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Abstract – Topological phases of matter are ubiquitous in crystals, but less is known about
their existence in amorphous systems, that lack long-range order. We review the recent progress
made on defining amorphous topological phases, their new phenomenology. We discuss the open
questions in the field which promise to significantly enlarge the set of materials and synthetic
systems benefiting from the robustness of topological matter.

perspective Copyright c© 2023 EPLA

Introduction. – The quantum Hall state, the first
topological phase ever observed, was discovered in crys-
talline heterostructures [1], even though its existence does
not require an underlying crystalline lattice. Indeed, a
two-dimensional free electron gas under a perpendicu-
lar magnetic field displays Landau levels. Its associated
metallic topological edge states and quantized conduc-
tance arise in a confining potential, with no assumption of
an underlying crystalline lattice. The quantum Hall dis-
plays a continuous translational invariance, and the cor-
responding electron’s momentum p enters the parabolic
dispersion relation p2/2m, with m being the electron’s
mass. By promotingm to the effective mass of the electron
within a medium, the parabolic dispersion and its corre-
sponding Landau levels can be thought of as arising from
the long-wavelength limit of a lattice tight-binding crys-
talline model [2]. With this notion of translational invari-
ance in place, the condensed matter community discovered
how to dispose of magnetic fields and define topological
states in crystalline systems [3], establishing topological
phases in crystals of any dimension, irrespective of their
insulating, conducting or superconducting nature [4–6].

Topological phases do exist in the absence of long-range
periodicity, as we are not forced to regularize a contin-
uum theory using a periodic lattice. This observation is
at the heart of this perspective article. Our goal is to
summarize the recent progress made to understand how
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topological phases emerge on the largest class of noncrys-
talline systems, amorphous systems [7–10]. Characterizing
topology in amorphous matter, without the convenience
of Bloch’s theorem, has led to the emergence of new phe-
nomenology, unique to amorphous matter. Topology re-
mains largely unexplored in this class of solids, which may
offer different functionalities compared to crystals.
We start by discussing the main properties of amor-

phous and topological matter, followed by a review of the
progress made in combining these two fields. We finish
by summarizing the experimental status and offering some
perspectives on the main open questions. For a more tech-
nical review we refer the reader to ref. [11].

Basic properties of amorphous matter. Amorphous
materials are defined by their lack of long-range order [12].
However, they display short- and even medium-range or-
der, as well defined nearest and next-to-nearest neighbour
distances, respectively. The short-range order manifests
itself as preferred bond lengths and angles, peaked around
the values of its crystalline counterpart. Due to the short-
range order, amorphous materials have a well-defined co-
ordination environment with a distinct number of nearest
neighbours. In solid-state systems this is a result of the
electronic configuration of the atoms involved in bonding.
Hence, amorphous solids remain locally ordered [12,13].
The absence of Bragg peaks in the diffraction pattern, and
thus the absence of long-range order, determines which
solids are amorphous.
Amorphous materials are commonplace in science and

technology [12]. Their applications range from common
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objects such as window glass to technological devices like
computer memories or solar cells [14,15]. Similarly to crys-
tals, amorphous materials can be insulators, semiconduc-
tors, metals, and superconductors [12]. Amorphous oxides
used in glassware, such as silicon oxide or lead glass, are
century-old insulators. Amorphous semiconductors, such
as silicon or germanium, have also been extensively stud-
ied, due to their possible use in electronic devices [13].
Amorphous metals are exceptionally hard and can dis-
play unique magnetic properties [16]. Amorphous super-
conductors can also be synthesised [17], as conventional
superconductivity is robust to disorder, an observation
known as Anderson’s theorem [18]. Remarkably, the criti-
cal superconducting temperature has been observed to be
higher in several amorphous materials compared to their
crystalline counterpart.

The existence and robustness of topological phases [19]
poses the natural question of whether they can be realized
in amorphous systems. Before reviewing how topologi-
cal amorphous phases were first achieved [7–10,20] and
extended, we revisit the main properties of topological
phases.

