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Abstract – The aggregation of microorganisms in colonies and biofilms underpins a myriad
of biological processes, and has crucial implications in ecology and biomedical sciences. While
much of our knowledge of microbial motion is based on single-cell mechanisms or cell-cell inter-
actions, the origin of cooperativity in microbial communities is not yet fully understood. Here,
we reveal the existence of a continuum percolation transition in two model suspensions of pusher-
type microswimmers: an asymmetric dumbbell and a squirmer model. Clusters of swimmers
held together by hydrodynamic forces dynamically aggregate and separate. Using simulations
with explicit hydrodynamics and theory, we find that as the microswimmers’ filling fraction in-
creases, the cluster size distribution approaches a scale-free form and system-spanning clusters
emerge.
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Introduction. – The collective organization and ag-
gregation of suspensions of microorganisms such as
bacteria or microalgaeplays a crucial role in bacterial
aggregates [1], biofilms [2], and phytoplankton floccula-
tion [3,4]. Microbial aggregation is a striking result of
the concurrence of physical and biological forces [5,6],
with important implications such as wastewater manage-
ment [7,8], biomedical treatments [9], or the marine food
webs [3]. Extensive investigations have shown that ef-
fects such as self-concentration [10,11], swarming [12],
spontaneous formation of spiral vortices [13] and of fluid
flows [14], bacterial turbulence [15], and biofilms [16] are
strongly correlated effects. Invariably, microbial motion
takes place in an aqueous environment. Although the
long-ranged nature of hydrodynamic interactions among
swimming cells is often recognized [17–23] as naturally
forming the backbone of collective effects, it is still not
fully understood how self-organization emerges from cor-
relations. Recent theoretical [24–28] and experimen-
tal works [29–33] have found evidence of concentration
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fluctuations and dynamical transitions to clustered states.
A particularly interesting route to aggregation is the per-
colation transition, indications thereof have been seen in c-
shaped active Brownian particles [25], eukaryotic cells [34],
and at the onset of mesoscale turbulence [35].

Here, we combine particle-based computer simulations
which include explicit hydrodynamic interactions, and
theoretical arguments with methods put forward in [11]
to study a bulk suspension of microswimmers. In order
to investigate the generality of our results, we study two
model swimmers differing in shape: asymmetric dumbbells
and spherical squirmers. These models, though they in-
clude some simplifications, are analytically tractable and
can provide some insight into the underlying physics; we
also study the Fokker-Planck equation of our system and
find an instability leading to the growth of density fluc-
tuations at the same average concentration as found in
the simulations. In this work, we find that our model mi-
croswimmers form dynamic aggregates, held together by
hydrodynamic interactions, and that upon increasing the
suspension’s filling fraction undergo a percolation tran-
sition. We verify that, properly applied, some classical
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concepts from percolation theory [36] such as scaling laws
and critical exponents can be used to characterize this ac-
tive percolation transition.

Simulation methods. – We consider a suspension
of pusher-type microswimmers, such as the bacteria Es-
cherichia coli. We employ a stroke-averaged biological mi-
croswimmer model, consisting of an asymmetric dumbbell,
which represents the swimmer’s body and fore-aft asym-
metry [11,37–39], see fig. S1 in the Supplementary Mate-
rial Supplementarymaterial.pdf (SM) (similarly shaped
phoretic microswimmers were studied in [40,41]). The dy-
namics of this dumbbell-shaped swimmers are governed
by Newton’s equations of motion [11]. As the swim-
mer is asymmetric in shape, the hydrodynamic center is
shifted away from the center of mass of the swimmer,
which enables the swimmers’ propulsion. Hydrodynamic
interactions generally depend on shape [42]. In order
to investigate the generality of our results, we also con-
sider a pusher-type squirmer model [43,44], differing in
both shape and propulsion mechanism from the dumb-
bell model, to test the robustness of our results; see SM,
sect. V. Note that we do not include details of the swim-
mer’s flagella and synchronization effects [45,46].

