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Abstract – Materials with near-zero refractive index have attracted much attention over the
past decade due to the fascinating phenomena they enabled, such as energy squeezing in thin
waveguides, engineering of wavefronts, and “photonic doping”. These materials are not directly
available in nature, but can be realized in periodic artificial structures. Among near-zero refractive
index materials, double-zero-index materials are a special type with both constitutive parameters
vanishing simultaneously, leading to intriguing applications including arbitrarily shaped high-
transmission waveguides, cloaking of inclusions, nonlinear enhancement, and directional emissions.
This perspective focuses on the recent developments on double-zero-index materials, including
their fundamental physics, design principles, experimental realizations, and potential applications.
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Introduction. – Metamaterials, artificial materials
with unusual effective parameters attributed to their deli-
cate structures in wavelength or subwavelength scales, can
control classical wave propagation as wish [1–5]. As one
special type of metamaterials, zero-index media (ZIM),
with one or more constitutive parameters vanishing, have
attracted broad interest in the past decade due to their
intriguing wave manipulation properties [6–16], such as
directive emission [6–8], wave tunneling [9–12], and wave
front engineering [13–16].
As illustrated in fig. 1(a), based on the number of

zero constitutive parameters, electromagnetic ZIM can
be divided into two categories: single-zero-index medium
(SZIM), with only one constitutive parameter approach-
ing zero; and double-zero-index medium (DZIM), with
both constitutive parameters vanishing. Although both
SZIM and DZIM possess zero refractive index, they sup-
port drastically different properties. For instance, elec-
tromagnetic waves can tunnel through a two-dimensional
(2D) thin channel filled with an epsilon-near-zero (ENZ)
medium with nearly unity transmittance [17]. As shown
in fig. 1(b), both the magnetic field and the power
flow are compressed and tunnel through the channel.

(a)E-mail: Ying.Wu@kaust.edu.sa (corresponding author)

The “energy squeezing” effect is originated from near-zero
cross-sectional area of channel, enforcing zero circulation
of the electric field over the ENZ medium and leading to
total transmission irrespective of any bend of the channel
(see fig. 1(c)) [17,18]. Another typical feature associated
with SZIM is the so-called “photonic doping” [19–22], i.e.,
the response of a 2D ENZ medium is determined by its em-
bedded impurities. Figure 1(d) is a conceptual sketch of
photonic doping. When several impurities are embedded
in an irregular-shaped ENZ medium, the response of the
ENZ can be described by effective relative permeability
and permittivity [19],

εeff = 0, μeff = 1 +
1

A

∑
d

[∫
Ad

ψd (r) dA−Ad

]
, (1)

where ψd (r) is the magnetic field distribution within the
impurities, A and Ad are the cross-sectional area of the
ENZ medium and the d-th impurities, respectively.

The mismatch between the effective impedance of an
SZIM and most natural materials is significant. A simply
connected 2D DZIM, i.e., a 2D DZIM without any impuri-
ties inside, may overcome this issue and efficiently couple
with normal incident plane waves because both constitu-
tive parameters are vanishingly small [23–35]. Another

15002-p1

https://creativecommons.org/licenses/by/4.0


Changqing Xu et al.

Fig. 1: Typical properties of SZIM and DZIM. (a) Electromagnetic parameter space. ENZ medium, μ-near-zero medium
and DZIM are marked by green, blue, and red, respectively. (b) Top: magnetic field distribution; bottom: Poynting vector
distribution when a plane wave tunnels through a channel filled with ENZ medium [11]. (c) Magnetic field distribution when
a plane wave tunnels through a channel with sharp bends and corners filled with ENZ medium [18]. (d) Conceptual sketch
of photonic doping [19]. (e) Electric field distribution (top) and magnetic field distribution (bottom) when an electromagnetic
wave totally passes through a DZIM with PMC inclusion [25]. (f) Magnetic field distribution (top) and electric field distribution
(bottom) when an electromagnetic wave is totally reflected by 2D DZIM with some inclusions [23].

feature of a DZIM can be derived from Maxwell’s equa-
tions, i.e., {

∇× E = iωμH = 0,

∇×H = −iωεE = 0.
(2)

From eq. (2), one can derive that for TM (transverse
magnetic) waves, where the electric field is along the z-
direction perpendicular to the 2D plane, the electric field
in a 2D DZIM is a constant while the curl of magnetic
field is zero. When there are impurities in 2D DZIM, the
response of a 2D DZIM to normal incident plane waves
is determined by the integral of electromagnetic fields
along the boundaries of impurities [23–27]. As shown in
fig. 1(e), an electromagnetic wave with Ez polarization
can pass through a DZIM filled waveguide without any
distortion even if there is a big heart-shaped PMC in-
side the DZIM [25], while perfect reflection is observed
for the same system when the inclusion is changed into a
small PEC object [26]. For dielectric inclusions, the trans-
mission spectra depend on their material and geometric
properties. In this review, we limit the discussions to the
DZIM.

