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Abstract – Studying the stability of synchronization of coupled oscillators is one of the prominent
topics in network science. However, in most cases, the computational cost of complex network
analysis is challenging because they consist of a large number of nodes. This study includes
overcoming this obstacle by presenting a method for reducing the dimension of a large-scale
network, while keeping the complete region of stable synchronization unchanged. To this aim,
the first and last non-zero eigenvalues of the Laplacian matrix of a large network are preserved
using the eigen-decomposition method and Gram-Schmidt orthogonalization. The method is only
applicable to undirected networks and the result is a weighted undirected network with smaller
size. The reduction method is studied in a large-scale a small-world network of Sprott-B oscillators.
The results show that the trend of the synchronization error is well maintained after node reduction
for different coupling schemes.

editor’s  choice Copyright c© 2022 EPLA

Introduction. – The study of structural and dynam-
ical features of real-world networks is facilitated using
complex networks in different fields such as biology [1,2],
neuroscience [3,4], ecology [5,6], and social science [7,8].
Synchronization is an important topic in complex net-
works [9–11]. Different types of synchronization have been
found there, including complete [12], phase [13], clus-
ter [14–16], explosive [17], and lag synchronization [18].
These synchronized states can emerge as the effect of
the static or time-varying interactions in either attractive
or repulsive couplings [19]. Moreover, enormous effort
has been devoted to the controllability and observabil-
ity of synchronized complex networks [20], improving the
synchronizability [21,22] and robustness of synchroniza-
tion [23].

Most real-world systems can be better modeled by
complex networks or even by considering higher-order in-
teractions [24]. These models may contain many nodes,
making their analysis difficult and costly. Therefore, any

(a)E-mail: sajadjafari@aut.ac.ir (corresponding author)

efficient reduction of the size is of interest. One of the ba-
sic methods to decrease network size is graph partitioning.
Various criteria exist whose persistence has been consid-
ered in reducing the network nodes. For instance, authors
in [25] seek to keep some physical properties of the network
after node reduction. Graph partitioning methods are
mostly considered as non-deterministic polynomial-time
problems [26], which cannot be solved in polynomial time.
Therefore, researchers have tried to find other methods to
reduce the network size. For example, Bona et al. [27] pro-
posed a reduced model for the public transportation com-
plex network with a long sequence of 2-degree nodes and
some hubs. Despite removing 2-degree nodes, the reduced
network has the same topological characteristics and skele-
ton as the original one. Besides, it was shown that this
reduction increases the network cluster coefficient and the
average degree while decreasing the path length.
Recently, different methods such as Spectral Coarse-

Graining [28] and a Search Algorithm to Dimension
Reduction [29] have been proposed. These algorithms de-
crease the dimension of the Laplacian matrix of the graph,
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while preserving some specific features of the parent net-
work to keep synchronization. Whereas Spectral Coarse-
Graining [28] iteratively reduces the dimension by merging
the nodes, the Search Algorithm [29] can effectively reduce
the number of nodes through a fast search. Another sys-
tematic approach for size reduction has been taken into
account recently. In 2020, Thibeault et al. developed
the Dynamics Approximate Reduction Technique to sim-
plify a complex network [30]. Their method, which was
based on spectral graph theory, enabled the prediction of
the synchronization regimes of phase oscillators in large-
scale networks by using dominant eigenvectors features.
In this method, the reduced network size is not arbitrary
and depends on the number of the network’s communi-
ties. In [31], the authors have reduced the dimension of a
non-locally coupled network by projecting the network dy-
namics onto the subspace that corresponds to the unstable
eigenvalues of the linear part of the network.

In this paper, we introduce a novel approach to reduce
the size of a complex undirected network while preserv-
ing its synchronization pattern. The key point for main-
taining the synchronization stability of a network is to
keep the eigenvalues of the Laplacian matrix that affect
the synchronization within the master stability function
approach. To this end, the eigen-decomposition and the
Gram-Schmidt methods are utilized, and a smaller adja-
cency matrix which is weighted is obtained.