Experiments [47] have shown that the hydrodynamic
flow field of the pusher-type swimmer E. coli corresponds
to a force dipole. The hydrodynamic flow field gener-
ated by each microswimmer induces interactions which
play a key role in the microswimmers’ collective behav-
ior [18,48–50]. Furthermore, no-slip boundary conditions
are implemented on the dumbbell-shaped swimmer’s body.

To resolve the hydrodynamic interactions numerically,
we use the multiparticle collision dynamics (MPCD) tech-
nique. MPCD is a particle-based method accounting for
hydrodynamic modes up to the Navier-Stokes level [51].
Specifically, we use the MPCD-at + A [52,53] technique,
that has an Anderson thermostat which conserves the
fluid’s temperature and conserves angular momentum; the
latter is necessary to correctly account for rotations of
the swimmers [53]. The MPCD fluid is characterized by
its temperature T , MPCD particle mass m, and size of a
MPCD grid cell a as a unit of length. In our simulations,
the average number of MPCD particles in each MPCD cell
〈NC〉 = 20 and the timestep δt = 0.01

√
ma2/(kBT ). The

size of an individual swimmer is σ ≈ 5a, which ensures
an accurate calculation of small and large scale hydro-
dynamic effects. The repulsive steric interactions among
swimmers are modeled using a Weeks-Chandler-Andersen
potential [54] between each sphere of the dumbbells. In the
simulations of squirmers, the particle diameter is σ = 6a.
In all our simulations, we use a cubic domain with periodic
boundary conditions and constant volume.

We perform simulations of the dumbbell swimmers in
domains of linear size L = 100a, 120a, 130a, 200a. We
vary the filling fraction of our system defined as φ =
NVsw/L

3, where Vsw is the volume of an individual swim-
mer. In the small system (L = 100a) we simulate a

range of N = 388–2300 swimmers, corresponding to filling
fractions from φ = 0.07 to φ = 0.43, while in the large
system (L = 200a) we use N = 3800–18200, i.e., from
φ = 0.09 to φ = 0.43. The active state is character-
ized by the Péclet number P = vσ/D, which compares
the self-propulsion speed v = 0.05

√
kBT/m (active trans-

port) to the diffusive transport D = 1.4×10−4a
√
kBT/m

of a microswimmer, and by the Reynolds number (mea-
suring the ratio of inertial to viscous forces) R = σvρ/η,
where ρ is the fluids’ density and η is the fluid’s viscosity.
The kinematic viscosity of our fluid is ν = 3.88a

√
kBT/m

and the rotational diffusion coefficient of a swimmer is
DR = 4.1× 10−6

√
kBT/(ma2) [11]. In our simulations of

dumbbells, the Péclet number is P ≈ 1.8 × 103 and the
Reynolds number is R = 0.1 (see the SM for additional
results with R = 0.01). We averaged over 3000 simu-
lation configurations after the system reached a steady
state. More details on our computational model can
be found in [11] and the SM. For the squirmer simula-
tions, the system size is L = 130a and the number of
swimmers is N = 1800–8400. We fix the Péclet num-
ber P = v0σ/D = 1.3 × 103 and the Reynolds number
R = 0.08.

To quantify the aggregation process, we perform a clus-
ter analysis based on the interparticle distance, i.e., if
the center-of-mass distance of two swimmers is less than
rcl = 1.5σ, both particles are assigned to the same cluster
(rcl is the distance at which the radial distribution func-
tion crosses unity [55]; changes to rcl within reasonable
bounds do not affect our results; see the SM, sect. VII).
Given a particle-based observable Fi, we compute the clus-
ter average F (s) =

〈
1
s

∑
i Fi

〉
clust

. To this end, i) we per-
form a cluster analysis, and identify the clusters present in
the system; ii) we compute s−1

∑
i Fi separately for each

cluster; iii) we average the results only among homologous
clusters, i.e., clusters with the same size s.

Percolation of microswimmers. – Our model sus-
pension consists of a large number of microswimmers in
three dimensions. The apparently chaotic motion of the
swimmers generates dynamical aggregates, that is, rather
long-lived groups of particles in close proximity of each
other. Figures 1(a)–(c) show typical, steady-state config-
urations of our pusher-type swimmers at three different
filling fractions φ. The physical origin of the attractive
forces holding together the particles are the long-ranged
hydrodynamic interactions. Generally, pusher-type swim-
mers swimming side by side exert a hydrodynamic attrac-
tion on each other [45,56]. In absence of external fields,
the presence of other swimmers produces a more complex
texture of attractive and repulsive configurations [55].

