from a liq-
uid bath [7,11]. Based on the measurements of CLD,
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Fig. 1: (a) Schematic drawing of a round defect on a surface that is removed from a liquid bath. (b) Schematic image of the
rear side of a drop being pulled over a round defect in top view. The drop slides in the −y-direction and the contact line
deforms by η(x). Relative to the undisturbed drop’s contact line it deforms by ηdrop (xdrop). The position x = 0 corresponds
to the center of the defect. (c) Schematic drawing of the used setups: A drop slides across a hydrophobized glass surface
with a hydrophilic SU8 model defect. Two cameras are mounted orthogonal and parallel to the sliding direction to record the
deflection of a glass needle and the drop shape. A transmission light microscope records the receding three-phase contact line.
For technical reasons the parallel/orthogonal view experiments are performed subsequently in two different setups. The contact
line measurements are performed by moving the spring holder from right to left, resulting in a stationary sample position. The
direct force measurements are performed by moving the sample from left to right, resulting in a stationary spring holder.

eq. (1) was used to calculate the forces acting on a single
defect. Nadkarni and Garoff studied different sizes of
heterogeneities on hydrophobic substrates, which revealed
that the elastic response follows Hooke’s law [7]. Marsh
and Cazabat imaged CLD when a plate with defects
made by pen ink was removed vertically from a silicon-oil
bath [11]. These studies show that the CLD can be fitted
by eq. (1) but also deviations occur due to uncertainty of
the contact angles along the contact line.

All experimental studies based on Joanny’s and de
Gennes’ theory lack verification and quantification of the
calculated force arising from CLD. Pinning forces of nano-
metric defects were investigated by atomic force spec-
troscopy, however lacking measurements of the CLD [12].
Pinning forces while removing a drop vertically from
the surface have been detected on superhydrophobic sur-
faces [13]. Furthermore, forces for laterally sliding drops
were investigated with a setup that is based on measuring
the deflection of a bendable capillary [14,15]. Pilat et al.
and Qiao et al. used such a setup to study lateral ad-
hesion forces of micropillar arrays [14,15]. Here, Qiao
et al. qualitatively depicted occurring multiple CLD while
the drop is sliding over the micropillar array [15]. Mugele
et al. used a capillary force sensor to measure the pinning
strength of electrowetting traps [16]. However, the forces
exerted by contact line deformation on defects and drops
have never been quantitatively compared and analyzed for
sliding drops. In order to validate the model of Joanny
and de Gennes, we first analyze the shapes of the three

phase contact lines optically at the receding side of a drop
and calculate the pinning force of strong defects using a
refined model that goes back to the model of Joanny and
de Gennes. In addition we carry out lateral drop adhesion
force measurements (DAFI) [14], allowing us to measure
pinning forces of defects directly. Finally, we show that
forces resulting from an analytical model which is based
on contact angle hysteresis match the forces calculated
from CLD and from DAFI. Forces arising from CAH are
given by the capillary equation [17–20], where the drop’s
sliding force Fc corresponds to

Fc = κwγ (cosΘs
r − cosΘs

a) . (2)

Here, w is the width of the contact area of the drop. Typ-
ically a κ-factor (κ ≤ 1) is added to the equation, which
accounts for the shape of the drop [21–23].

Notably, despite different theoretical approaches all
three evaluations result in the same force for identical de-
fects. Moreover, extrapolating the force to an infinitesi-
mal small defect resulted in a quantitative validation of
Joanny’s and de Gennes’ model.

Sample preparation. – Cylindrical model defects (ra-
dius: 50–500 μm, height: 10 μm) were prepared in SU8-
layers by photolithography on glass cover slips. Then we
exposed the surface to the vapor of perfluorooctyl-silane
(trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOTS)).
Such sample surfaces have advancing contact angles of
117±2◦ and receding angles of 90±5◦ (the Supplementry
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Material Supplementarymaterial.pdf (SM), section “S1
sample preparation”). The shape of the contact line of
the sliding drop is measured by an inverted transmission
light microscope in combination with a high speed camera
which is mounted underneath the transparent substrate
(fig. 1(c)). In this setup, the glass needle drags the drop,
while the sample stays fixed at the same place (see the
SM, section “S2 inverse optical microscope setup”). This
arrangement has the advantage that defects can be posi-
tioned in the center of the image (fig. 1(c), bottom right
image).

