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Abstract – In this letter, considering the metric of a rotating polytropic black hole in the Boyer-
Lindquist coordinates, at first, we derive the thermodynamic parameters such as entropy S,
Helmholtz free energy F , internal energy U and Gibbs free energy G and study its dependence on
the outer horizon by depicting suitable graphs. Then after reconstruction of the metric of the same
in the Eddington-Finkelstein coordinates, we establish the interior volume of the black hole. We
further analyze the variations of the interior volume with the small change of the advanced time
with respect to the radius. Here we show the existence of a certain value of the radius for which
this variation becomes maximum. Moreover, we show the dependence of this maximum value of
the radius on the mass of the black hole. We derive the differential form of the interior volume
for this limit of the radius and hence the maximal interior volume of the said black hole. Finally,
we analyze the same thermodynamic parameters inside the black hole and present a comparative
study between the parameters in the outer and interior regions of the black hole.

Copyright c© 2023 EPLA

Introduction. – Simply, black holes (BHs) are defined
as compact objects, formed out of the catastrophic col-
lapse of post-main sequence supermassive stars. However,
new research shows that the primordial BHs could form at
times from the Planck time to 1 second after the Big Bang,
or later [1]. Simply stated, the BH is a space-time region,
that can be considered as the solution to Einstein’s general
relativity. Besides this, other modified gravities like Love-
lock gravity [2], Gauss-Bonnet gravity [3], etc. also have
BH solutions. The BHs produce a highly strong gravita-
tional field. Due to this strong field, not even light can
come out of the BHs. The proposal that a BH can radiate
via quantum tunnelling [4,5], initiated to consider a BH
as a thermodynamic system. The study of BH thermody-
namics is not only one of the most important and fruitful
research in the area of theoretical physics but also offers
fundamental and deep insights into our understanding of
the real connection between gravitation and quantum me-
chanics [6]. Now as a BH may evaporate over huge time
spans via this process, it is quite impossible to describe
a BH by its basic parameters completely and so it is al-
ways in a perturbed state. The mass of a Schwarzschild-
AdS is an ever-increasing function of the radius of the

(a)E-mail: amritendu.h@gmail.com (corresponding author)

event horizon. The surface gravity is a non-negative quan-
tity associated with a BH and is treated as the BH’s
temperature, familiar as the Hawking temperature. The
surface area of the BH is proportional to the entropy of the
BH. The thermodynamic properties of the same BHs do
not provide identical results in AdS and dS spaces. In AdS
space, the large Schwarzschild-AdS BHs show a positive
heat capacity, whereas, for small Schwarzschild-AdS BHs,
it will be negative. Therefore, the large Schwarzschild-AdS
BHs will be thermally stable and get cooler due to their
loss of mass. On the other hand, the small Schwarzschild-
AdS BHs get hotter and eventually evaporate away. In dS
space, BHs are always thermodynamically stable.

The thermodynamics of various types of BHs have been
studied in refs. [7,8]. Moreover, in the articles [9,10], the
authors have analyzed the thermodynamic properties of
different BHs applying the modified entropy. To study the
effects of quantum correction of the BH thermodynamics,
the Cardy formula has been used in the article [11]. Fur-
thermore, the corrected thermodynamics has been stud-
ied under the effect of the matter field around the BHs in
many articles [12,13].

The boundary of the BHs is not well specified in gen-
eral relativity and the interior volume is not well de-
fined. Moreover, it depends on the choice of a particular
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space-like hypersurface. A proper tool or method for
choosing such hypersurfaces is not yet available. How-
ever, it has a special physical significance. The author
in the article [14] has proposed a definition of interior
volume which is independent of the choice of stationary
time-slicing for stationary spacetimes. Other authors also
have discussed the same in many works [15–17]. Refer-
ence [18] has proposed that the volume of the BH acts as
a space-like surface with spherical nature in the interior re-
gion. For an asymptotically flat Schwarzschild BH having
ADM mass M , the maximal interior volume is calculated
as V ∼ 3

√
3πM2v, where v = t +

∫
1

f(r)dr is advanced
time and t the proper time. In the classical limit, the
Schwarzschild BH remains static from the outside point of
view and hence it has the fixed area 16πM2. Reference [19]
has generalized the above result to the higher-dimensional
charged BHs. Moreover, this result has been extended to
the RN [20] and Kerr BHs [21].