Figures 1(a)–(c) show in different colors the resulting
clusters for those configurations. These are dynamical
clusters where particles easily join or leave a given clus-
ter. As the filling fraction increases, clusters grow in size;
at φ = 0.22 we find clusters comparable with the linear
size of the system. For φ ≥ 0.26, very large clusters (but
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Fig. 1: Percolation and scaling properties of swimmers. (a)–(c) Example configurations of dumbbell swimmers at different filling
fractions (L = 200a). Gray transparent particles do not belong to any cluster. Different colors correspond to different clusters.
The system-spanning cluster at φ = 0.26 is consistent with a percolation transition. On the bottom right of each configuration a
zoom-in view of the largest cluster identified is shown. (d) Fraction of number of particles in the largest cluster to total number
of particles Nl/N . Inset (d) shows the average cluster lifetime. (e) Cluster size distribution ns normalized to the number of
single-particle clusters n1 for different filling fractions (L = 200a). The solid line is a fit to the data for φ = 0.22, giving the
Fisher exponent τ = 2.033 ± 0.003. The inset (e) shows the fitted data (φ = 0.22) for the sake of clarity. (f) Collapse of the
probability distribution to an exponential scaling function. (g) Radius of gyration for different filling fractions (L = 200a).
The solid line is a fit to the data for φ = 0.22, giving the fractal dimension df = 1.99 ± 0.02. The inset shows the fitted data
(φ = 0.22) for the sake of clarity.

still dynamically rearranging) spanning the entire system
emerge. In figs. 1(a)–(c) we also show the largest clus-
ter found in each system displayed. We discuss below the
fractal dimension of the clusters. We note that the clus-
tering shown here is a result of hydrodynamic attractions
between microswimmers, and is distinct from clustering
mechanisms in dry active systems [57–59].

While it is clear that there are hydrodynamic attrac-
tions, it is not at all obvious that these attractive forces

should spread until the entire system is engulfed in a
closely connected aggregate. Beyond the simple physical
picture discussed above, more detailed models [48–50,60–
62] reveal an instability of the orientational field. However,
the concentration of swimmers is known to have important
effects [18,63], that need to be taken into account.

Physical forces. – We now derive a Fokker-Planck de-
scription of our swimmer suspension to further understand
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the origin of the clustering in relation to hydrodynamic
interactions; see also the SM, sect. II. Microswimmers
obey the following Langevin equations

driμ

dt = u (riμ)
where i ∈ {F,B} refers to the front or back sphere
of the μ-th swimmer, and u is the velocity of the sur-
rounding fluid. The fluid velocity u evolves according
to the Stokes equation, η∇2u = ∇P − factive + fnoise,
where P is the pressure and η is the fluid’s viscosity,
factive =

∑N
μ=1 feμ [δ (r − rFμ)− δ (r − rBμ)], where f

is the strength of the dipole, eμ = (rFμ − rBμ)/l is the
orientation of the dumbbell, and δ(r − rμ) is the Dirac
delta distribution, and fnoise are Gaussian white noises
(see the SM).
The Fokker-Planck equation for the probability p(r, e, t)

to find a swimmer at position r with orientation e at time
t reads

∂

∂t
p = −∇ · [v(c)ep]− 1

ζhy
∇ · (Fhyp) +D∇2p

− 1

ζhyl2

(
e× ∂

∂e

)
· τhy p+DR

(
e× ∂

∂e

)2

p, (1)

where v(c) ≡ v0−cζ models the steric interactions between
swimmers, with the concentration of the swimmers c and
the factor ζ controlling the strength of coupling to steric
interactions. Furthermore, v0 = −fΔa/(8πηlā) is the
swimmers’ self-propulsion speed, depending on the swim-
mer’s average size ā = (aB + aF )/2 and shape anisotropy
Δa = (aB − aF ), and length of the dumbbell l; aF , aB
are the radii of the front, back sphere of the dumbbell, re-
spectively; D and DR are the translational and rotational
diffusion coefficients, respectively (see the SM, sect II for
the definition of the hydrodynamic forces and torques in
eq. (1)).
A linear stability analysis of the moments (concentra-

tion, polarization, and nematicity) including the coupling
of steric effects with hydrodynamics in eq. (1) reveals that
fluctuations in the swimmers’ concentration δc̃ become un-
stable; in Fourier space

