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Abstract – The present work focuses on transverse gluon densities in the proton and derives
exemplar distributions showing azimuthal anisotropies. Such anomalies relative to the Standard
Model may be visible in scattering experiments involving protons. I describe baryons as mass
eigenstates of a Hamiltonian structure on an intrinsic U(3) configuration space. This has yielded
the neutral flavour baryon spectrum and given a rather accurate value for the neutron mass
939.9(5) MeV from first principles. Quark and gluon fields are shaped by the momentum form of
the intrinsic wave function. This has led to parton distribution functions for the u and d valence
quarks for the proton and to a proton spin structure function agreeing with experiments over four
orders of magnitude in the parton momentum fraction.
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Introduction. – The Standard Model covers a vast
field of experimental results in the quantum phenomenol-
ogy of particle physics within a few standard deviations
from expectations [1]. Nevertheless there must be a more
fundamental theory behind it. In search of such a back-
ground, the present work suggests to look for anisotropies
in transverse gluon densities in the proton interior. This
is a field of current interest with analyses of charged parti-
cle multiplicities in scattering experiments [2–4] and theo-
retical predictions of shear stress transverse distributions
from form factors based on QCD [5] and chiral quark soli-
ton models [6]. Confer [7] for a future prospect and [8]
for an exemplar model assuming specific internal proton
structure. Also hot spot models look promising for data
analysis [9]. The present work predicts anisotropies in
the transverse plane of gluon densities in the proton inte-
rior. If confirmed this will be a sign of an intrinsic proton
structure and would support the idea of going behind the
Standard Model to better understand its origin. The main
difference lies in the configuration spaces. The Standard
Model starts out with quantum field configurations in an
infinite spacetime whereas intrinsic quantum mechanics
starts from a compact configuration space.

The Standard Model has no explanation of its fermion
mass spectrum, its quark and lepton mixing matrices, its

(a)E-mail: ole.trinhammer@fysik.dtu.dk (corresponding author)

Fig. 1: The intrinsic baryon configuration space U(3) is com-
pact with a toroidal structure, indicated as 2D tori. It can
be excited at any spacetime point in scattering experiments by
kinematical generators from laboratory space, indicated as the
floor tiling. Figure from [10] inspired by Maldacena [11].

electroweak mixing angle, its Higgs particle mass —just to
mention the most obvious shortcomings. Why has Nature
chosen the three gauge groups, SU(3), SU(2) and U(1)?
How does it confine quarks and gluons? And where do the
quantum fields come from?

Replies from work relating to the present are interpreta-
tions like these: When elementary particles undergo scat-
tering experiments they excite intrinsic degrees of freedom,
cf. fig. 1. The generators for these excitations are nine
kinematic operators in laboratory space, namely three mo-
mentum operators, three angular momentum operators
and three Laplace-Runge-Lenz operators. These nine op-
erators generate an intrinsic configuration space U(3) for
baryons which are strongly interacting particles. The con-
figurations subsequently undergo spontaneous symmetry
breaking where the gauge groups of the electroweak sector
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come out as a subspace U(2) that by the Higgs mechanism
factorises into SU(2)×U(1) [12,13]. This idea is supported
by a wide list of results like concrete calculations of the
baryon mass spectrum [14], the Higgs mass [15,16], the
Cabibbo and Weinberg angles [17], predictions of Higgs to
gauge boson couplings [18] and suggestions for the origin
of the u and d quark masses [14]. Local gauge transforma-
tions mimic translations in the intrinsic coordinate fields.
Quarks and gluons are confined per construction as the
configuration space is compact. The fields are generated
by the momentum form of the intrinsic wavefunction act-
ing on the configuration space generators, the nine kine-
matic generators from laboratory space. This has led to u
and d valence quark parton distributions and a spin struc-
ture function for the proton [14].

The present work focuses on gluons in the proton and
is structured in three steps. The first step is to present a
Hamiltonian for baryon mass eigenstates. From that we
can later get quark and gluon fields for the Lagrangian of
quantum chromodynamics, QCD. Hamiltonians are well
suited for mass spectra calculations whereas Lagrangians
are natural for quantum field scattering [19].