The concept of “vector volume” has been explained in
the article [22]. For a stationary non-degenerate BH, a
definition of the volume rate has been raised in the arti-
cle [23]. In the articles [24,25], the analysis of entropy of
massless scalar particles inside the BHs has been estab-
lished, which may provide us with implications for discus-
sions of the information lost paradox [26] since a larger
volume can accommodate huger information. Since the
interior volume is always an increasing function of the
advanced time v, it may be a candidate to resolve the
information paradox problem. Thus the BH can have a
large volume to hide the information that may be avail-
able at the end of the evaporation [20]. In this context,
such a large volume may contain the entropy that may
relate to the Bekenstein-Hawking entropy. Therefore, it is
necessary to analyze the entropy of the BH of the hidden
modes inside the BH [27]. The entropy for a Schwarzschild
BH [24] and the interior entropy of a Kerr BH [28] have
been investigated further.

The rotating polytropic BH solution is the newly sug-
gested BH solution [29]. The authors have used some
fundamental tools such as the Newman-Janis algorithm
without complexification, the construction of unstable
null orbits, etc. to construct this solution. After
that, the GUP–modified Hawking radiation and transmis-
sion/reflection coefficients have been studied [30].

In this letter, we are inspired to study the rotating
polytropic BHs. The thermodynamic parameters
(T, S, F, U,H and G) in the outer region of the BH and
the effects of logarithmic correction have been studied in
many articles [9,10]. But, in the interior region, the same
is still not studied deeply. This fact mainly motivates us
to concentrate on the investigation of such parameters in
the interior region of the said BH.

This letter is organized as follows: in the next section,
we will present the metric of the rotating polytropic BHs in
the Boyer-Lindquist coordinates (t, r, θ, φ) and will study
the thermodynamic parameters (T, S, F, U,H and G) in

the outer region of the BH. We will transform the BH
metric in the Eddington-Finkelstein coordinates (v, r, θ, ϕ)
and will compute the interior volume in the third sec-
tion. In the fourth section, the lost mass rate of the BH
and hence the maximal interior volume will be calculated.
The thermodynamic parameters associated with the in-
terior volume will also be investigated. Finally, we will
conclude the letter briefly. Throughout this letter, we use
the Planck units, i.e., G = c = � = κB = 1 and signature
(− + + . . . +).

Rotating polytropic BH. – The metric of the poly-
tropic BHs in the Boyer-Lindquist coordinates (t, r, θ, φ)
can be obtained by applying the Newmann-Janis algo-
rithm without complexification [29]. For this, one can
start with a static spherically symmetric metric given as

ds2 = −g(r)dt2 + f(r)−1 + h(r)(dθ2 + sin2θdφ2). (1)

Now, introducing the advanced null coordinates (u, r, θ, φ)
defined as du = dt − dr√

fg
and complex transformations as

r → r + ia cosθ, r → r − ia cosθ, considering g(r) →
X(r, θ, a), f(r) → Y (r, θ, a), h(r) → ψ(r, θ, a), further
applying the global coordinate transformations du = dt +
λ(r)dr, dφ = dφ + χ(r)dr, taking