∂tδc̃ = −ω(θk)
fl(v0 − 2c0ζ)

30āη2(v0ζc0)2

×
[
30āη(v0 − c0ζ) + c0Δafl2

]
δc̃. (2)

Here, ω(θk) < 0 for a broad range of values of the az-
imuthal angle θk of the wave vector k. Furthermore, f > 0
for pushers, and c0 is the average concentration. The term
proportional to δc̄ on the right-hand side of eq. (2) is pos-
itive in a broad range of swimmers’ configurations, which
indicates a growth of density fluctuations in the swimmers
(see the SM, sect. II for analytical details). Both our sim-
ulations and analytical calculations show that the largest
fluctuations in the density of microswimmers occur at fill-
ing fraction of approximately 0.2 (see the SM, sect. II and
also [11]).

Scaling properties. – To scrutinize what the statis-
tical importance of the active aggregates is, we compute

the percolation order parameter, i.e., the fraction of the
largest cluster, defined as the ratio between the number of
particles belonging to the largest cluster Nl and the total
number of particles in the system N . Figure 1(d) shows
the steady-state fraction of the largest cluster Nl/N for
varying filling fractions φ for two different system sizes.
The fractional size of the largest cluster Nl/N is negligi-
ble at low φ, but beyond a threshold value φc ≈ 0.22 it
increases continuously towards unity, indicating that the
largest cluster occupies the entire system. This state of
affairs is reminiscent of classical percolation, and Nl/N
acts as an order parameter for the percolation transition.
To meaningfully speak of clusters, we compute their av-

erage lifetime tlife as follows. Given a cluster at time t0,
if at least 7 of its member particles are still within the
cutoff distance of our cluster definition at time t1 then
that cluster still lives at time t1. Lifetimes are calculated
for all clusters with s ≥ 7 particles, and averaged over all
homologous clusters at a given φ. As a comparison, the
average time an isolated swimmer need to travel its own
body length is 100

√
ma2/(kBT ). Figure 1(d) inset shows

that the average tlife increases with φ and then approaches
a finite value at the percolation transition. This asymp-
totic value at large filling fractions is dominated by the
system-spanning cluster.
Percolation theory predicts a scale free probability dis-

tribution of cluster sizes at the critical point. We test
this hypothesis by computing the distribution ns(s) of
cluster sizes s. Figure 1(e) shows ns for different φ. Al-
though these clusters are dynamic in nature, and a given
cluster may grow or shrink with time, the cluster size dis-
tribution is statistically stationary, that is, the distribu-
tion of clusters does not depend on time. As φ increases
towards φ = 0.22, the cluster size distribution ns(s) in-
creasingly approaches a power-law form, indicating the
absence of any characteristic length scale. Identifying
φc = 0.22 as the critical filling fraction (fig. 1(e) inset)
we find ns(s)|φc

∼ s−τ , where τ ≈ 2.033 ± 0.003 is the
Fisher exponent [36] (hereinafter errors indicate standard
deviation of the fit). These results are reminiscent of con-
tinuum percolation of colloids [64] or simple fluids [65],
and confirm our hypothesis.
Away from φc, the theory predicts that

ns(s) ∼ s−τexp (−s/sξ) , (3)

where sξ is the cutoff cluster size. Equation (3) implies a
non-monotonous behavior of the cluster distributions that
is seen in fig. 1(e). We find sξ for each filling fraction by
fitting the respective cluster size distribution in fig. 1(e)
to eq. (3). In fig. 1(f) we plot sτns(φ)/n1(φ) against s/sξ,
which suggests a collapse of the data onto an exponential
master curve, as predicted by eq. (3).
The geometrical features of the clusters can be described