The paper is organized as follows: First, the dimension
reduction method is described in the next section in detail.
Then, a large-scale network of chaotic Sprott-B systems is
analyzed, and the preservation of synchronization pattern
after reduction is checked. The results are presented in
the third section. Finally, the conclusions of the paper are
given in the fourth section.

Dimension reduction method. – This section de-
scribes the method used to reduce the dimension of a large
undirected network to a smaller one. The aim is to pre-
serve the synchronization pattern of the large-scale net-
work after dimension reduction. It has been shown that
the stability of synchronization in networks relies on the
coupling topology [32]. According to the master stability
function method [33], the region of stable synchronization
depends on the eigenvalues of the connectivity matrix of
the graph. Here, the reduction method is based on obtain-
ing a reduced connectivity matrix with desired eigenvalues
which are those involved in determining the synchroniza-
tion stability region. The eigen-decomposition factoriza-
tion is used for finding this reduced connectivity matrix.

Master stability function. The master stability func-
tion (MSF) [33] is a method for finding the local stability
of synchronization. The description of this approach is
given in the following.

It is supposed that N identical oscillators with the indi-
vidual dynamics of F (.) are linearly coupled by the over-
all coupling strength d through a Laplacian connection

Fig. 1: Different classes of master stability function. (a) Class
Γ0 with no zero-crossing point, (b) class Γ1 with only one zero-
crossing point, (c) class Γ2 with two zero-crossing points, and
(d) class Γ3 with three zero-crossing.

matrix G. For the oscillator i, one can write

Ẋi = F (Xi)− d

N∑
j=1

GijH (Xj), i = 1, 2, . . . , N, (1)

where H indicates the coupling function. When all os-
cillators lie in the synchronization manifold, i.e., X1 =
X2 = . . . = XN = Xs, the linearization of eq. (1) around
the synchronized solution Xs is defined as the variational
equation and can be written as

η̇l = [DF (Xs)− αlDH (Xs)] ηl, l = 1, 2, . . . , N, (2)

in which αl = dλl, where λl is the l-th eigenvalue of the
matrix G. Also, DH and DF are the Jacobian matrixes of
H and F , respectively. The variational equation (eq. (2))
determines the stability of synchronization, which can be
found by calculating its maximum Lyapunov exponent.
The maximum Lyapunov exponent (Λ) of eq. (2) as a func-
tion of α = dλ is known as the master stability function
(MSF). Considering a connected and undirected network,
the first eigenvalue of G is zero (λ1 = 0), which is along
the synchronization manifold. The other eigenvalues are
sorted assendingly λ2 ≤ λ3 ≤ . . . ≤ λN . When Λ < 0 for
all eigenvalues λi, i = 2, . . . , N of the Laplacian matrix, all
the nodes of the network oscillate in complete synchrony.
Huang et al. [34] proposed a general scheme for cate-

gorizing the MSFs and introduced four classes. The clas-
sification is based on the number of zero-crossing points
of the master stability function curve vs. α, such that Γk

represents a class in which Λ (α) crosses the zero k times.
In case the synchronization cannot be reached for any α
value, the master stability function has no zero-crossing
point and is classified as Γ0 (fig. 1(a)). The master sta-
bility function with only one zero-crossing point, αmin, is
known as class Γ1, which is shown in fig. 1(b). Sorting
the eigenvalues of the Laplacian matrix (G) in ascending
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Fig. 2: The schematic of the proposed method to reduce an N -dimensional network to n-dimensional one (N > n) using
eigen-decomposition factorization and Gram-Schmidt orthogonalization.

order (i.e., λ1 = 0), the synchronization manifold of this
class is stable if

αmin < dλ2 ≤ dλ3 ≤ . . . ≤ dλN (3)

holds. Hence, choosing the coupling strength as d > αmin

λ2

ensures the stability of the synchronization manifold. In
other words, the synchronization region, which is un-
bounded depends only on λ2. In class Γ2 (fig. 1(c)),
the master stability function vs. α has two zero-crossing
points, αmin and αmax, where the region αmin < α < αmax

is the stability region (Λ < 0). Therefore, an upper bound
of the eigenvalues is also required for the stability region.
In this case, the synchronization is stable if