The second step is to explain how quark and gluon fields
derive from the intrinsic baryon states and to show that
these fields transform under SU(3) gauge group transfor-
mations as they should. The final step is to map the in-
trinsic structure onto the laboratory space to describe the
interior distribution of quarks and gluons when scattering
on the proton. The reader not familiar with coordinate
forms on differentiable manifolds may refer to [20] and ap-
pendix E (“Vector fields, derivations and forms on smooth
manifolds”) in [21], and may skim the third section for a
first reading.

Intrinsic baryon mass. – We shall use the following
Hamiltonian equation1 for baryon mass eigenstates mc2 =
E [24]:

�c

a

[
−1

2
Δ +

1
2
Tr χ2

]
Ψ(u) = EΨ(u), u = eiχ ∈ U(3).

(1)
The configuration variable u has no physical dimension.
So, the configuration space is not a version of string theory
with, e.g., six compactified spatial dimensions out of nine.
On the contrary we shall make do all through with three
spatial dimensions. We map laboratory space coordinates
xj into the three toroidal angles θj by a length scale a

θj = xj/a, j = 1, 2, 3. (2)

Here eiθj are the three eigenvalues of u. The θj ’s are
dynamical variables conjugate to toroidal generators iTj

iTj =
∂

∂θj
, [iTj , θi] = δij , pj =

�

a
Tj , (3)

1The Hamiltonian is a radical reinterpretation of a Kogut-
Susskind Hamiltonian [22] from lattice gauge theory with Manton’s
action [23] used now as intrinsic potential. Note that we distinguish
between roman u (quark flavour) and italic u (baryonic unitary con-
figuration variable).

where δij is the Kronecker delta. In order to use the quan-
tisation inherent in (3) on all of the compact configuration
space U(3) we need to generalise the commutation relation
to a global expression using left invariant coordinate fields
∂j = uiTj and corresponding coordinate forms dθj . Thus
the commutation relations of first quantisation generalises
to the conjugacy of coordinate fields and coordinate forms

[iTj, θi] = δij → dθi(∂j) = δij . (4)

I interpret the three toroidal degrees of freedom as colour
dimensions. Spin and hypercharge generators are con-
tained in the Laplacian which can be expressed in a polar
decomposition [25]

Δ =
3∑

j=1

1
J2

∂

∂θj
J2 ∂

∂θj
−

3∑
1=i<j,
k �=i,j

(S2
k +M2

k )/�2

8 sin2 1
2 (θi − θj)

. (5)

Here the van de Monde determinant [26] (the “Jacobian”)
is antisymmetric in the three colour degrees of freedom

J =
3∏

1=i<j

2 sin
(

1
2
(θi − θj)

)
. (6)

The off-toroidal generators Sk, Mk in coordinate repre-
sentation and matrix representation [27] with λk being
off-diagonal Gell-Mann matrices are, e.g.,

S1 = aθ2p3 − aθ3p2 = �λ7,

M3/� = θ1θ2 +
a2

�2
p1p2 = λ1.

(7)

We can now express the configuration generator χ in (1)
in an operational form

χ = (aθjpj + αjSj + βjMj) /�,

pj =
�

a
Tj, θj , αj , βj ∈ R,

(8)

where the relation to kinematical operators from labora-
tory space becomes explicit in the coordinate representa-
tions of pj , Sj,Mj in (3) and (7).

The Sj ’s equate angular momentum operators and the
Mj’s mix spin and flavour. Their commutation relations
are

[Mi,Mj] = [Si, Sj] = −i�εijkSk. (9)

They yield the quantum numbers m2 for the positive def-
inite M2 [24]

m2 =
4
3

(
n+

3
2

)2

− s(s+ 1) − 3 − 1
3
y2 − 4i23, (10)

where the intrinsic spin eigenvalues are the well-known
half odd-integers s = 1

2 ,
3
2 ,

5
2 , · · · , following from the com-

mutation relations [28], n ≥ 1 is a positive integer, i3 is the
isospin three component and y is the hypercharge. Note
the minus sign for the spin commutators in (9) in analogy
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with body fixed coordinates for intrinsic spin in nuclear
physics [29]. One may interpret the U(3) configuration
variable u as a generalised spin variable.

