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Abstract – A large cloud of 87Rb atoms confined in a magneto-optical trap exhibits, in a certain
regime of parameters, spatiotemporal instabilities with a dynamics resembling that of a turbulent
fluid. We apply the methods of turbulence theory based on structure function analysis to extract
scaling exponents which are compared to known turbulent regimes. This analysis also allows us
to make a clear distinction between different instability regimes.

editor’s  choice Copyright c© 2023 EPLA

Introduction. – Fluid properties of nonlinear light
systems and Bose-Einstein condensates (BECs) have been
noticed and scrutinized over the past two or three decades.
These studies have been particularly well advanced for
systems described by the Gross-Pitaevskii (nonlinear
Schödinger) equation for which the Madelung transfor-
mation (the amplitude-phase decomposition of the com-
plex field) allows to bring this equation to the fluid mass
and momentum conservation form. Among these studies,
works devoted to turbulence in optical [1] and BEC sys-
tems [2,3] are most interesting and important.

However, there are also optical systems which seem to
exhibit turbulent behaviors, but whose dynamical equa-
tions are not fully known or too complicated to be an-
alyzed analytically or even numerically. Yet, as we will
show in this work in the case of a magneto-optical trap
(MOT), a lot can be said about such systems using the
standard characterizations from the turbulence theory.

In this work, we will analyze the data obtained from an
unstable MOT experiment. Unstable MOTs have been
studied in various groups [4–10], with different models
ranging from atomic physics [11], nonlinear dynamics [12]
to plasma physics [13] and astrophysics [14]. In all in-
stances, the experimental data were obtained from tem-
poral and/or spatial analysis of fluorescence or absorption
images of unstable clouds using tools such as statistical
analysis [9], Principal Component Analysis [7] or auto-
correlation functions [10]. In the present work we em-
ploy, for the first time to our knowledge in this context, a
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method based on the analysis of structure functions (SF)
commonly used in the study of turbulent systems. This
method is in principle far more powerful, as it gives access
to scaling exponents for all involved spatial scales. For
instance, one is in principle able to detect small-scale tur-
bulent fluctuations on a large mean-field background.
Our approach is motivated by the fact that in some

range of parameters our MOT exhibits spatiotemporal
fluctuations that are visually reminiscent of turbulence,
although we stress that we do not develop an analytical
model to confirm this observation. However, we note that
in the work of ref. [10] using a MOT very similar to ours,
a simplified model of diffusive light transport coupled to
atomic density via radiation pressure was employed to in-
terpret the experimental observations as “photon bubble
turbulence” [14]. Even though the analysis presented in
this letter is purely based on data treatment, we will see
that it allows to identify different instability regimes for
the MOT, in qualitative agreement with our previous find-
ings [9].

Structure function. – In this work, we will employ
the structure function which is the most commonly used
object in turbulence analysis [15]. Considering a given
field ρ(r), for instance a velocity field, the structure func-
tion of order p is defined by

SFp(�) = 〈|ρ(r1)− ρ(r2)|p〉, (1)

where � is the distance between points r1 and r2, and
the brackets denote averaging over space. In turbulence,
the structure function exhibits a scaling behavior, i.e., it
behaves as a power law SFp(�) ∝ �ξp in a wide range
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of �. This scaling range is often referred to as the in-
ertial range. The quantities ξp are called the structure
function exponents. They contain significant information
about the turbulence statistics, typical processes (e.g., tur-
bulent cascades) and presence of coherent and/or singular
structures causing intermittency of the turbulent signal
(e.g., shocks). We provide in the following a few examples
in the case of known regimes.

Differentiable fields (often called smooth ramps): ξp =
p. This result follows from a Taylor expansion of the den-
sity profile at small �: |ρ(r + �)− ρ(r)|p = dρ

dr

p ∗ �p ∝ �p.

Shocks : ξp = 1. This result relies on the fact that for
sufficiently small �, the main contribution to SFp(�) comes
from pairs of points located on each side of the sharp in-
terface of the shock, whose proportion grows like � hence
SFp(�) ∝ �.

Burgulence (random field governed by the Burgers equa-
tion). Here smooth ramps coexist with shocks. Hence, a
bifractal behaviour is observed [15]: Ramp scaling is seen
for 0 < p < 1 and shocks for 1 < p < ∞.