Artificial 2D DZIM. – Despite the intriguing features
of 2D DZIM, they do not naturally exist. Their realiza-
tion had been a longstanding challenge, until a practical
solution, i.e., metamaterials with a Dirac-like conical dis-
persion [28–37], was proposed in 2011 [28]. Figure 2(a)
shows the band structure of such a photonic crystal (PC),
exhibiting a threefold accidental degeneracy of a monopo-
lar state and two dipolar states at the center of the Bril-
louin zone. Such dispersion is called Dirac-like because
it possesses zero Berry phase and cannot be casted into
Dirac equations [29]. To distinguish it from the Dirac
points, we call it a Dirac-like point. Figure 2(b) shows

the effective permittivity and the effective permeability
of the PC calculated from a dynamic effective medium
theory [30]. Both parameters cross zero simultaneously
at the frequency of Dirac-like point ωD, indicating the
PC is a 2D DZIM at ωD. The strategy of using linear
dispersion to achieve DZIM was successfully extended to
phononic crystals [32,33], semiconductors [34], and even
photonic quasicrystals [35–37]. From a degenerate pertur-
bation theory, the presence or absence of Dirac-like points
can be predicted by the spatial symmetry of the degener-
acy states [38].

Realization of on-chip DZIM in the optical regime is of
practical importance due to its potential to be integrated.
There are two categories of such on-chip DZIM: out-of-
plane DZIM and in-plane DZIM [38–45]. Figure 2(c)
shows an example of out-of-plane DZIM, consisting of a
stack of silicon rods embedded in silicon oxide [40]. Light
propagates in the direction perpendicular to the substrate.
For the in-plane case, as double-zero property leads to con-
stant electromagnetic field in 2D DZIM, PC can efficiently
engineer the wavefront of outgoing waves. Figure 2(d)
is an example of in-plane DZIM in a silicon on insulator
(SOI) wafer. The PC has Dirac-like conical dispersion at
the center of the Brillouin zone [40]. The wave comes from
a silicon waveguide, and shines on a triangular-shaped
PC. The refraction angle equals zero when the working
wavelength is 1570 nm, implying effectively zero-refractive
index. Figure 2(e) illustrates an optical zero-index lens
based on silicon nanopillars [41]. At the working wave-
length 1490 nm, plane wave passes through the zero-index
concave lens and focuses on its focal point.

In the realization of in-plane DZIM, one important task
is to reduce the radiation loss. A realistic approach is
to sandwich PC with a pair of metallic layers, reducing

15002-p2



Artificial double-zero-index materials

Fig. 2: Realization of 2D DZIM. (a) Left: the band structure of a PC consisting of a square lattice of dielectric rods in air.
Right: the electric field distributions of eigenstates at the Dirac-like point [28]. (b) The effective relative permittivity and
relative permeability of the PC in (a) [28]. (c) An experimentally realized out-of-plane DZIM in a PC [40]. (d) Left: the unit
cell of an experimentally realized in-plane DZIM in a SOI wafer. Right: directional emission of such a DZIM [41]. (e) The
scanning electron microscopy image of a zero-index concave lens [39]. (f) A design of zero-index BIC by utilizing accidental
degeneracy of quadrupolar states and a hexapolar state in a PC slab [46]. (g) A design of zero-index BIC by designing the
height of PC [48].

out-of-plane radiation and enforcing the electric field in
the PC perpendicular to the metallic layers [41]. Another
common approach is zero-index photonic modes which do
not radiate into the environment, i.e., zero-index bound
states in the continuum (BIC), attributed to different un-
derlying physics [46–48]. Figure 2(f) is a proposal of
zero-index BIC, consisting of a hexagonal lattice of air
holes [46]. An accidental degeneracy between twofold
quadrupolar states and a hexapolar state induces a Dirac-
like cone at the center of the Brillouin zone, where the
symmetries of all states prevent them from coupling to ex-
ternal plane waves, thus the quality factors diverge. Such
a zero-index BIC is protected by the symmetries of eigen-
states at Dirac-like point, independent of the thickness
of PC, thus can be denoted as symmetry-protected zero-
index BIC. Figure 2(g) demonstrates another realization of
zero-index BIC with monopolar state and dipolar states in
a PC composed by silicon pillars in silica background [48].
In this PC, the eigenstates at Dirac-like point can couple
with external plane waves. With coupled mode theory, the
height of pillars is designed to mimic the radiation loss.
BIC occur at the intersection of the resonance conditions
of eigenstates. Such a zero-index BIC can be denoted as
resonance-protected BIC [48].