The Laplacian (5) matches the potential 1
2Tr χ2 in (1)

which only depends on the three toroidal angles because
the trace is invariant under equivalence transformations
u′ = v−1uv, in particular those that diagonalise u. Equa-
tion (1) can be solved quite accurately and has the neutral
charge ground-state eigenvalue [14],

E ≡ E/(�c/a) = 4.382(2), (11)

which yields the neutron mass

mnc
2 = E

�c

a
. (12)

One might choose to fit the length scale a to match the
experimental neutron mass and from the fit get the rest
of the baryon spectrum as the tower of eigenvalues of (1).
There is, however, a particular choice of a with more pro-
found implications, namely [24],

πa = re, (13)

where re is the classical electron radius defined by

mec
2 =

e2

4πε0re
= α

�c

re
. (14)

Iterating in the fine structure coupling to α−1(mn) =
133.6 leads to

mnc
2 = E

π

α(mn)
mec

2 = 939.9(5)MeV. (15)

This result is found from first principles directly from the
intrinsic baryon configuration and agrees with the exper-
imental value mnc

2 = 939.56542052(54)MeV [1] within
uncertainties. The theoretical accuracy is limited by the
accuracy with which the fine structure coupling can be
found at the neutronic energy scale and it is limited by
the size of the set of functions on which the neutronic
wavefunction can be expanded in the solution of (1). The
theoretical uncertainty is comparable to Standard Model
calculations of the neutron to proton mass difference by
Borsanyi et al. in June 2014 [30] but from a radically
different point of view. The present method was pub-
lished [24] a year prior to the Borsanyi et al. result with a
calculation of the relative neutron to proton mass differ-
ence publically available from 2011 [21]. The advantage of
calculations based on (1) is the insight one gains in what
may lie behind the Standard Model and the tremendously
reduced needs in computing power. The result (15) is
based on approximately two thousand base functions in
the expansion set but takes less than two hours of diag-
onalisation time. This efficiency is due to the fact that
—provided one uses a well-suited set of functions on which
to expand the solution— the matrix elements of the Hamil-
tonian in (1) can all be solved analytically. Solving these

integrals, on the other hand, has taken some years of con-
sideration to “stay analytical”. But once they are solved
and the results programmed into your favourite matrix
handling programme, it takes only those couple of hours
to diagonalise the Hamiltonian —and you have the whole
spectrum of neutral charge, neutral flavour baryons of ap-
propiate isospin and hypercharge with the single choice of
the length scale a in (1) motivated by (13). A thorough
presentation of the method can be found in [14].

Quark and gluon fields. – The length scale set in (13)
implies a projection from the intrinsic torus angles on tori
of radius a to the classical electron radius in laboratory
space2. The projection implied from the intrinsic configu-
ration space to laboratory space acquires a formal setting
by use of the momentum form of the wave function.

To solve (1) we introduce a measure-scaled wave func-
tion Φ = JΨ with a uniform probability interpretation
on the actual configuration space U(3) rather than on the
angular space (θj , αj , βj). This wave function can be fac-
torised to suit the polar decomposition of the Laplacian.
Thus we have in total

Φ(u) = R(θ1, θ2, θ3)Υ(α1, α2, α3, β1, β2, β3). (16)

Colour quark (conjugate) fields ψj are generated by the
momentum form of the measure-scaled toroidal wavefunc-
tion R by its acting on the toroidal generators

ψj(u) =
−i�
a

dR(uiTj). (17)

The momentum form is also called the exterior derivative
and it becomes operational by the following derivation
along a one-parameter curve at u ([20] and appendix E
in [21]),

dRu(iTj) =
d
dt
R(u exp(tiTj)) |t=0. (18)

Note that the momentum form can also be identified as an
exterior derivative along the direction given by the vector
field induced by the generator iTj,

dRu(iTj) = ∂j |u[R] = u∂j|e[R] = uiTj[R], (19)

where e = diag(1, 1, 1) is the origo of U(3). From the left
invariance of the coordinate fields in (19) we readily see
that ψj transforms under SU(3) gauge transformations as
it should. We namely have

ψj(u) =
−i�
a
∂j |u[R] =

−i�
a
u∂j|e[R] = uψj(e). (20)

We define gluon field components in analogy with (17)
by using the eight Gell-Mann matrices λk in the genera-
tors for directional derivatives on the full measure-scaled

2Heuristically one may understand the appearance of the electron
on the scene as a “peel off” from the neutron inherent in its decay
to a proton, an electron and an anti-electron neutrino [24].
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intrinsic wave function Φ

G(k)(u) =
−i�
a

dΦu(∂k), ∂k = uiλk/2, k = 1, 2, . . . , 8.