X(r, θ, a) =
f(r)h(r) + a2cos2θ(√
f(r)
g(r)h(r) + a2cos2θ

)2 ψ,

Y (r, θ, a) =
f(r)h(r) + a2cos2θ

ψ
(2)

and finally choosing f(r) = g(r) = r2

l2 − 2M
r , h(r) = r2

and ψ = r2 +a2cos2θ, the metric (1) reduces to the metric
of the polytropic BHs in such coordinates as [30]

ds2 = −
(

1 − F
ρ2

p

)
dt2 +

ρ2
p

Δp
dr2 + ρ2

pdθ2

+
Σp

ρ2
p

sin2θdφ2 − 2aF
ρ2

p

dtdφ, (3)

where F = r2(1 − r2

l2 + 2M
r ), ρ2

p = r2 + a2cos2θ and

Δp = a2 +r2

(
r2

l2
− 2M

r

)
, Σp =

(
r2 + a2

)2 −a2Δpsin2θ.

(4)
Here, l2 = − 3

Λ , where l represents the AdS radius of the
BH, Λ depicts the cosmological constant and a is the spin
parameter which is defined as the angular momentum per
unit mass of the BH (for more details follow ref. [29]).

The horizons (inner and outer) of the BH are obtained
for the root Δp = 0 which yields the outer horizon (also
known as the event horizon of the BH) as

rh =
1

3
1
3 2

5
6

{(
6l2M

A − 2A2

) 1
2

+ A
√

2

}
, (5)

19002-p2



Thermodynamic studies of a rotating polytropic black hole: etc.

Fig. 1: Variations of the metric function Δp with r, keeping
l = 1. rc and rh denote the BH inner Cauchy horizon and the
BH outer event horizon.

where A =
√

B
2 + 6

1
3 a2l2

B and B = {9l4M2 +
√

3l3

(27l2M4 − 16a6)
1
2 } 1

3 .
Thus, the spin parameter is bounded as

a <
√

3l
1
3

(
M

2

) 2
3

. (6)

It is evident from the above equation that the result differs
from the result which is obtained in the case of the Kerr
solution, where the constraint is computed as [29]

a < M. (7)

We also investigate the inner and the outer horizon by
plotting Δp vs. r curve taking different mass, shown in
fig. 1. From the diagram we find the two roots of the met-
ric function, which represent the BH inner Cauchy horizon
rc and the BH outer event horizon rh for massive BHs [31]
but when M ≤ 1, that is for the low mass of the BHs, there
is no horizon, and we have a naked singularity. This may
be an interesting result for this kind of BHs. We also note
that for a particular M , rc and rh coincide.

The Hawking temperature and the area of the BH are
obtained by using the well-known formulae, namely [29,30]

Th =
1
4π

lim
r→rh

∂rgtt√
gttrrr

, Ah =
∫ π

0

∫ 2π

0

√
gθθgφφdθdφ,

(8)
which exhibit

Th = − a2l2 − 3r4
h

4a2l2πrh + 4l2πr3
h

, Ah = 4π
(
a2 + r2

h

)
. (9)

Thus, the Bekenstein-Hawking entropy of the said BH
is also computed as

Sh =
Ah

4
= π

(
a2 + r2

h

)
. (10)

Moreover, the thermodynamic parameters (Fh =
−

∫
ShdTh, Uh = Fh + ThSh,Hh = Uh + PV and Gh =

Hh − ThSh), in the outer region of the BH are calculated

as

Fh = −
2a

(
l2 − 3a2

)
tan−1

(
rh

a

)
− a2l2

rh
+ 6a2rh + r3

h

4l2
,

Uh =
1

2l2

[
a

(
3a2 − l2

)
tan−1

(rh

a

)
− 3a2rh + r3

h

]
,

Hh =
1

4l2

[
2
{

a
(
3a2 − l2

)
tan−1

(rh

a

)
− 3a2rh + r3

h

}

−
(
2a2 + r2

h

) (
a4l2 + 3a2l2r2

h + 9a2r4
h + 3r6

h

)
2a4rh − 3a2r3

h − 3r5
h

]
,

where

V =
2π

3rh

(
a2 + r2

h

) (
2a2 + r2

h

)
and

P = −dFh

dV
= −

3
(
a4l2 + 3a2l2r2

h + 9a2r4
h + 3r6

h

)
8l2π (a2 + r2

h) (2a4 − 3r2
h (a2 + r2

h))

represent the volume and pressure of the BH and

Gh =
a

2l2

[ (
3a2 − l2

)
tan−1

(rh

a

)