Basic properties of topological matter. The discov-
ery of the quantum Hall effect and its quantized Hall
conductance [21–23] introduced the field of topological
matter; phases of matter characterized by their metal-
lic boundary states and quantized responses to external
fields, which are robust against impurities and local per-
turbations [19]. Two states are defined to be in the same
topological phase if they can be adiabatically perturbed
into one another smoothly without closing the conduc-
tion gap and not breaking the underlying symmetries,
while keeping the number of orbitals fixed during the
process.

Translational invariance in crystal lattices allows use of
Bloch’s theorem to define crystal momentum, simplifying
the characterization of the topological phases and yielding
closed-form momentum-space expressions of the topologi-
cal invariants. For example, the Chern number [24] char-
acterizing the quantum Hall phase in two dimensions (2D)
is evaluated as the integral of the Berry curvature [25] over
the first Brillouin zone. In general, crystalline symmetries
simplify how to identify topological phases, through the
concept of symmetry indicators [26–29] —eigenvalues of
point group operators whose products determine topolog-
ical invariants.

Although translation invariance simplifies describing
and classifying topological phases, it is not necessary for
their existence. For example, strong topology is protected
by local symmetries, irrespective of the lattice details.
Nontrivial topology only requires the existence of a mobil-
ity gap, and not a spectral gap. However, characterizing
topological phases of matter far from the crystalline limit,
notably for noncrystalline lattices, requires new tools, as
the known momentum space expressions for topological in-
variants are no longer applicable. We describe these tools

and the models introduced to study amorphous topologi-
cal matter next.

Theory of amorphous topological matter. – There
are a variety of amorphous models displaying topolog-
ical phases, ranging from strong topological states to
spatial-symmetry–protected topological phases. Amor-
phous strong topological states include 2D Chern insu-
lators in class A [7–10,20,30–34], 2D and 3D time-reversal
invariant topological insulators in class AII [7,33,35–38],
and 2D time-reversal breaking topological superconduc-
tors in class D [39,40]. Amorphous structures also sup-
port phases a priori protected by crystalline symmetries,
such as 2D reflection-symmetry–protected topological in-
sulators [41], 2D and 3D higher-order topological insula-
tors [42–44], 2D and 3D obstructed insulators [45], and
3D topological metals [46]. While structural disorder is
detrimental to some of these states, it can also induce
nontrivial phases when starting from a trivial crystalline
state [38,43,46], and it can give rise to new phenomenology
intrinsically associated with amorphous topological mat-
ter and phase transitions [33,34,41,45,46].

A common starting point is a crystalline tight bind-
ing Hamiltonian known to host a topologically nontrivial
phase. The hopping terms are generalized to account for
arbitrary angles and distances between sites. For exam-
ple the angular dependence can be modelled using the
Slater-Koster parametrization [47], and the readial de-
pendence can be accounted for by an exponential [7,33,
34,40–43,46,48] or polynomial [38] decay with the radial
distance. There are several ways to introduce structural
disorder, including lattices with uncorrelated random
sites [7,33,34,39–43,46,48], more realistic models which
preserve the local coordination number [8,30,32,45], and
lattices with controllable deviations from the crystalline
limit [9,10,38,43].

Characterizing topology without translational symme-
try. Among the different methods to characterize topo-
logical phases far from translationally invariant limits
topological markers are a wide-spread tool. Topological
marker is a unifying term that includes the local mark-
ers [49–56], the spectral localizers [57–60], the nonlocal
(spin) Bott indices [46,61–69], and similar generaliza-
tions of the winding of the quadrupole and octupole mo-
ment [42,43]. Markers characterizing the two-dimensional
quantum Hall phase [70,71] are especially well explored,
including the local Chern marker [49,50] and the nonlo-
cal Bott index [63]. The local Chern marker [49,50] is
the Fourier transform of the Chern character. For a crys-
talline lattice it quantizes to the Chern number at each
lattice point. For non-crystalline lattices quantization re-
quires averaging over a large enough region, where the size
of the region is model dependent [50,53]. The chiral and
Chern-Simons markers [53] are local markers analogous to
the Chern marker in odd dimensions. The chiral marker
characterizes the Z invariant topological phases with chiral
symmetry, whilst the Chern-Simons marker characterizes
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Z2 invariant phases with either time reversal or particle-
hole symmetry, depending on the dimension.