by their radius of gyration and fractal dimension. In
fig. 1(g) we show the dependence of the radius of gyra-
tion R2

s(s) ≡
〈
1
s

∑
i(ri − rCoM)2

〉
clust

on cluster size s for
different filling fractions, where rCoM is the center of mass
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of each cluster [36]. As expected from percolation, the dis-
tribution at filling fraction φ = 0.22 approaches a power
law, whose exponent is the fractal dimension of the clus-
ters, df = 1.99 ± 0.02, which indicates a planar-like ge-
ometry, for φ ≈ 0.2 (see also the Supplementary Movie
cluster1.mp4).
Information on the radius of gyration Rs allows

us to compute the cluster’s correlation length ξ2 =
2
∑

s Rsnss
2/
∑

s nss
2, which upon approaching the crit-

ical point φc is expected to diverge as a power law ξ ∼
|φ − φc|−ν [36]. Figure 2(a) shows the dependence of
the correlation length ξ on the reduced filling fraction
|φ − φc|/φc. Our calculations are consistent with power-
law behaviors, and from a best fit we obtain φc = 0.229
and φc = 0.204 for the L = 200a and L = 100a, respec-
tively (φc is expected to be affected by finite-size effects).
We find a correlation length exponent ν = 1.11± 0.04.
The divergence of the correlation length at the critical

point has important consequences. It means that close to
the percolation critical point all correlation functions are
scale invariant, and the only relevant degrees of freedom
are related to the correlation length ξ. The system is scale
invariant. Thus, by first rescaling all distances and then
renormalizing the correlation functions, we should obtain
an equivalent system, described by the same equations.
These are the key ideas of the renormalization group ap-
proach [66].
We can now rationalize some of these results by means

of a theoretical argument employing a real-space renor-
malization group (RSRG) calculation of our percolation
problem. We consider a cubic lattice in which sites are
occupied with probability p and are vacant with proba-
bility q = 1 − p; we use this lattice to coarse-grain our
continuous system; the lattice cells (i.e., the sites) are oc-
cupied or empty depending on the occupation of swim-
mers. Next, we group the cells by forming larger blocks of
linear size b = 2. The blocks cover the lattice and maintain
its original symmetry. These blocks will play the role of
renormalized sites. Given that sites in the original lattice
are independently occupied with probability p, we must
choose a block occupation probability p′ = R(p) in such
a way that R(p) contains the essential physics of our per-
colation problem [67]. The RSRG approximation consists
in taking sites independently occupied with probability p′.
Note that percolation involves the formation of an infinite
connected cluster, that is, one that spans the entire lat-
tice. It is thus sensible to define a block as occupied if
and only if it contains a set of sites such that the block
“percolates” by means of planar clusters. This will define
R(p).

Our RSRG rescales the lattice spacing by a factor b =
2 in each spatial dimension. Thus, the rescaled blocks
contain 8 cells from the original lattice. The correlation
length will be rescaled as ξ′ = b−1ξ, and the correlation
length exponent can be found as ν = ln b

lnλ , where λ is the
eigenvalue of the RSRG transformation linearized around
the fixed point pc, λ ≡ dR

dp (p)|p=pc
.

Fig. 2: Dependence of the (a) correlation length, (b) mean
cluster size, and (c) cutoff cluster size on the filling fraction
φ. Solid green lines are power law fits to the data for the
L = 200a systems. For (a) the correlation length we find the
critical exponent ν = 1.11± 0.04, for (b) the mean cluster size
we find the critical exponent γ = 1.05 ± 0.08 and for (c) the
cutoff cluster size we find the critical exponent σ = 0.49±0.09.
(d) Critical filling fraction as a function of system size is shown.
The fit yields an ordinate intersect 0.2578± 0.0005.