+
rh

{
6a5 + 5a3l2 + ar2

h

(
a2 − 3r2

h + 3l2
)}

3r2
h (a2 + r2

h) − 2a4

]
. (11)

The heat capacity Ch [32,33] in the outer region of the
BH is calculated as

Ch =
∂Mh

∂Th
= −

2π
(
a2 + r2

h

)
2
(
a2l2 − 3r4

h

)
a4l2 + 3a2l2r2

h + 9a2r4
h + 3r6

h

. (12)

The dependence of the thermodynamic parameters
(Sh, Fh, Uh,Hh and Gh) on the outer horizon rh are de-
picted in the diagrams in figs. 2(a)–(e), while the value
of l is taken as unity. Here we observe that the varia-
tions of the parameters Sh and Uh with rh are of similar
nature i.e., increasing function of the outer horizon rh.
This is obvious. Hh vs. rh curve shows that for very
small rh, Hh is negative, reaches a local minimum then
increases sharply, reaches a local maximum at rh = rhc

as rh increases. If we increase rh further we observe that
Hh decreases rapidly and then increases with compara-
tively slow rate. The variations of Fh and Gh show the
BH supports a mandatory second-order phase transition.
When we vary the heat capacity Ch of the BH with rh, we
note that it is always positive and increases as rh increases
(fig. 2(f)). This means that the BH is thermodynamically
stable. When we study the variations of all the thermody-
namic parameters (T,C, S, U,G and F ) with rh according
to the changes of the parameters (a and l) for possible
and specific positive and negative values, we find graphs
of the same nature as shown in figs. 2(a)–(f). When we
study the same for Kerr BH, we observe that Sh varies
with rh in the same way as the polytropic BH. Moreover,
the changes of Uh and Hh with rh are similar and are
increasing for large rh but at low horizon the nature is
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Fig. 2: (a)–(f) Variations of Sh, Fh, Uh, Hh, Gh and Ch with rh, keeping l = 1.

quite different, the variations of Fh and Gh are also simi-
lar for Kerr BH, i.e., both the parameters become positive
from their negative value as rh increases which is different
from the polytropic BH. For Kerr BH Ch is always nega-
tive, i.e., unlike the polytropic BH the Kerr BH is thermo-
dynamically unstable. For Schwarzschild BH the entropy
is an ever increasing function of rh as usual, the other
thermodynamic parameters (Fh, Uh,Hh, Gh) are linearly
proportional to rh. Therefore those are always positive
and increase linearly due to increment of rh. But the Ch

is negative and it varies with rh like Kerr BH.
At the limit Λ → 0, i.e., l → ∞, the temperature of the

BH (9) becomes negative, which is unphysical. Thus all
the thermodynamic parameters (Sh, Fh, Uh,Hh and Gh)
even the heat capacity Ch, obtained in eqs. (11) and (12)
will be also unphysical at this limit.

Interior volume. – Using the coordinate change

dt = dv − r2 + a2

Δp
dr and dφ = dϕ − a

Δp
dr, (13)

the metric (3), in the Eddington-Finkelstein coordinates
(v, r, θ, ϕ) is described as

ds2 = −
(

1 − F
ρ2

p

)
dv2 + 2dvdr + ρ2

pdθ2 +
Σp

ρ2
p

sin2θdϕ2

− 2asin2θdrdϕ − 2aF
ρ2

p

dvdϕ, (14)

where v and ϕ in the line element (14) represent the ad-
vanced time and azimuthal angle, respectively.