Force by Contact Line Deformation. – To inves-
tigate the time-dependent CLD, i.e., η (x, t) of a wa-
ter drop sliding across model defects, we first discuss
the experiment of a defect having a radius of 100 μm
(fig. 2(a)). The edge of the defect relative to the apex
of the undeformed receding contact line corresponds to
s = vdrop · (tframe − t0). Here, we set t0 to an offset value
so that tframe − t0 = t becomes zero when the defect’s
apex side reaches the contact line. The first snapshot of
the movie taken at s = −271 μm corresponds to the de-
fect that is fully immersed in the drop and is still far away
from the contact line (fig. 2(a), stage I). At this stage, the
contact line is undistorted by the model defect. As long as
the defect is < −20 μm away from the contact line, all con-
tact lines look similar in shape and they can be fitted by
elliptical arcs. For all these contact lines both radii of the
ellipse are identical while the center position changes with
the sliding speed of the drop. Once the defect is closer
than −20 μm from the contact line, we observed a jump
of the contact line to the model defect (fig. 2(a), stage
II). Hereafter, the three phase contact line deforms more
and more (fig. 2(a), stages III to V ) until it detaches
from the model defect at s > 360 μm (= 2.6 s) (after stage
V ). After the detachment the contact line has an identical
curvature compared to s = −271 μm.

From the series of images recorded with the high speed
camera, we calculate the difference of the contact line to
the unperturbed, curved contact line. Firstly, the posi-
tion of the undeformed contact line of the drop is shifted
linearly to the corresponding time of the frame of the
deformed contact line. Secondly, for every point of the
deformed contact line the distance (length of the normal
vector sitting on the ellipse) to the contact line of the drop
is calculated (fig. 1(b)). This calculation results in the ex-
perimental deformations ηdrop (xdrop) for every point along
the undeformed, curved contact line (xdrop), exemplarily
plotted for the different situations II–V (fig. 2(b)).

Equation (1) was derived by considering an infinitely
small defect on a hydrophilic surface, which is moved out
of an extended water bath [6]. In analogy, for hydrophobic
surfaces with a receding contact angle of 90◦ (sin Θs

r = 1)
de Gennes, Brochard-Wyart and Quéré [24] deduced

η (x) =
FCLD

πγ
ln

(
L

x

)
. (3)

Fig. 2: (a) Transmission light microscope images of the drop
sliding across a cylindrical model defect having a radius of
100 μm. This defect is situated in the center of the opti-
cal image. The drop has a volume of 5 μL. (b) The ex-
perimentally determined projected ηdrop (xdrop, t) and the fit
ηdrop,fit (xdrop, t) based on eq. (4) are shown in blue and red
color, respectively.
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Fig. 3: Comparison of the force vs. position (a) measured by
the CLD ηdrop,fit (xdrop) and (b) measured by DAFI. Volumes
of 5μ L were used for both measurements. Both measurements
were performed subsequently in two setups (fig. 1). The dy-
namics after depinning is given by the relaxation of the local
contact line (approximately 20 ms) (a). The dynamics after de-
pinning in the DAFI measurements (b) includes relaxation of
the additional elongation of the drop due to pinning. After de-
pinning from the defect, the relaxation of the entire contact line
into a steady state is much slower (approximately 1 second).

In our notation, a CLD in the +y-direction (η(x) > 0)
causes a force FCLD > 0 acting on the drop, i.e., in the
+y-direction (the force acting on the defect is in the −y-
direction). Thus, L/x > 1 . We refine eq. (3) by adding
the parameter xd(t) to fit the measured contact line of
the drop. This parameter represents the measured de-
fect width at the position of the contact line. In order
to account for small elongations of the entire drop owing
to interactions with the defect, we include the parameter
ηoff(t). In the refined equation

ηdrop,fit (xdrop, t) = ηoff(t)

+
FCLD(t)

πγ
ln

(
λc

|xdrop| − xd(t)/2

)
,

(4)

we use the capillary length λc of water and the abso-
lute value of xdrop to fit CLDs at both sides from the
defect center. We also extracted the defect width xd(t)
from the recorded video. Equation (4) was fitted to

all ηdrop (xdrop, t) extracted from the video and the force
resulting from the fitted FCLD was plotted vs. defect po-
sition s (fig. 3(a)). When the defect touches the contact
line, FCLD increases until the three phase contact line slips
over the defect at s = 300–360 μm and finally detaches at
s = 390 μm. We observed a deviation from the linear
regime towards lower forces for an extensions > 200 μm.
Such non-linear deviations have been predicted by compu-
tations [25]. In addition, we attribute the decrease in FCLD

at higher forces to contact line sliding along the cylindri-
cal defect reducing ηdrop. The maximum force is reached
at Fmax = 8 μN. Normalizing this value Fmax/πγ results
in 35 μm. This value is of the same order as the normal-
ized maximum pinning force of polymethylmethacrylate
beads with a diameter of 200 μm placed on a polystyrene
film (40–50 μm) [7] (see the SM, section “S3 dimensionless
force values compared to literature”). After the maximum
force is reached, the defect width at the contact line xd de-
creases, which indicates sliding of the contact line across
the defect until it detaches (see the SM, section “S4 defect
width xd as seen by contact line after projection”). There-
after, the contact line returns to the initial shape within
0.25 s. A central question in this work is, if FCLD, calcu-
lated by eq. (4), will correspond quantitatively to the force
that acts on a drop while it slides over the surface with
this defect. Therefore, we performed direct force measure-
ments using DAFI.