Non-Hermitian DZIM. – When the effective param-
eters of a DZIM are vanishing, small perturbations, such
as non-Hermiticity and/or anisotropy, will greatly change
the properties of the DZIM [49–57]. Figure 3(a) shows
the real and imaginary parts of the eigenfrequencies of

a photonic crystal slab with finite thickness. The open
boundaries of the slab cause radiation loss, corresponding
to non-Hermitian perturbations in the Hamiltonian [50],

H =

⎛
⎜⎝

ωD vky vkx

vky ωD − iγ 0

vkx 0 ωD − iγ

⎞
⎟⎠ , (3)

with complex eigenvalues⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1 = ωD − iγ

2
+

√
v2

∣∣∣�k∣∣∣2 − γ2

4
,

ω2 = ωD − iγ

2
−
√

v2
∣∣∣�k∣∣∣2 − γ2

4
,

ω3 = ωD − iγ.

(4)

γ represents the radiation loss of the dipolar states, which
deforms a Dirac-like cone into a two-dimensional flat band
enclosed by a ring of exceptional points (EPs) [52–54]. The

trajectory of EPs, |�k| = γ
2v , divides the Brillouin zone into

two parts: the real parts of eigenvalues are dispersion-
less and degenerate at |�k| < γ

2v , the imaginary parts of

eigenvalues are dispersionless and degenerate at |�k| > γ
2v .

Differently from Hermitian systems, the band dispersion
in such a PC is in the complex space. The eigenfrequen-
cies and effective parameters are also complex valued [53].
Figure 3(b) shows the effective permittivity and perme-
ability of a 2D PC, with alternatively distributed gain and
loss in the background [52]. At the EP along kx, both the
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Fig. 3: Non-Hermitian DZIM. (a) The real and imaginary parts
of the band diagrams of a PC slab [50]. (b) The real and
imaginary parts of the effective permittivity (blue) and the
effective permeability (black) of a 2D PC. Inset: the unit cell
of the PC, composed by silicon blocks (blue, ε = 12.5) in silica
with gain (light orange, εg = 2.25−0.26i) and loss (light green,
εl = 2.25 + 0.26i) [52].

real parts of effective permittivity εz and effective per-
meability μy are vanishingly small, the PC behaves like
a complex conjugate medium because effective refractive
index n =

√
εzμy is real. In PT-exact phase, both the

eigenfrequencies and wave vectors are real, the effective
permittivity and permeability are complex numbers with
opposite phases. In PT-broken phase, the eigenfrequencies
are complex, the effective permittivity and permeability
are complex numbers with non-cancelling phases. This
PC enables fascinating phenomena, such as angular sens-
ing, coherent perfect absorption, and lasing effect [51,52].

Anisotropic DZIM. – When anisotropy is consid-
ered, the effective parameters are direction dependent.
Figure 4(a) shows the band structure of a 2D PC composed
by a square array of elliptical cylinders with permittivity
ε = 12.5 embedded in air [55]. An accidental degener-
acy of a monopolar state and a dipolar-x state results in a
semi-Dirac point, i.e., twofold degenerate point with linear
dispersion along kx and quadradic dispersion along ky, at
Γ point. At the frequency of the semi-Dirac point, the PC
can be regarded as a DZIM along the x-direction and an
ENZ along the y-direction. Figure 4(b) exhibits a beam-
bending effect in such an anisotropic ZIM. In both cases,
the wave is incident to the PC and propagates along the
direction of DZIM. Such kind of directional propagation
implies the potential of PC with semi-Dirac point to work
as filters of incident angle. The working frequency of the
filter can be extended to a narrow range around the fre-
quency of the semi-Dirac point, and depends on the range
of linear dispersions.