Topological states often display a characteristic trans-
port or electromagnetic response, such as quantized lon-
gitudinal conductance, the Hall conductivity, and the
Witten effect [48,72–74], which can also be used to charac-
terize the topological phase. The local marker in ref. [54]
is for example based on the local Hall conductivity mea-
sured in the bulk of the system. Alternatively, the scat-
tering matrix can determine topological indices without
relying on the Hamiltonian eigenstates [75].

Topological phases can be detected by the presence of
anomalous boundary states in the local density of states
calculated with open boundary conditions [4,5]. Neu-
ral networks can also detect nontrivial topology, by effi-
ciently learning features associated with topology from for
example the wave functions [35], and the flow of the en-
tanglement spectrum [76]. Other approaches include the
effective Hamiltonian [32,77], symmetry indicators [32],
and the structural spillage [78], which take advantage of
the gap closing and band inversion in a topological phase
transition.

Amorphous models with strong topology. The Chern
insulator was the first amorphous topological phase to be
characterized [7,9,10,30–32]. Reference [7] introduced a
random lattice implementation of a model that displays
a Chern insulator phase on a square lattice. The ran-
dom lattice exhibits a gapped topological phase charac-
terized by a nontrivial Bott index, edge states, and a
quantized longitudinal conductance, which are all hall-
marks of a Chern insulator, where the nontrivial phase
is separated from trivial atomic insulators by bulk gap
closings. There exists a similar random lattice implemen-
tation of a quantum Hall state, but in the presence of a
magnetic field [79]. The three- and fourfold-coordinated
Weaire-Thorpe amorphous lattices [13] with complex intr-
asite hoppings [32], provide a more realistic model for co-
valently bonded amorphous solids. The local symmetries
of these models make it possible to compute symmetry
indicators analogous to the ones defined for crystals [80],
which predict a Chern insulator phase. Amorphous Chern
insulators are also present in artificial systems, such as
mechanical metamaterials [8], gyromagnetic photonic lat-
tices [9,10,81,82], and magnetic impurities on the surface
of topological insulators [30]. The Chern insulator phase
also survives in an atomic liquid, defined via tight-binding
molecular dynamics, which not only lacks long-range or-
der, but has thermally moving atoms [31].

Amorphous quantum spin Hall insulators [7,36–38,76,
83] are characterized by a nonzero spin Bott index and
edge states carrying a quantized 2e2/h conductance. Ref-
erence [7] realized a quantum spin Hall phase by placing
the Bernevig-Hughes-Zhang model [84] on a random lat-
tice. References [36,37] performed a realistic modelling of
amorphous monolayer Bismuth using density functional
theory, showing that the topology of the crystal survives

in the amorphous structure. Based on both tight-binding
and density functional theory calculations, ref. [78] showed
that the amorphous Bismuth bilayer remains topological,
as indicated by the structural spillage and the conduc-
tance. Reference [38] demonstrated a structural-disorder–
induced quantum spin Hall phase, constructing a phase
diagram as a function of spin-orbit coupling and disorder
strength, by modelling the disorder by Gaussian devia-
tions from an initial triangular lattice.

Amorphous structures also display 3D time-reversal–
invariant topological insulators [7,35,48]. Reference [7]
described a 3D random lattice model with exponentially
decaying hoppings that, for appropriate onsite energy
M and range of the hopping r0, displays surface states.
Reference [48] further characterized the r0-M phase di-
agram of the same model, and found that the phase
with surface states features the Witten effect —due to
the axion electromagnetic term in the action, a magnetic
monopole binds a half-odd integer electric charge, forming
a dyon [72–74].