(21)
We define, with a suggestive coupling constant gs,

G(u) ≡ gs

8∑
k=1

G(k)(u) itk, tk = λk/2. (22)

This construct is expressed in a fixed SU(3) representa-
tion base {itk} for QCD in laboratory space [1]. One can
think of it as a read-off of gluonic degrees of freedom from
the full measure-scaled intrinsic wave function Φ by the
momentum form in (21) at a (random) intrinsic configu-
ration variable. The read-off is related to a similar read-off
at the origo e in the intrinsic configuration space. We find

G(u) = igs

∑
k

G(k)(u)tk = igs

∑
k

dΦu(∂k)tk =

igs

∑
k

∂k|u[Φ]tk = igs

∑
k

u∂k|e[Φ]tk =

igsu
∑

k

dΦe(itk)tk = igsu
∑

k

G(k)(e)tk =

uG(e). (23)

Now, tk belongs to an adjoint representation of SU(3) in
laboratory space and under a global gauge transformation
with g(x) = g in (20) it shifts to the basis

tk → gtkg
−1. (24)

Likewise when representing u in laboratory space as a 3×3
matrix U it transforms as

U → gUg−1. (25)

Thus

G(k)(u)tk = UG(k)(e)tk →
gUg−1 G(k)(e) gtkg−1 =

g UG(k)(e)tk g−1 = g G(k)(u)tk g−1. (26)

We therefore have for global gauge transformations

G(u) → g UG(e) g−1 = g G(u) g−1. (27)

We want to admit the gauge transformation to be local
in spacetime. For that we need to generate gluon field
components in spacetime. We therefore consider the time
dependent edition of our baryon configurations (1)

�c

a

[
−1

2
Δ +

1
2
Tr χ2

]
Ψ(ũ) = i�

∂

∂t
Ψ(ũ), ũ = eiθ0T0u,

(28)
with θ0 = ct/a and

∂

∂θ0
=
a

c

∂

∂t
≡ iT0. (29)

We can generalize this to suit the left invariance used
in (19) such that we have a left invariant coordinate field
also for θ0

∂0|ũ =
∂

∂θ
(ũ exp(θiT0))|θ=0 = ũiT0. (30)

The coordinate field ∂0 is conjugate to the corresponding
coordinate form dθ0. This implies a measure-scaled wave
function (θ0 is not a dynamical variable)

JΨ(ũ) ≡ Φ̃(ũ) = e−iEt/�Φ(u). (31)

The spacetime basis in laboratory space is

eμ(x) =
∂

∂xμ
≡ ∂μ, x = (x0, x1, x2, x3), μ = 0, 1, 2, 3.

(32)
Here x0 = ct, (x1, x2, x3) = x and we follow the metric
sign convention (1,−1,−1,−1) of Aitchison and Hey [31].

We expand the gluon field components

G̃(k)(ũ) =
−i�
a

dΦ̃ũ(∂k) (33)

on the spacetime coordinate fields ∂μ to get components
with spacetime indices μ

G̃(k)
μ (x) = dG̃(k)

ũ (∂μ). (34)

Accordingly

Gμ(x) = gs

8∑
k=1

G̃(k)
μ (x)itk. (35)

Gluon fields and gauge fixing. In the Standard Model
the gluon fields are interpreted as gauge fields with trans-
formation properties given by [12]

A′
μ = g(x)Aμg(x)−1 + (∂μg(x))g(x)−1, (36)

and used in gauge covariant derivatives [32]

Dμ = ∂μ −Aμ (37)

to have invariance of the kinematic term 1
2 (Dμψ)2 in a

Lagrangian density under local gauge transformations

ψ → ψ′ = g(x)ψ, g(x) ∈ SU(3). (38)

The gauge fields fulfilling (36) must be constrained before
quantisation, e.g., by using gauge fixing to operate in ax-
ial gauges A(k)

3 = 0 where neither A(k)
0 are independent

variables [32].
In the intrinsic model (1), the gluon field spacetime

components are defined from (35) based on (21). This
means that their degrees of freedom are already quantised
from (3) underlying (1) and constrained by the structure of
the baryonic wavefunctions determined as solutions of (1).

The structure implied by the intrinsic wave function
should be detectable for instance in scattering experiments
through observations of gluon densities in a plane trans-
verse to the beam axis as described in the fourth section.