Three-dimensional (3D) electromagnetic DZIM.
– The increase of dimensionality brings interesting

Fig. 4: Anisotropic DZIM. (a) Left: the band structure for
Ez polarization in a 2D PC exhibits a semi-Dirac point at Γ
point. Right: the effective parameters of the PC along kx and
ky directions near the frequency of semi-Dirac point [55]. (b)
Electric field distributions of a beam-bending effect in a PC
with a semi-Dirac point in band structure [56]. Left: the PC
at the bottom left (upper right) is effectively a DZIM along
the horizontal direction (vertical direction). Right: the PC is
effectively a DZIM along the x-direction.

physics. For example, 3D and 2D electromagnetic waves
are inherently different as the latter obey scalar wave equa-
tions while the former follow vector wave equations. Thus,
3D DZIM naturally offers distinctive functionalities inac-
cessible to its 2D counterparts [58–64]. Figure 5(a) is a
schematic of “antidoping” effect, which exclusively belongs
to the 3D electromagnetic DZIM. The 3D electromagnetic
DZIM is filled in a transverse electromagnetic waveguide
made of PEC walls (colored yellow) and PMC walls (col-
ored blue). Some impurities are embedded in the DZIM.
When the electric field of incident plane wave is perpendic-
ular to the PEC walls, the transmission can be obtained
as [62]

T = 1 +
1

2

(
1

dyH0

∑
i

∮
∂(A2∩Ωi)

�H · �dl

− ωε0
dxk0H0

∑
i

∮
∂(A1∩Ωi)

�E · �dl
)
, (5)

where Ωi denotes the i-th impurity, dx(dy) is the width of
the DZIM in the y(z)-direction, ω is the angular frequency,
ε0 and k0 are the permittivity and wave vector in air, re-
spectively, H0 is the amplitude of magnetic field of the
incident wave. If surfaces A1 and A2 are simply con-
nected, which means they do not intersect with any im-
purity, the integrations in eq. (5) are vanishing because of
zero integration paths. This leads to total transmission
irrespective of the quantity, material, shape, and filling
ratio of the impurities. It is drastically different from any
2D DZIM, where the transmission depends on the impu-
rities as discussed earlier in the first section. Figure 5(b)
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Fig. 5: 3D electromagnetic DZIM. (a) Schematic of the “antidoping” effect [59]. (b) Left: simulated electric-field distribution,
showing total transmission when there is a pair of simply connected surfaces A1 and A2 in DZIM. Right: simulated electric-field
distribution, showing zero transmission when there are no simply connected surfaces in DZIM [59]. (c) A design of 3D DZIM in
a 3D PC consisting of a simple cubic lattice of core-shell spheres. A sixfold Dirac-like point exists at the Γ point, where the PC
is effectively an electromagnetic DZIM [60]. (d) The unit cell (left) and band structure (right) of a PC with sixfold Dirac-like
point [62]. (e) Experimental setup to illustrate the “antidoping” effect [62].

shows the simulation results of total (zero) transmission
with (without) the pair of simply connected surfaces when
some dielectric cylinders are randomly placed inside the
DZIM.

The first theoretical design of 3D electromagnetic DZIM
is a 3D PC consisting of a simple cubic lattice of core-
shell spheres in air background [60]. The core is a PEC
sphere and the shell is dielectric with ε = 12 and μ = 1.
Figure 5(c) is the band structure of the PC. The accidental
degeneracy of electric and magnetic dipolar states results
in a sixfold degenerate Dirac-like point at the Γ point, at
which the effective permittivity and permeability of the
PC cross zero simultaneously. However, the design is very
sensitive to the radius of PEC core and dielectric shell,
the fabrication of isotropic core-shell spheres suspended
in air is quite complex, and absorption in subwavelength
metallic inclusions is inevitable. Figure 5(d) demonstrates
a realization of 3D electromagnetic DZIM by using all-
dielectric PC, which is composed of dielectric meshes.
Dirac-like dispersions with four linear bands intersecting
with two flat bands are observed [62]. Figure 5(e) shows
the picture of the experimental setup. The electromag-
netic wave emits from a horn, passes through a perfo-
rated sponge and the PC, and is measured by a probe.
Many applications, such as the “antidoping” effect, outer-
boundary–controlled switching, and 3D perfect wave steer-
ing, are realized [62].