In this section, we have derived the maximal interior
volume of the rotating polytropic BH. Let us choose an
arbitrary vector on the hypersurface. This vector can be
divided into two parts —one is normal and the other is

tangent to the hypersurface given as τa = ξla + ξa, where
ξ is the lapse function and ξa is the shift-vector. The
covector on the hypersurface is defined as la = −ξΔar ≡
−ξ(dr)a, where Δar ≡ (dr)a is the normal covector. For
the space-like hypersurface, one can use the property of
the normal vector as lala = ξ2gab(dr)a(dr)b = −1. Using
the above equations, we get grr = − 1

ξ2

Now, from the definition, the induced metric on the
hypersurface at constant r is computed as

s = ξ−2(−g) = grrg =
√

−Δpρ
2sin2θ. (15)

We choose ϑ as the induced volume on the hypersurface.
From the metric (14), the volume of an arbitrary hyper-
surface at constant r may be obtained as

V ∼
∫

ϑ = 2π

√
2Mr − r4

l2
− a2

×
[√

a2 + r2 +
r2

2a
ln

(√
a2 + r2 + a√
a2 + r2 − a

)]
v. (16)

This result is considered as a maximal value of the volume
when r is taken as r = rmax, the largest hypersurface
inside the BH. Thus, this maximal value is assumed as
the interior volume of the polytropic BH.

The rate of change of the interior volume of the BH V
with the advanced time v is calculated as

dV
dv

∼ 2π

√
2Mr − r4

l2
− a2

×
[√

a2 + r2 +
r2

2a
ln

(√
a2 + r2 + a√
a2 + r2 − a

)]
. (17)

It is worth noting that the above result (17) will be non-
negative for 2Mr > r4

l2 + a2. This means that the interior
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Fig. 3: Variations of dV
dv

with r, keeping l = 1.

volume of the said BH will be increased only when the
mass of the BH is large enough such as Kerr BH [21]. In
the differential form of eq. (16), M may be considered as
a constant and v is taken as a variable.

From fig. 3, we observe that there is a maximal value of
the rate of increment for a certain value of r, keeping M
constant as we assumed earlier. We also show that if M
is increased, the rate of increment is also increased and its
position shifts towards the larger radius zone. Initially, the
increment in mass increases the radius of the outer hori-
zon and hence the interior volume. Besides these, due to
the increment in mass, the gravitational attraction power
of the BH increases. Again, the gravitational attraction
leads to further increment in volume which increases the
rate of increment of mass. When r exceeds the critical
value, dV

dv falls abruptly and becomes zero for a certain
value of r at constant mass. We may interpret this behav-
ior as, when the BH grows bigger, the rate of increment
of the interior volume increases, reaches a maximal for a
particular volume, and with further growth, this rate falls
abruptly and becomes zero for a particular mass. This
means for a fixed mass, there is a certain limit to the in-
terior volume of the BH. This volume is nothing but the
maximal interior volume of the concerned BH.

Thermodynamic studies at the interior of the
BH. – According to the classical point of view, the in-
terior volume of the BHs increases with advanced time v.
The thermodynamic parameters inside the BH are differ-
ent from those of the volume of the same on which an
outside observer is organized. In this region of the BH,
the statistical quantities of the quantum field may be in-
fluenced by the special character of the interior volume and
this may be useful to solve an important puzzle, viz., the
information lost paradox of a BH. Thus, it is important
to study how the special character of the internal volume
affects the statistical quantities of the quantum fields.

The number of quantum states with energy less than E
is expressed as [19]

g(E) =
E3V
12π2

, (18)

and ignoring the exotic features of the interior volume tem-
porarily, the Helmholtz free energy and the pressure are

Fig. 4: Variations of dM
dv

with M , keeping l = 1 and γ = 0.01.