Passive scalar advected by Kolmogorov turbulence. This
case approximately describes the temperature field in
atmospheric turbulence. The mean-field Kolmogorov-
Obukhov-Corssin (KOC) theory [16–18] predicts ξp = p/3
for the scaling range �d < � < �E , where �d and �E are the
dissipative and the energy-containing (integral) scales, re-
spectively. The scaling is derived under the assumption
that the energy dissipation rate is the only quantity defin-
ing the statistical properties in this range.

Intermittent turbulence. This case usually corresponds
to real turbulent systems: Kolmogorov-type scaling at low
values of p is replaced by a more shallow slope for higher
p’s due to the presence of coherent quasi-singular struc-
tures/events [19,20].

Experimental setup and data treatment. – We
use a MOT setup able to cool and confine a large number
N of 87Rb atoms (N up to 1.5×1011, see [21]). The result-
ing cloud of atoms is centimeter-sized, with a temperature
around 200μK (in the stable regime). For such large N
values, the MOT is known to exhibit spatiotemporal insta-
bilities when the trapping laser frequency is brought suffi-
ciently close to the atomic transition frequency [6,8,11,22].
This is due to competing collective forces arising from mul-
tiple scattering of light inside the atomic cloud.

In a previous study [9], we have shown that different
unstable regimes could be identified, depending on exper-
imental parameters such as the laser detuning δ = ωL−ωat

(where ωL and ωat are the laser’s and atomic frequencies,
respectively) and the magnetic field gradient ∇B. This
is illustrated in fig. 1, where we show single-shot fluo-
rescence images recorded by a CCD camera at random
times (see below), for three sets of MOT parameters: A)
∇B = 1.2G/cm and δ = −Γ; B) ∇B = 12G/cm and
δ = −Γ; and C) ∇B = 2.4G/cm and δ = −4Γ, where Γ is
the width of the atomic transition. The latest corresponds
to a stable cloud, used as a reference. In the present work,

Fig. 1: Illustration of different MOT regimes (see the corre-
sponding supplementary videos movie A.avi, movie B.avi and
movie C.avi). We show examples of single-shot MOT fluores-
cence images recorded at random time. Each row corresponds
to different MOT parameters. (A) (unstable MOT): ∇B =
1.2G/cm, δ = −Γ. (B) (unstable MOT): ∇B = 12G/cm,
δ = −Γ. (C) (stable MOT): ∇B = 2.4G/cm, δ = −4Γ. The
frame size is that used for the computation of the structure
function and is different for each row (see text).

we will compare several unstable clouds corresponding to
different values of ∇B (1.2, 1.7, 2.4, 4.8, 7.2, 9.6 and
12G/cm) and a fixed detuning δ = −Γ.

To compute the SF, we use a set of 100 fluorescence
images of the cloud, collected by the CCD camera at ran-
dom times during the dynamics. The exposure time for
each image is 1ms. We first compute the average image
by summing over the full data set. This allows us to de-
termine the center of mass (com) of this average image,
and its rms radius R. We then define a square window
of width L, centered on the com of the average image. In
the following, we use L = 4 × R. For each image of the
data set, we compute the SF by randomly choosing many
pairs of points within the window. The SF correspond-
ing to all images are then averaged. We thus perform an
averaging over space and time, assuming ergodicity and
spatial isotropy. Since the MOT imaging takes place in
the plane transverse to the axis of the coils producing the
magnetic field gradient, we expect the last hypothesis to
be reasonable.

Various finite-size and smoothing effects can affect the
SF and reduce the effective size of scaling ranges. The
minimal size accessible in our imaging is the pixel size
(≈30μm). The upper limit of spatial scales is set by the
cloud’s radius R, which depends on ∇B. The finite ex-
posure time of the CCD results in a smoothing of the
small-scale structures in the images. For the mean atomic
velocity in a stable cloud (0.1m/s), this smoothing effect
is expected to occur for spatial scales below 100μm (ap-
proximately three pixels on the CCD). Note that for highly
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unstable clouds (i.e., for large values of∇B), atomic veloc-
ities may be quite larger resulting in a degraded resolution.
In the following, we assume that the 3D light intensity dis-
tribution reflects the atomic spatial density distribution.
Note that this is only an approximation, since radiation
trapping effects are known to deform the spatial distribu-
tion of scattered light [21]. Furthermore, the recorded 2D
images correspond to the projection of the 3D fluorescence
light distribution on the plane orthogonal to the camera’s
line of sight (roughly parallel to the high magnetic field
gradient axis of the MOT). We investigated the impact
of this projection with numerically generated 3D images,
and found that it had only a weak impact on both struc-
ture functions and scaling exponents. Unsurprisingly, the
projected 2D images are smoother than the initial 3D im-
ages, yielding slightly larger values of ξp in 2D than in 3D.
Due to all these effects, the scaling ranges that we are able
to observe are rather limited, usually below one decade,
and the extracted scaling exponents cannot safely be ex-
pected to be universal. However, in the present work, we
are mostly concerned with the relative change of the mea-
sured exponents with experimental parameters, with the
aim of separating different instability regimes.