Acoustic DZIM. – While electromagnetic DZIM has
seen great success, its acoustic counterpart, i.e., acoustic
DZIM, also has received much attention. In 2D systems,
the acoustic wave equation is mathematically equivalent
to that of electromagnetic waves [29]. Therefore, the de-
sign principle can be used for the acoustic waves [65–67].
For example, in ref. [32], a phononic crystal consisting of a
square lattice of rubber cylinders in water was proposed.
The dispersion relation of this phononic crystal possesses a
Dirac-like point at the center of the Brillouin zone, where
both effective mass density and compressibility become
zero simultaneously. The realization of DZIM for airborne
sound is a bit challenging, as the speed of sound in air
is generally much lower than the speed of sound in solid
or liquid materials, in stark contrast to the electromag-
netic or waterborne sound cases, where the wave speed
in the scatterer is lower compared to that in the envi-
ronment. To tackle this problem, in fig. 6(a), the first-
order waveguide mode is utilized to effectively introduce
an acoustic DZIM [45]. The DZIM collimates the emis-
sion from a point source to a plane wave. With an acous-
tic DZIM, intriguing properties, such as energy squeezing
and tunnelling [12], high efficiency unidirectional trans-
mission [65,67], acoustic cloaking [66], are demonstrated.
In 3D systems, the acoustic wave equation is different from
the electromagnetic wave equation. Nevertheless, we can
still extend the strategy of using accidental degeneracy to
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Fig. 6: Acoustic DZIM. (a) Left: top and side views of the unit cell of a phononic crystal with a Dirac-like point in its band
structure. Middle: acoustic pressure fields of the first-order waveguide mode, showing degenerate monopolar and dipolar modes
at the Dirac-like point. Right: measured acoustic pressure field at the frequency of Dirac-like point, radiated by acoustic point
source embedded in the phononic crystal [45]. (b) Left: the unit cell of a 3D phononic crystal. Middle: the band structure of the
phononic crystal exhibits a Dirac-like point at the center of the Brillouin zone. Right: acoustic pressure field distribution when
a plane wave with the frequency of Dirac-like point is normally incident to the PC in a 3D waveguide with two 90◦ bends [58].

find the DZIM. In fig. 6(b), by judiciously incorporating
the glide symmetry and accidental degeneracy, we pro-
posed the first realistic design of 3D acoustic DZIM, in
which three groups of aluminum rods are used to construct
the unit cell of the phononic crystal [58]. We take the
ease of fabrication, the accidental degeneracy of monopo-
lar state and dipolar states, and the validation of effective
medium theory into the design of the phononic crystal.
Its dispersion relation shows a Dirac-like cone, with two
linear bands intersecting with two flat bands. Although
the design of 3D acoustic DZIM has different symmetries
compared with the design of 3D electromagnetic DZIM, it
still has isotropic effective parameters. At the Dirac-like
frequency, both effective mass density and compressibil-
ity equal zero. Based on this structure, we designed an
acoustic periscope in a sound-hard waveguide with two
90◦ bends [58]. Such a “periscope” demonstrates flexibly
control over normal incident plane waves in 3D space.

Summary and outlook. – In this perspective, we
reviewed the development of ZIM over the past decade,
from theoretical proposals to realistic structures, from
Hermitian to non-Hermitian systems, from isotropic to
anisotropic systems, from 2D to 3D systems, and from
electromagnetic to acoustic systems.

Looking into the future, we believe DZIM will continue
to advance the field. Considering complex parameters
and anisotropy in DZIM offers new possibilities to con-
trol waves [68–71]. For example, the double-zero-index
property boosts the effect of non-Hermitian perturbations,

thus small loss can lead to large absorption. Some people
combine the concept of BIC with ZIM to realize low-loss
DZIM, while others utilize loss in ZIM to realize interesting
phenomena such as collimation, enhancement of transmis-
sion, and coherent perfect absorption [68–70]. Recently,
zero-index was introduced to a bianisotropic material, ex-
tending the concept of ZIM to topology [71]. Very re-
cently, incorporating ZIM into other systems has brought
new perspectives. A geometry-independent antenna was
realized when some ports were opened at a PEC-enclosed
cavity which was filled with doped ENZ medium [72]. An
inviscid, incompressible, and irrotational ideal electromag-
netic fluid was experimentally realized with doped ENZ
medium in a complex-shaped waveguid [73]. Another cel-
ebrated effect is the realization of bianisotropic DZIM in a
metamaterial, accompanied by an anomalous electromag-
netic tunneling [74]. These contributions manifest how
active this field is. There still exist abundant opportu-
nities. For example, taking time, one of the most fun-
damental physical variables, into account, one can design
time-varying (or time-Floquet) ZIM, which may give rise
to fascinating properties [75–77]. Overall, ZIM, especially
DZIM, are promising platforms to connect materials sci-
ence with optics and to advance both theoretical and ap-
plied fields.
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