Fig. 5: (a), (b): variations of V and Sin with r, keeping l = 1
and γ = 0.01.

computed as [19]

Fin = −π2V
180

T 4
h and Pin = −

(
∂F

∂V

)
Th

. (19)

(For a detailed discussion see ref. [28].)
The measure of the entropy of a BH in its interior region

is based on mainly two postulates [24,34], i) the Hawking
radiation from a BH may be assumed as the emission from
a black body and hence, the temperature of the BH at the
outer horizon may be taken and ii) the evaporation pro-
cess from the BH is assumed as slow as occurred within the
quasi-static process. Thus the thermal equilibrium may be
established between the outer horizon and the scalar field
interior of the BH. The first assumption says the tempera-
ture of the event horizon is nothing but the Hawking tem-
perature of the BH, whereas the second assumption says
when the thermal equilibrium in an infinitesimal process,
the temperature of both the scalar field and the horizon
will be the same. So, the temperature of the scalar field
inside the BH may be taken as the Hawking temperature.

Due to the first assumption, the lost mass rate of the
BH can be derived by the Stefan-Boltzmann law [35] as

dM

dv
= − 1

γ
T 4

hAh, γ > 0, (20)

where γ is a positive constant. It depends on the number
of quantized matter fields coupling with gravity. The lost
mass rate for this BH is obtained by applying eqs. (9)
and (11) in eq. (20). Here, the mass of the BH does not
remain constant, rather it changes with the advanced time.
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Fig. 6: (a)–(c) Variations of Fin, Uin and Hin with r, keeping l = 1 and γ = 0.01.

In the diagram in fig. 4, we notice that this rate de-
creases as M increases. This means with an increasing
mass, the evaporation rate of the BH also increases as
expected.

To calculate the change in the entropy of the scalar field
in the BH evaporation process, generally, one can apply
two methods: i) integral method and ii) the equilibrium
statics method. Since both methods are very complicated,
here we apply the differential form directly.

According to this statement, the differential form of the
maximal interior volume (r = rh = rmax) is obtained from
eqs. (17) and (20) and integrating this one we can compute
the maximal interior volume of the BH as

V = −
[8γl6π4

(
a2 + r2

max

)8
√

2Mrmax − a2 − r4
max

l2

3 (a2 − r2
max) {2a2 ln (rmax) + r2

max}

]

×
[ √

a2 + r2
max + r2

max

2a ln{
2a

(√
a2+r2

max+a
)
+r2

max

r2
max

}
{l2Mr2

max + r5
max − a2 {l2 (rmax + M) − 2r3

max}}3

]
.

(21)

The entropy inside the BH is obtained as

Sin = − ∂F

∂Th
=

π2V
45

T 3
h . (22)

Substituting eqs. (9) and (21) into eq. (22), we have the
interior entropy of the BH associated with the maximal
interior volume.

From fig. 5(a), it is clear that there is a certain value of
the radius (here we define it as r = rmax) of the BH for
which the interior volume will be maximal whatever the
mass of the BH. The variations of the entropy inside the
BH with the radius r are shown in fig. 5(b). Here we find
that the peak value of Sin is increased and shifts towards
the high radius region as M increases. This surprising
behavior of Sin is because, in such BHs, the maximal in-
terior volume exists for r = rmax and beyond this limit,
the interior volume shrinks.

The other thermodynamic parameters (Uin,Hin and
Gin) in this region of the BH are computed by applying
eqs. (19) and (22) as [19]

Uin =
π2V
60

T 4
h , Hin =

π2V
45

T 4
h , Gin = 0. (23)

It is noticed from eqs. (19) and (23) that at the maximal
interior volume of the BH, all the thermodynamic param-
eters are proportional to the fourth power of the Hawking
temperature of the BH.

Now we substitute the values of Th and V in eqs. (18)
and (23) in the maximal limit and study the variations of
the thermodynamic parameters (Fin,Uin and Hin) with
the radius r of the BH.