Finally, refs. [39,40] have reported gapped time-
reversal–breaking 2D amorphous topological superconduc-
tors in class D. Reference [39] studied a Shiba glass,
an ensemble of randomly distributed magnetic moments
on a gapped superconducting surface with Rashba spin-
orbit coupling. In contrast to the long-range pairing in
this system, ref. [40] realised a topological superconduc-
tor in 2D Dirac models in random lattices with local
pairing.

Spatial-symmetry–protected topological amorphous mod-
els. Amorphous systems support and induce topological
phases beyond strong topological states, including systems
protected by spatial symmetries. [41–43,45,46]. The ap-
pearance of these phases is related to the concept of sta-
tistical topological insulators [85–88], which are spectral
insulators protected by an average symmetry. They dis-
play gapless boundary states pinned to the critical point
of a topological phase transition, and protected from lo-
calization by the average symmetry.

Based on this idea, ref. [41] has classified all 2D amor-
phous statistical topological insulators protected by the
average continuous rotation and reflection symmetries
present in amorphous matter. Unlike in crystals, where
reflection-symmetry–protected topological insulators dis-
play edge states only on the boundaries respecting the
symmetry, their amorphous counterparts show delocalized
boundary states at all edge terminations. Furthermore,
they are characterized by a bulk Z2 topological invariant
that can be defined from the effective Hamiltonian.

Higher-order topological insulators are another exam-
ple of topological insulators protected by combinations of
crystalline and discrete onsite symmetries, whose amor-
phous counterparts have also been reported [42–44].

Obstructed atomic insulators are a class of insula-
tors that are topologically trivial, in the sense of be-
ing described by exponentially localized and symmetric
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wave functions, but are not adiabatically connected to
the trivial atomic limit [89–95]. The simplest example
is the half-filled inversion-symmetric Su-Schrieffer-Heeger
chain [96]. Reference [45] suggested that phase-change
materials, whose amorphous form can exhibit an average
dimerization characterized by a double-peak structure in
the three-particle correlation function [97], can control-
lably realize an obstructed amorphous phase, with flat-
bands of fractional charges at all terminations.

Finally, there are amorphous generalizations of Weyl
semimetals, dubbed a topological amorphous metal [46].
In crystals their topological charge can be measured by
the Chern number of a surface enclosing the node in mo-
mentum space [6]. Reference [46] defined the amorphous
counterpart based on a known time-reversal–breaking two-
band Weyl semimetal model defined on a random lat-
tice. The topological amorphous metal is signaled by the
nonzero Bott index and Hall conductivity in the planes
perpendicular to the Weyl node separation in the crystal,
and by the boundary states at these planes. Furthermore,
in contrast to its crystalline version, the topological amor-
phous metal displays diffusive metallic behaviour.

Amorphous topological phase transitions. Motivated
by the different nature of the disorder and of the driving
parameter of the transition, refs. [33,34] numerically ana-
lyzed the quantum Hall plateau transitions in amorphous
lattices. In particular, they considered both continuum 2D
random geometries as well as discrete (square and triangu-
lar) 2D lattices with randomly occupied sites, as studied in
percolation theory. In their models, a Chern insulator in
class D appears above a critical density, dependent on the
parameters of the Hamiltonian. They examined the criti-
cal scaling of both the Chern number and the conductance,
as well as the conductance distribution curves. While their
analysis is compatible with the standard two-parameter
scaling form, the localization length critical exponent ν is
highly nonuniversal. The exponents interpolate between a
geometric classical percolation transition [98] and a stan-
dard Anderson localization transition [99]. While these
differences with standard theory of disordered systems re-
main to be fully understood, it is possible that changing
the density of sites introduces a variable length scale that
modifies the range of the geometric correlations in the sys-
tem, which are believed to affect the critical exponents of
the transition [100–104].