Direct force measurement. – The DAFI [14,16,26]
consists of a rectangular glass needle (length 5 cm, width
1 mm), which holds the drop and deflects while the drop is
sliding over a surface. A linear stage moves the substrate
relative to the drop. Two cameras (Baumer VCXU-50M, a
maximum resolution of 5 MP) record drop shape in front
and side view and needle deflection in a shadowgraphy
configuration (fig. 1(c)). The deflection of the glass nee-
dle un is extracted from the video recorded in side-view.
We use Hooke’s law to calculate the force acting on the
spring by FDAFI = kn · un where kn is typically around
0.2±0.02 N/m (see the SM, section “S5 DAFI: Spring cal-
ibration” and section “S6 force extraction”). In particular,
FDAFI measurements do not require information on CLD
nor contact angles of involved surfaces.

The direct force measurement of a sliding drop over a
defect having a width of 200 μm and a height of 10 μm —
same as above— showed a constant lateral force FDAFI(t)
of 48–49 μN as long as the contact line remains unde-
formed (fig. 3(b)). The latter is the case for the defect
inside the drop and away from the three phase contact line.
Our surface exhibits an advancing contact angle Θs

a and
a receding angle Θs

r of 117 ± 2◦ and 90 ± 5◦, respectively,
and the width of the drop is 2 mm (see the SM, section “S7
contact angle extraction”). Accordingly, we calculated a
sliding force Fc of 49 ± 17 μN (κ = 1) using eq. (2), which
is in good agreement with our experimental values.

At the position where the cylindrical defect comes close
to the contact line from the liquid phase, the contact
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line jumps onto the defect (marked with II in fig. 2(a)
and fig. 3(b)). At this stage, we measured a negative
force FDAFI,II of −0.25 μN, indicating that the contact
line is pulled towards the defect. Then the force in-
creases linearly. After reaching a maximum force of 55 μN
the drop detaches from the defect. Subtracting the slid-
ing force of 48 μN results in 7 μN maximum force due to
pinning of the contact line at the defect. We repeated
the DAFI measurement three to five times with differ-
ent drops of the same volume and determined an average
maximum pinning force of the three phase contact line of
FDAFI = 7.3±1.9 μN. This value is in agreement with the
average force calculated by the contact line deformation.
After the maximum force is reached, the measured force
decays to a value of 48–49 μN. In conclusion, the measured
forces by DAFI agrees with the calculated forces based on
the measured CLD (eq. (4)). The optical method for mea-
suring local CLD reflects the force that acts on the defect
at a given time. DAFI measurements reflect all forces act-
ing on the drop and include global changes in CL. The lat-
ter is visible in the longer force tail after depinning from
the defect. Thus a one-to-one correlation of forces ex-
tracted from local CLD and drop force measurements is
not given at abruptly appearing instabilities.

Capillary force model. – Both DAFI and CLD mea-
surements can be applied to study pinning forces of defects
with arbitrary shapes. In the case of cylindrically shaped
defects, as in our case, we can calculate the force based on
geometrical considerations and capillary forces exerted by
the defect (eq. (2)). For cylindrical defects, the pinning
force is composed of two contributions: The first one is
the pinning force at both side walls F d

wall with height H
and receding contact angle Θd

r ,

F d
wall = 2Hγ sin

(
α − Θd

r

)
, (5)

where α is the angle between the front side of the cylin-
drical defect and the contact line pinned to the defect
(fig. 4(a)). The second contribution comes from receding
contact angle differences of the defect Θd

r and the substrate
Θs

r on top of the circular shape

F d
top = waγ

(
cosΘd

r − cosΘs
r

)
, (6)

where wa = 2R sin α is the width of the contact line on
the top face of the defect (fig. 4(a)) (see the SM, section
“S8 geometrical approximation, error calculation”). In our
case we have a water drop on a surface with Θs

r = 90±5◦.
The receding contact angles on the cylinder surfaces of
the defect Θd

r are measured by taking side view optical
images (see the SM section “S7 contact angle extraction”).
In the case of our cylindrical model, the defect’s radius
R is one order of magnitude larger than it’s height H .
Therefore, F d

top dominates the force. The maximum force
is obtained when the contact line stretches over the full
width of the defect, i.e., α = 90◦ (see the SM, section
“S9 the force reaches theoretical maximum at α = 90◦”).