Because the fractal dimension df ≈ 2, in our cubic lat-
tice, a cell is occupied if a planar configuration of sites is
occupied. Thus, we only consider configurations of four
(tetramers) and three (trimers) particles as our clusters.
We now need to count all possible ways to form planar
tetramers and trimers. For tetramers, this is equivalent
to counting the sides, face diagonals, and body diagonals
of a cube, giving a total of 18 configurations. Trimers can
be thought of as tetramers with one hole; thus there are
4 ways to place a hole in a tetramer; in total there are 72
configurations. We find

p′ = R(p) = 18p4(1− p)4 + 72p3(1− p)5. (4)

We identify pc with φc = 0.229, and we find ν 
 1.21.
Our RSRG estimate comes relatively close to the value of
ν estimated from our simulations.
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Further statistical information can be extracted from
the mean cluster size S =

∑
s nss

2/
∑

s nss, which close
to criticality scales as S ∼ |φ − φc|−γ defining the expo-
nent γ [36]. Figure 2(b) shows the mean cluster size as
a function of |φ − φc|/φc. We obtain an optimal critical
filling fraction φc = 0.229 (L = 200a) and φc = 0.204
(L = 100a). Additionally, we fitted a power law distri-
bution to test the predicted scaling law for S and find
γ = 1.05± 0.08.

Because our simulations are based on finite systems, the
growth of the mean cluster size S will be capped once the
correlation length ξ ≈ L; thus S will obey the general
scaling S(ξ, L) = ξγ/νs1(L/ξ). Close to φc, ξ � L and we
expect S(ξ, L) ∝ Lγ/ν . This is verified by the asymptotic
values in fig. 2(b). These results bolster our assumption
that the transition we find in our microswimmer system
corresponds to a percolation transition.

We can extract another critical exponent from the cutoff
cluster size sξ, which is also predicted to diverge close to

percolation sξ ∼ |φ − φc|−
1
σ , thus defining the exponent

σ. Figure 2(c) shows the cutoff cluster size for varying
reduced filling fraction |φ− φc|/φc. Again, we obtain op-
timal critical filling fraction φc = 0.229 for L = 200a,
and φc = 0.204 for L = 100a. A power-law fit yields the
critical exponent σ = 0.49± 0.09.

To investigate the dependence of our results on the fi-
nite size of the simulated system, we perform a finite-size
scaling by repeating the previous analysis for different sys-
tem sizes. Figure 2(d) shows the dependence of the criti-
cal filling fraction for each simulated system on the inverse
system size and a fit to the expected scaling 1/Lν . We find
an ordinate intersect 0.2578± 0.0005, which is the critical
filling fraction to be expected for an infinite system size.

Using the values of the critical exponents and fractal di-
mension found so far, we can now apply a more stringent
test from percolation theory consisting in the scaling rela-
tions [36] σ = 1/(νdf ), γ = ν(2df − d), where d = 3 is the
dimensionality of the system. The exponents computed
from our simulations satisfy to a good approximation the
above scaling relations. Taken together, the scaling be-
havior paint a picture consistent with the presence of a
percolation transition in our microswimmer system.

Conclusion. – We have shown that pusher-type mi-
croswimmers exhibit a percolation transition at φc 

0.229, with a probability distribution approaching a scale-
free form. We verified two classical scaling relations from
percolation theory. For φ > φc, system-spanning clusters
arise. Additionally, real-space renormalization group cal-
culations recover the correlation length critical exponent.
As the percolation critical point is approached the cor-
relation length ξ diverges. From this fact self-similarity
emerges in the statistical properties of the clusters.

The physical origin of the percolative aggregation dis-
cussed here stems from the interplay of steric forces and lo-
calized attractive interactions among the microswimmers
mediated by hydrodynamic interactions. Our results are

robust for sufficiently large Péclet numbers (P � 102) en-
abling strong enough hydrodynamic attractions. Exper-
imental investigations have identified some signatures of
heterogeneous dynamics [29,30]. Identifying the existence
of a percolation critical point can have strong implications
on the understanding of the nature of the fluctuations of
microswimmers, and possibly give insight into the transi-
tion from planktonic to sessile in surface colonization.
Finally, the critical exponents found in our mi-

croswimmer model point differ from the known ordinary-
percolation or directed-percolation universality classes.
This fact might point to the existence of a new universal-
ity class associated to microswimmers interacting through
hydrodynamic and steric forces. It is however premature
to speak of any universality class associated to microswim-
mers until more systems are investigated.
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