If we investigate the thermodynamic parameters
(Fin,Uin and Hin) inside the BH, we observe that due to
the increment of the radius, initially, Fin decreases, and
reaches a minimum. Upon further increment of r, Fin in-
creases sharply and becomes zero (fig. 6(a)). The reverse
nature is shown for Uin vs. r curves and Hin vs. r curves
(figs. 6(b), (c)). This peculiar behavior of the curves is
due to the existence of the maximal interior volume of the
BH at a particular value of r.

Conclusions. – In this letter, we consider the metric of
a rotating polytropic BH solution in the Boyer-Lindquist
coordinates and investigate the thermodynamic parame-
ters such as entropy, Helmholtz free energy, internal en-
ergy and Gibbs free energy at the outer horizon of the BH.
In this observation, we find that Sh, Uh and Hh change
with rh in similar fashion at large event horizon, i.e., these
parameters increase as rh increases (figs. 2(a), (b) and
(d)). The variations of Fh and Gh with rh show that the
BH supports a mandatory second-order phase transition.
The heat capacity of the BH at the outer horizon is also
found positive and increasing function of rh (fig. 2(f)), i.e.,
the BH is thermodynamically stable. When analyzing the
inner and the outer horizon of the BHs in more detail by
depicting the variations of the metric function Δp with
respect to r taking different mass (fig. 1) an interesting
result is found, i.e., for smaller BHs there is no horizon,
and we have a naked singularity. We also note that the
temperature of the BH at the outer horizon becomes neg-
ative at the limit Λ → 0, i.e., l → ∞ and therefore, the
discussion of all the thermodynamic parameters including
the heat capacity of this kind of BHs at the horizon has
no meaning at the same.

To study the same inside the BH, we reconstruct the
metric in the Eddington-Finkelstein coordinates by apply-
ing the suitable coordinate transformations (13). At first,
we try to calculate the interior volume trapped inside the
event horizon of the BH by introducing advanced time.
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Thermodynamic studies of a rotating polytropic black hole: etc.

For a particular radius and a constant mass, the maximal
interior volume is proportional to the advanced time v.
If we include the massless scalar field inside the BH, the
number of quantum states of it is proportional to the inte-
rior volume. Thus, due to the increment of the advanced
time, when the interior volume of the BH increases the
number of quantum states also increases. It would be a
sign to think about the BH information lost paradox [26].
We may conclude from fig. 3 that when the BH is large
enough with a fixed mass, the interior volume does not
change with advanced time. This volume is actually the
maximal interior volume of the concerned BH. Figure 4
signifies that the massive BH evaporates at a high rate.
We find that dV

dv is non-negative for 2Mr > r4

l2 +a2, which
signifies that the interior volume of the said BH will be
increased only when the mass of the BH is large enough
such as Kerr BH [21].

The variations of the entropy inside the BH with the
radius r show that, at r = rmax, it reaches a maximum
and this maximum value increases with the increment of
the mass of the BH. Beyond this limit, i.e., r > rmax,
Sin began to decrease and become almost zero. It is be-
cause, in such BHs, the maximal interior volume exists for
r = rmax and beyond this limit, the interior volume starts
to shrink. The thermodynamic parameters (Fin,Uin and
Hin) inside the BH also obey Stefan’s law for a fixed in-
terior volume. We observe that due to the increase in the
span of the space-time confined in a BH’s event horizon,
more amount of internal energy is trapped inside it.

Though the metric of the rotating polytropic BH is de-
scribed in Kerr coordinates, this metric solution contains
an important parameter called the AdS radius of the BH,
which is related to the cosmological constant as well as the
thermodynamic pressure. Therefore, the study of thermo-
dynamic parameters with the presence of this parameter
may be significant as compared to studying the same for
the Kerr BH and Schwarzschild BH. In the future, one
may be motivated to extend this work in the light of loga-
rithmic corrections (first-order as well as higher correction
term) for the rotating polytropic BH.
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