Strongly interacting amorphous topological models.
All the above phases concern amorphous but noninteract-
ing systems. The first step towards topological amorphous
many-body systems was taken by Prodan [105], who de-
fined toric code models, which display topological order
with anyonic excitations, in random triangulations. The
ground state degeneracy and anyonic excitation survive
amorphization, even if some commutation relations of the
Hamiltonian terms are modified.

Electron-electron interactions could also lead to many-
body amorphous topological phases. However, identifying

these phases is challenging due to the lack of local topo-
logical markers for interacting systems. Reference [106]
circumvented this issue by solving an amorphous Chern
insulator model [7] with strong Hubbard interactions us-
ing a parton construction. Fractionalizing the electron
into a neutral fermion f and a charged boson b leads to
a mean-field phase diagram with a phase displaying pro-
tected electrically neutral chiral edge modes of f , dubbed
the fractionalized amorphous Chern insulator. Recently,
it was shown that the Kitaev spin-liquid is exactly solvable
in a three-fold coordinated amorphous lattice [107], which
survives even if the lattice is not fully amorphous [108].

Experimental status of amorphous topological
matter. – Amorphous topological matter has been ex-
perimentally studied in both synthetic and solid-state sys-
tems. The first experimental observation was reported in
a mechanical system of coupled gyroscopes [8]. Later on,
the observation of spin-momentum locked surface states
was reported in an amorphous electronic system [109], as
well as topological edge states in amorphous photonic lat-
tices [110–112].

In solid-state systems, amorphous phases of topologi-
cal materials have been studied both before and after the
discovery of the quantum spin Hall effect [113]. However
experimental studies of amorphous materials did not ad-
dress the survival of topological properties. For exam-
ple, phase-change materials have been studied extensively,
with GeSb2Te4 being one of the most widely studied
representative [114]. Interestingly, GeSb2Te4 is also a
topological insulator in its crystalline phase [115]. Amor-
phous Bi2Se3 has also been studied long before it was pre-
dicted to be a 3D topological insulator in its crystalline
form [116]. Amorphous and structurally disordered coun-
terparts of crystalline topological materials have provided
materials systems that show large spin-orbit torque effi-
ciencies, but the existence and role of topological surface
states have not been explored [117,118].

Using fixed-coordination amorphous structures of cou-
pled gyroscopes, generated from different point sets such
as hyperuniform or jammed, Mitchell et al. [8,119] showed
the existence of a mechanical amorphous Chern insulator
with chiral, propogating edge modes. The authors used
d.c. motors that interacted via a magnetic interaction,
finding that the local connectivity, which is predictive of
the global density of states, is crucial for the existence
of topological states in amorphous systems. Similar find-
ings were reported in photonic systems [110–112]. By
placing an amorphous arrangement of gyromagnetic rods
into a waveguide and biasing them with a magnetic field,
the authors observe photonic topological edge states. In-
terestingly, topological states exist while the system has
short-range order, and disappear at the glass-to-liquid
transition [111]. Moreover, lattice disorder [112] enhances
light confinement increasing the generation rate of corre-
lated photon pairs by an order of magnitude compared to
periodic topological platforms.
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Regarding electronic materials, physical vapor depo-
sition (PVD) is a particularly useful growth technique
for amorphous materials and has been found to make
amorphous materials which are not available by liquid
quenching. PVD has several advantages since it allows to
control a variety of different properties, such as the sub-
strate temperature, growth rate (which affects the time
absorbed atoms have to diffuse to ideal positions), irra-
diation, and chemical dopants to frustrate crystallization.
Modifying the substrate temperature enables the growth
of amorphous films with different local ordering and pro-
duces what is called an “ideal glass” [120,121].
Growth conditions are critical for achieving high-quality