αmin < dλ2 ≤ dλ3 ≤ . . . ≤ dλN < αmax. (4)

Consequently, synchronization can be achieved for αmin

λ2
<

d < αmax

λN
. By taking R ≡ λN

λ2
as an eigenratio, the syn-

chronization can occur if R < αmax

αmin
. Thus, in this class,

the stability region of synchronization depends only on the
value of R. Barahona and Pecora [35] investigated the sta-
bility of synchronization in small-world networks by using
the concept of the first non-zero and maximum eigenvalues
of the Laplacian matrix.
Finally, the fourth class belongs to the master stability

function with more than two zero-crossing points; as an
example, class Γ3 with three zero-crossing is illustrated in
fig. 1(d). For these systems, the synchronization can be
achieved if all dλi reside in the Λ < 0 regions. Since this
class is more complex and case-dependent, we ignore it in
this study.
According to the above definitions of the master sta-

bility function classifications, the synchronization region
is only affected by λ2 and λN . In fact, two networks
have the same synchronization region if they have the
same λ2 and λN . Based on this concept, a reduced net-
work can have the same synchronization pattern as the

original network by choosing its λ2 and λmax the same as
the original network. To find the connectivity matrix with
defined eigenvalues, the eigen-decomposition approach can
be used which is explained in the next subsection.

Eigen-decomposition and Gram-Schmidt orthogonaliza-
tion of Laplacian matrix. Consider λi, i = 1, 2, . . . , N
and λ′

i, i = 1, 2, . . . , n as the i-th eigenvalue of the orig-
inal and reduced Laplacian matrix, respectively, and R
and R′ as their eigenratio as well. To have the same
synchronization pattern, we must keep λ2

∼= λ′
2 and also

R ∼= R′, leading to λN
∼= λ′

n. To determine the Lapla-
cian matrix of the reduced network with desired eigenval-
ues, the eigen-decomposition factorization can be utilized.
According to this factorization, any positive semidefinite
matrix, e.g., A, can be factorized as

A = QDQ−1, (5)

in which D is a diagonal matrix whose diagonal ele-
ments are the eigenvalues of A, and the corresponding
eigenvectors lie in the columns of Q. Therefore, by con-
sidering D as the matrix of eigenvalues of the reduced ma-
trix (n×n) and finding an appropriate eigenvector matrix
(Q), the Laplacian matrix An×n can be computed using
eq. (5). Since the matrix A is assumed symmetric, we can
write

A = AT =
(
QDQ−1

)T
=

(
Q−1

)T
DQT , (6)

leading to Q−1 = QT , where T denotes the transposed
matrix. Therefore, Q must be an orthogonal matrix. To
form an orthogonal basis, the Gram-Schmidt process can
be used (see appendix for more details). Since the first
eigenvalue of A is zero, its corresponding eigenvector must
be chosen as v1 = [1, 1, . . . , 1]1×n

T
for the Gram-Schmidt

process. Selecting the other independent basis vectors is
arbitrary. Then, using the orthogonal basis vectors, Qn×n

can be obtained.
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Err =
1

T (N − 1)
lim

T→∞

∫ T

0

N∑
k=2

√
(x1 − xk)

2
+ (y1 − yk)

2
+ (z1 − zk)

2
dt. (8)

Fig. 3: The master stability function vs. α for Sprott-B chaotic system (eq. (7)) under three different couplings: (a) y → x
(class Γ1), (b) x → y (class Γ2), and (c) x → z (class Γ0). Coupled Sprott-B systems represent different synchronization patterns
according to the coupling scheme.

In order to determine Dn×n, n eigenvalues in the as-
cending order are needed, where three of them are known:
λ′

1 = 0, λ′
2 = λ2, and λ′

n = λN . The rest of the needed
eigenvalues (n − 3 eigenvalues) are found by partitioning
the N − 3 eigenvalues of the Laplacian matrix of the orig-
inal network. Here, we use the k-means clustering algo-
rithm. k-means is the most popular clustering method
due to its simplicity (for more details, see [36]). After ob-
taining an orthogonal matrix Q, and a diagonal matrix
D, a Laplacian matrix A with the desired dimension and
eigenvalues can be found by using eq. (5). It should be
noted that the obtained matrix is weighted. The described
method for obtaining the reduced connectivity matrix A
is presented in fig. 2.