Fig. 4: (a) Schematic side-view of the deformation of a con-
tact line η (x, t) at a hydrophilic cylindrical defect on a hy-
drophobic surface interacting at the receding side of a drop.
The cylindrical defect (red color) has a height, H and a ra-
dius R. The position of the receding contact line on the top
face of the defect is described by an angle α. (b) Summary
of depinning forces measured by CLD, DAFI and our geomet-
rical consideration. (c) Spring constant of the fringe of the
drop’s contact line measured by DAFI. The increase in force
during the pinning process was fitted for each measurement
and then averaged over the dataset. Errors correspond to the
standard deviation within one dataset (minimum three inde-
pendent measurements). The red line is a linear fit to all data
points. The fitted line has a y-intercept of 0.017 ± 0.33 N/m.

Thus, the maximum force becomes directly proportional
to the defect width. For a defect with a radius R = 100 μm
and a Θs

r = 90 ± 5◦ and Θd
r = 54 ± 4◦ one obtains a

maximum force of ≈ 8.7 ± 1.4 μN, which agrees with the
measured values (fig. 2(a) and (b)).
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A relevant question is how the pinning forces depend
on the size of defects. Marsh et al. reported two regimes.
For narrow defects, the force increases with defect width
and, for larger defects, the force saturates [27]. Here, we
measured the maximum value of the pinning force FDAFI

vs. defect radius R (fig. 4(b), blue data points). Then,
we plotted the maximum value of the force determined by
fitting the deformation of the contact line ηdrop (xdrop, t)
(fig. 4(b), orange data points) and calculated the domi-
nant force F d

top via eq. (6) (fig. 4(b), red data points). All
forces overlap for defect radii ranging from 50 to 500 μm
within the error of the experiment. The direct measure-
ments by DAFI tend to result in slightly lower forces com-
pared to the other two. We attribute the lower forces to a
defect-induced elongation of the drop. The drop slightly
stretches since the force is higher is when the rear contact
line passes the defect. As a result, the drop’s width w
slightly decreases with CLD and according to eq. (1) the
lateral adhesion force decreases.

Pinning forces are largely independent on drop size and
sliding speed (see the SM, section “S10 volume or speed
dependency of defect peak force”). Larger defects, with a
R > 500 μm were also measured but then satellite drops
were left behind leading to a larger variation in pinning
forces [28] (see the SM, section “S11 definition of satellite
drop”). In an additional reference experiment, drops were
slid over defects at different speeds. Our analysis reveals
no dependence of the depinning force on speed in the range
between 250 μm/s and 10 cm/s.

Next, we calculate the spring constant of the defect-
induced fringe by calculating the slope in the linear regime
for different defect diameters and drop volumes (fig. 4(c),
for error calculation see the SM, section “S12 Defect spring
constant vs. defect size, from DAFI Measurements”).
The plot shows that the fringe elasticity increases linearly
with defect diameter. We expect this behavior because
the fringe length increases linearly with defect diameter.
Thus, according to eq. (6), the force increases linearly.
Here, we neglect contributions from the glass capillary de-
flection of DAFI because they are one order of magnitude
smaller than s in the linear regime (see the SM, section
“S6 force extraction”).

Conclusion. – We measured and calculated the lat-
eral force acting on drops while they slide over cylindri-
cal model defects on hydrophobic surfaces. Even though
the basic model of Joanny and de Gennes was derived for
infinitesimal small defects, forces calculated by a slightly
adapted model are in quantitative agreement with directly
measured forces and the forces calculated by an analytical
model.

The quantitative agreement even holds for defects reach-
ing a size of 40% of the drop diameter. This agreement
indicates that the capillary length for the cutoff length L
in the theory is a good choice, which was recently de-
bated [29]. In order to provide more insight into the
assumptions of the model of Joanny and de Gennes, we

extrapolate the linear dependence to defect diameters of
0 (fig. 4(c)). This value should correspond to the fringe
elasticity of an infinitesimal small defect as defined by
Joanny and de Gennes [6] because for infinitesimally small
defects, s ∼= η (x) at positions very close to the defect.
Joanny’s and de Gennes’ proportionality factor was de-
fined as k = πγ/ ln (L/x). Using our extrapolated value
of ≈ 17 mN/m, we calculate an x-value of ≈ 4 μm, which
is in agreement with a value of small linear dimension over
which the force is acting [30].

Experimentally, for simple geometrical defects, such as
the cylindrical ones used here, the pinning force can be
directly calculated by the capillary equation. In general,
the DAFI allows a direct measurement of forces caused
by arbitrary shaped defects. Such measurements do not
require contact line analysis, fitting or knowledge about
defect’s contact angles.
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