amorphous films, especially amorphous topological ma-
terials. Growing the amorphous phase of a known
topological crystal does not always preserve topologi-
cal properties. Several groups have grown amorphous
counterparts of known crystalline topological insulators
finding no evidence for topological surface states, but
rather a highly insulating, localized state [122,123].
First-principles calculations indicate that the local envi-
ronment plays an important role in the electronic structure
in three-dimensional solids [124]. If the disorder associated
with the new atomic positions (new atomic environment)
closes the mobility gap, the system can be trivial. These
subtleties might explain why some amorphous versions of
known crystalline topological insulators do not display ev-
idence for a topological bulk.
Focusing on electronic systems, the first demonstra-

tion of topological properties in an amorphous solid-
state system was inspired by a known crystalline
topological insulator, Bi2Se3. Using PVD, Corbae
et al. [109] grew amorphous Bi2Se3 thin films with
short- and medium-range order (next-to-nearest neigh-
bours) as well as no van der Waals gap. In trans-
port measurements, the films showed an increased
bulk resistance that was largely temperature indepen-
dent, and the weak-antilocalization effect resulting from
quantum interference in two dimensions in the pres-
ence of spin orbit coupling. Using ARPES/SARPES
the authors showed that two-dimensional surface states
cross the bulk electronic gap and are spin polarized.
The spin polarization switches multiple times as a func-
tion of binding energy matching the spin resolved spectral
function from an amorphous topological model. These
results contrast data taken on nanocrystalline samples
which show a lack of disperson in ARPES and an in-
sulating resistivity, consistent with earlier works [125].
Amorphous Bi2Se3 in this study possesses a local envi-
ronment similar to the crystal, as seen in Raman mea-
surements, suggesting that by preserving a similar local
environment to that of the crystal the topological bulk mo-
bility gap is not closed preserving the topological nature.
In contrast, the atomic environment at grain boundaries
in nanocrystalline systems is quite disordered, provid-
ing a possible explanation for the absence of topological
features.

Perspective and open questions. – The growing
field of topological phases in amorphous matter is an op-
portunity to establish a deeper understanding of topologi-
cal phases and the systems that host them. In particular,
the quest to define real-space topological markers and in-
variants to characterize topological phases is an ongoing
quest. Defining topological indicators that signal non-
crystalline topological metals remains an open question.
Specifically, generalizations of Weyl semimetals to amor-
phous systems that respect time-reversal symmetry can-
not be described by the Bott index or the Chern marker,
and thus require the development of new tools.
An important open question is the lack of experimental

evidence for solids that are both amorphous and topolog-
ical, relating to the theoretical challenge of how to effi-
ciently find them. The field would benefit from a textbook
amorphous topological material, where topology is unam-
biguously confirmed by combining different experiments.
However, we lack a criterion with which to establish a hi-
erarchy of amorphous materials where to find topological
phases. Currently, we draw from criteria applicable to
crystals, such as large spin-orbit coupling. However, this
methodology precludes reaching the major milestone of
finding materials that are only topological when grown
amorphous, and that are otherwise trivial crystals. A
promising possibility is to integrate methods such as the
structural spillage and symmetry indicators, with realis-
tic molecular dynamics predictions based on first-principle
calculations. Developing these may establish a pipeline
to manufacture candidate material databases which can
guide experiments.
A related open problem is the prediction of an amor-

phous topological superconductor beyond toy models.
Such an achievement could widen the search for platforms
useful for topological quantum computing. While topolog-
ical superconductivity has been found by assuming a finite
pairing [39,40] its appearance in a self-consistent calcula-
tion is yet to be demonstrated. Engineering the interac-
tions to obtain a self-consistent topological ground state
is a nontrivial problem since Anderson’s theorem [18] is
strictly applicable only to conventional s-wave pairing.

The search for novel topological phases and phe-
nomenology should also incorporate phenomena familiar
from crystals. Amorphous topological states have for
example not been fully explored in amorphous interact-
ing [11,105–107], driven, or non-Hermitian systems [126].
In summary, amorphous solids are central to funda-

mental science and technology. We are confident that
research in this direction will bring a deeper understand-
ing of condensed matter, as well as novel and interesting
phenomenology.
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