Simulation results. – In this section, we apply
the proposed method to reduce a high-dimensional
Watts-Strogatz small-world network with N = 500 nodes
and 105 links. It is assumed that the individual dynamics
of the node obey the chaotic Sprott-B equations [37],⎧⎨

⎩
ẋ = yz,
ẏ = x− y,
ż = 1− xy.

(7)

The size of the reduced network is assumed as n = 100
here. We consider different coupling functions to inves-
tigate different synchronization patterns. For the orig-
inal network, we have λ2 = 339.47 and λN = 449.80.
Thus, we keep these eigenvalues and obtain the other
n − 3 eigenvalues by classifying N − 3 eigenvalues of the
original network. So, the matrix D is found. Next, the
eigen-decomposition factorization and Gram-Schmidt or-
thogonalization are employed, and an orthogonal matrix
of eigenvectors is obtained (Q). Finally, a zero-row sum,
symmetry Laplacian matrix of size n = 100 with desired
eigenvalues is found using eq. (5). The values of the two
most essential eigenvalues and eigenratio used in this ex-
ample are represented in table 1. It can be seen that the

Table 1: Two eigenvalues and eigenratios of the reduced net-
work and its parent.

Original network Reduced network
λ2 339.47 339.50
λmax 449.80 449.80
R 1.32 1.32

eigenvalues of the reduced and original networks are ap-
proximately equal.
For more investigations, three couplings with different

MSF classes are considered. In fig. 3, the master stability
functions vs. α are plotted. Three different couplings
y → x, x → y , and x → z are considered. The notation,
e.g., x → z, means that the coupling which is defined on x
state variables is added to z state variables. According to
the eigenvalues presented in table 1, the stability regions
in y → x coupling are d > 0.003069 and d > 0.003081 for
the original and reduced networks, respectively. For x → y
coupling, the stability regions of the original and reduced
networks are 0.002957 < d < 0.0031030 and 0.002962 <
d < 0.0031023, respectively.
Next, the networks are solved numerically, and the syn-

chronization error is calculated using eq. (8),

see eq. (8) above

The synchronization errors for both networks and each
coupling scheme are illustrated in fig. 4. The upper and
lower panels represent the errors of the parent and reduced
networks, respectively. It can be observed that the syn-
chronization regions, i.e., the region of coupling strength
(d) with zero error, are the same for both networks. More-
over, the synchronization errors have similar trends in the
original and reduced networks.
To better compare the synchronization behavior of both

networks, time series, spatiotemporal patterns, and time
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Fig. 4: The synchronization errors of coupled Sprott-B systems for the original (upper plots) and reduced (lower plots) networks
as a function of coupling strength d. The coupling is on (a) class Γ1 (y → x), (b) class Γ2 (x → y), and (c) class Γ0 (x → z).
The synchronization region and the trend of error are similar for both networks in each class.

Fig. 5: (a) Time series, (b) spatiotemporal pattern, and (c)
time snapshot at t = 4000 for y → x coupling which is class Γ1.
The left and right panels are the results of the original network
(N = 500) and the reduced one (n = 100), respectively. The
coupling strength is d = 3.7× 10−3 , in which all oscillators lie
in the synchronous manifold. The oscillations of both original
and reduced networks are synchronous in this case.

snapshots are presented in figs. 5–8 for synchronous and
asynchronous states for master stability function of class
Γ1 and class Γ2. Figure 5 illustrates the patterns of both
networks for d = 3.7 × 10−3 which is in the synchroniza-
tion regime under y → x coupling. Also, the results for
d = 2.7 × 10−3 in which the oscillators of networks un-
der y → x coupling are asynchronous are shown in fig. 6.
Moreover, the networks have the same behavior for class
Γ2 (x → y coupling). In fig. 7 and fig. 8, the synchronous
and asynchronous behavior of both networks is repre-

Fig. 6: (a) Time series, (b) spatiotemporal pattern, and (c)
time snapshot at t = 4000 for y → x coupling which is class
Γ1. The coupling strength is d = 2.7 × 10−3 , that leads to
asynchronous oscillations in the original (left panel) and the re-
duced networks (right panel). This case exhibits asynchronous
oscillations in both networks.

sented by considering d = 3.0× 10−3 and d = 3.2× 10−3,
respectively. It can be observed that the networks have
similar synchronous and asynchronous patterns.