Figure 2 shows examples of SF (note the double loga-
rithmic scale) with p = 7.1, for the data of fig. 1. For
better comparison, the horizontal scale is normalized to R
for each data set and the SF curves have been shifted ver-
tically. In most cases, the SF are concave, with the highest
slope for low �. When � approaches the cloud’s diameter
2R, the SF reaches a maximum and then decreases, lim-
iting the scaling analysis to � < 2R. We see that at low
∇B (stars), one can clearly identify two distinct scaling
ranges delimited by the vertical dashed lines, one for low
� values and the other for high �. This feature is absent at
higher ∇B (dots), where only a low-� scaling range is ob-
served. The SF corresponding to the stable MOT (circles)
is very different: It is convex at low �, with a large scaling
range at higher �. These behaviors will be discussed in the
following.

Results and discussion. – Interesting information
can be obtained from the curves ξp(p). We present such
curves in fig. 3, corresponding to the data displayed in
fig. 1. The different curves correspond to different fitting
ranges of �: low � (2 ≤ � ≤ 10, circles), intermediate-
low � (0.1R ≤ � ≤ 0.3R, dots), intermediate-high �
(0.3R ≤ � ≤ 0.6R, squares), and high � (0.6R ≤ � ≤ 1.2R,
stars). The dotted line of slope 1 corresponds to the limit
of a smooth field ξp = p.

We see that for unstable clouds (panels (A) and (B)),
the observed behaviors are qualitatively relatively simi-
lar. The curves ξp(p) are concave (except the low-� ones),
which is typical of intermittent turbulence. The low-� ex-
ponent (circles) grows almost linearly with p with rather
large slopes (2/3 for A), and 0.78 for B)), which are clearly
incompatible with the KOC scaling (1/3). On the con-
trary, these slopes are rather close to the smooth field

Fig. 2: Examples of structure functions. We plot here three
examples of structure functions, obtained from the data of fig. 1
with p = 7.1 (note the log-log scale). The horizontal scale is for
each case normalized to R. Stars: ∇B = 1.2G/cm, δ = −Γ.
Dots: ∇B = 12G/cm, δ = −Γ. Circles: ∇B = 2.4G/cm,
δ = −4Γ. In the first case, two clear scaling ranges can be
observed (dashed lines), with different scaling exponents.

limit, which could indicate the presence of dissipation at
small scales smearing out spatial structures. As discussed
before, smoothing due to atomic motion might also play
a role, especially in case B). An important difference be-
tween cases A) and B) is that in A) the last two curves
(squares and stars) are very similar, which correspond to
the high-� scaling range observed in fig. 2 (stars). The
corresponding slopes are very small, consistent with the
presence of shocks (ξp = const). In fig. 3(B), all curves
are distinct which reflects the absence of a clear scaling
range (except at low �).

The curves corresponding to the stable cloud, shown in
panel (C), are strikingly different. Here, the low-� ξp(p)
curve has a small slope, consistent with the presence of
shocks. All the other curves are relatively linear with large
slopes, and lying close to each other. This indicates a large
scaling range for intermediate and large �’s (clearly seen in
fig. 2 for the curve in circles), with a behavior close to that
of a smooth field. Indeed, the fluorescence images of the
stable cloud are rather smooth (see fig. 1(C)). However, a
closer inspection reveals the presence of small-wavelength
fringes, likely due to interferences between MOT beams.
These small-scale ripples are responsible for the shock-like
behavior of the SF at low �.

We now concentrate on the high � scaling range that
can be observed in the curve with stars in fig. 2, corre-
sponding roughly to 0.4R ≤ � ≤ 3R. Despite the fact
that no universal behavior can be expected in this range,
we can clearly see a qualitative change in the SF shape
there as ∇B is varied (compare with the curve in dots).
To quantify the presence of the high � scaling range, we
compute the difference Δξp between exponents obtained
for 0.5R ≤ � ≤ R and R ≤ � ≤ 2R, normalized to
the mean value. If this quantity is small then the two
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Fig. 3: Behaviors of structure function exponents. We report for the cases in fig. 1 the evolution of ξp obtained for different
scaling ranges: ξ1p for 2 ≤ � ≤ 10 (black circles), ξ2p for 0.1R ≤ � ≤ 0.3R (magenta dots), ξ3p for 0.3R ≤ � ≤ 0.6R (blue open
squares), and ξ4p for 0.6R ≤ � ≤ 1.2R (red stars). The dotted line corresponds to the case of a smooth field (ξp = p). The
different panels correspond to the data in fig. 1.