Conclusion. – Large-scale complex networks are im-
portant models for describing various real-world networks.
However, their high dimensionality often gives rise to high
computational costs for analysis and leading them to be
time-consuming. Hence, reducing the dimension of these
networks is essential. On the other hand, synchronization
is a significant phenomenon in complex networks. There-
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Fig. 7: (a) Time series, (b) spatiotemporal pattern, and (c)
time snapshot at t = 4000 for x → y coupling which is class
Γ2 for the original (left panel) and the reduced networks (right
panel) at d = 3.0×10−3. Synchronized oscillations are observed
in both networks.

Fig. 8: (a) Time series, (b) spatiotemporal pattern, and (c) the
last time snapshot at t = 4000 for x → y coupling, which is
class Γ2, with d = 3.2 × 10−3. Asynchronous oscillations are
observed in both the left panel (the original network) and the
right panel (the reduced network). It appears that in this case
both networks oscillate asynchronously.

fore, it is desired not to disturb the synchronization pat-
tern during dimension reduction. This study addressed
this issue by decreasing the size of the Laplacian ma-
trix of a large-scale network using the eigen-decomposition
method and the Gram-Schmidt orthogonalization process.
The original network is considered to be undirected; there-
fore, the eigenvalues of the Laplacian matrix are real. To
construct a network with eigen-decomposition approach,
firstly, the eigenvalues of the reduced Laplacian matrix
must be defined. According to the master stability func-
tion, the region of stable synchronization depends on the
minimum and maximum non-zero eigenvalues. Thus, we

kept them the same as the original network and selected
the other eigenvalues by classifying the original eigenval-
ues. Then, the matrix of eigenvectors was obtained by
the Gram-Schmidt orthogonalization process. Finally, us-
ing the eigenvalues and eigenvectors, a weighted reduced
Laplacian matrix was obtained. The method was applied
on a 500-node small-world network of Sprott-B systems.
The results were validated via synchronization error, time
series, spatiotemporal patterns, and snapshots of both net-
works for different coupling functions in the synchronous
and asynchronous states. Our findings indicate that the
number of nodes of any complex network can be decreased
regardless of network topology and node dynamics with
preserving the synchronization stability region.
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Appendix: the Gram-Schmidt process. – Suppose
the arbitrary set {−→v 1,

−→v 2, . . . ,
−→v k} as the basis for a given

set V , whose vectors are linearly independent. The Gram-
Schmidt process can generate an orthogonal basis for V .
The vectors {−→u 1,

−→u 2, . . . ,
−→u k} are said to be orthogonal

if and only if the inner product of any two different vectors
of them is equal to zero, i.e., 〈−→u i,

−→u j〉 = 0∀i 
= j. This
set of new vectors can be constructed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−→u 1 = −→v 1,

−→u 2 = −→v 2 −
〈−→v 2,

−→u 1〉
〈−→u 1,

−→u 1〉
−→u 1,

−→u 3 = −→v 3 −
〈−→v 3,

−→u 1〉
〈−→u 1,

−→u 1〉
−→u 1 −

〈−→v 3,
−→u 2〉

〈−→u 2,
−→u 2〉

−→u 2,

...

−→u k = −→v k −
k−1∑
p=1

〈−→v k,
−→u p〉

〈−→u p,
−→u p〉

−→u p,

where 〈.〉 denotes the inner product.
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[2] Gosak M., Milojević M., Duh M., Skok K. and Perc

M., Phys. Life Rev., 41 (2022) 1.
[3] Rakshit S., Majhi S., Kurths J. andGhosh D., Chaos,

31 (2021) 073129.
[4] Chouzouris T., Omelchenko I., Zakharova A.,

Hlinka J., Jiruska P. and Schöll E., Chaos, 28 (2018)
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