Fig. 4: Separation of MOT instability regimes based on struc-
ture function analysis. We plot for all unstable data sets
the slope difference Δξp (see text) vs. p. Upper panel:
∇B = 1.2G/cm (black dots), ∇B = 1.7G/cm (red squares),
∇B = 2.4G/cm (blue stars); lower panel: ∇B = 4.8G/cm
(orange circles), ∇B = 7.2G/cm (magenta open squares),
∇B = 9.6G/cm (green open stars), and ∇B = 12G/cm (grey
open triangles). The detuning is fixed at δ = −Γ. The “tur-
bulent” regime, observed for small ∇B values, is characterized
by a decrease of Δξp as p increases (upper panel), while it is
the opposite for the high-∇B regime (lower panel).

exponents are similar and one can speak of a scaling range
for 0.5R ≤ � ≤ 2R. In fig. 4, we plot Δξp vs. p for dif-
ferent ∇B, varied between 1.2 and 12G/cm (the MOT
detuning is kept fixed at −Γ). We observe in fig. 4 two
different behaviors: for ∇B ≤ 2.4G/cm (upper panel),
Δξp is relatively small and decreases when p increases,

reflecting the widening of the scaling range. The case
∇B = 2.4G/cm constitutes the limit of this regime, with
Δξp quite large but still decreasing with increasing p (for
p large). Visually (see insets), this regime corresponds to
our most turbulent-looking clouds where we observe rela-
tively small-scale structures with a complex dynamics (see
fig. 1(A)). For ∇B > 2.4G/cm (lower panel in fig. 4), the
behavior is the opposite: Δξp is large and increases with
p. There is no significant scaling range in the considered
range of �. In this second regime, the cloud undergoes
large deformations with spatial scales of the order of the
cloud size.
We see that this analysis allows us to discriminate be-

tween two unstable MOT regimes, corresponding to dif-
ferent ranges for the magnetic field gradient. The stable
regime is also easily identified. Thus, the SF-based char-
acterization confirms the result of the visual inspection of
MOT behaviors. It also agrees with the more quantitative
analysis described in ref. [9], where we identified markedly
different regimes for low and high magnetic field gradi-
ents, respectively termed the “turbulent” and “statisti-
cally isotropic” regimes. A third regime (the “anisotropic”
regime) was also observed in ref. [9], but does not clearly
show up in the present analysis.
Although it is difficult to directly compare experimen-

tal results from different setups, we note that our data set
B) (figs. 1, 2 and 3) is obtained for MOT parameters ap-
proximately corresponding to those used in ref. [10], how-
ever with different atom number. It would be interesting
to compare our measured scaling exponents to those ex-
pected from the photon bubble model [14].

Conclusion. – In this paper, we applied the methods
borrowed from turbulence to the analysis of various stable
and unstable regimes of large clouds of cold atoms con-
tained in a MOT. We found that the structure function
of the fluorescence intensity field provides an efficient tool
for the classification of different dynamical regimes.
In the case of the most “visually turbulent” regime

(low ∇B), we observed two scaling ranges. At small �,
the scaling exponents ξp(p) behave consistently with a
smooth field, indicating dissipation. At intermediate �,
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the observed behavior of ξp(p) is more or less consistent
with KOC-type scaling for small p and with the presence
of shocks for larger p, similar to what was reported in
ref. [20] for 3D scalar turbulence.
One of the experimental limitations in the present work

is the relatively small extent of the observed scaling ranges.
In the future, this could be improved by using several mag-
nifications to image the cloud. The impact of the 3D to
2D projection and that of multiple light scattering could
be reduced by using a sheet of light for imaging [10] and
a detuned laser [21], provided that noise levels remain low
enough. This should allow better measurements in the
low-� range.

To convincingly claim the observation of turbulence,
however, one ideally needs a comparison with a simple
but reasonably accurate model of MOT physics. An ana-
lytical model seems out of reach, but we have developed a
3D numerical model [23] based on well-known atom-light
interaction ingredients which has proven reliable for the
prediction of MOT instability thresholds [8] and dynam-
ics [9]. This model could be used to check the presence of
turbulence and allow a comparison with the experimental
data.
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