Gauges at neighbouring points. We identify u =
g(x) ∈ SU(3) where g(x) is an adjoint representation of

24001-p4
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SU(3) in laboratory space. We further exploit the fact
that with the introtangling in (2) from laboratory space
to the smooth Lie group intrinsic space, the representation
of the local gauge transformation g(x) in laboratory space
—before second quantisation— remains a smooth function
of the laboratory spacetime location x. For infinitesimal
neighbours we thus suggest

u = g(x), u′ = g(x+ dx) ≈ g(x) + ∂μg(x)dxμ. (39)

In analogy with (27) we consider a local gauge transfor-
mation at x+ dx

g(x+ dx)Gμ(x+ dx)g(x + dx)−1. (40)

To first order in dx we have

g(x+ dx)−1 = (g(x) + ∂μg(x)dxμ)−1

= g(x)−1 + ∂μg(x)−1dxμ. (41)

Since g(x)g(x)−1 = 1, we have [12]

0 = ∂μ(g(x)g(x)−1) = (∂μg(x))g(x)−1 + g(x)∂μg(x)−1.
(42)

This yields the useful expression

g(x)∂μg(x)−1 = −(∂μg(x))g(x)−1. (43)

After some algebra, using (41) and (43), we get for (40)

g(x+ dx)Gμ(x+ dx)g(x + dx)−1 =

g(x)Gμ(x)g(x)−1 +
[
∂ν(g(x)Gμ(x)g(x)−1)

]
dxν +O(dx2).

(44)

Note that (44) is equivalent to (36) but not identical.
Equation (36) relates A′ and A at x and actually defines
A′ whereas (44) relates Gμ(x+ dx) to Gμ(x) at the neigh-
bouring x. It does not constrain Gμ(x + dx) relative to
Gμ(x) more than what is implied by their common origin
in the wave function Φ as of (21) and by the variation of
the gauge transformation from g(x) to g(x+ dx).

The gluon densities in the proton can be tested experi-
mentally. Figures 2 and 3 indicate the idea.

Gluon densities in a protonic state. – The glu-
ons represent off-toroidal (off-diagonal) degrees of freedom
and as such contribute to shear stresses in the energy-
momentum tensor of the proton interior [33]. The off-
diagonal generators Eij are related to the off-toroidal
gluonic generators Sk,Mk from (7) thus

iEij =
1
2
(−Sk + iMk)/�, i, j, k cyclic (45)

e.g.,

E12 =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ .

From these we generate off-diagonal gluon fields in the Eij

basis as [33]

πij(u) =
−i�
a

dΦu(iEij). (46)

Fig. 2: Transverse gluon densities (squared) in the proton
as seen in toroidal angular space. The density is probed
through a “keyhole” by scattering at a specific impact param-
eter. The contracted proton pattern approaches from behind
the “door”. The pattern shows a contraction along the beam
axis —perpendicular to the door— for a specific gluonic den-
sity (48) with a randomly oriented intrinsic space.

Fig. 3: Transverse gluon densities for the target proton av-
eraged over 60 random orientations of the intrinsic toroidal
angular space. The transverse scale is commented in the text
following eq. (54). The figure shows the structure of | Tij |
from (48) contracted along the beam axis according to (51).
The transverse size is comparable to [5] whereas [6] has only
half the size. Both [5] and [6] display isotropy in the azimuthal
angle. The azimuthal anisotropy in the present prediction re-
flects the toroidal structure of the intrinsic configuration space
according to our model (1).

Note that the toroidal wavefunction is used in (17) for
generating colour quark fields, but it also contributes to
the six off-diagonal gluon densities. Consider namely the
squared energy-momentum tensor density [33]

T 2
ij =

∫
dα3dβ3

(
−i�c
a

dΦu(iEij)
)2

, i, j = 1, 2, 3.

(47)
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After the integration in (47) over the six off-toroidal
degrees of freedom α1, α2, α3, β1, β2, β3 we have [33]

T 2
ij =

�
2c2

a2V 2

(S2 + M2)/(3�)2

4
R2(θ1, θ2, θ3), i �= j, (48)

where V is the volume over which the wave function is
normalised in laboratory space. For neutral flavour N -
baryons S2 + M2 = 4�

2 corresponding to isospin three-
component i3 = ± 1

2 , hypercharge y = 1 and n = 1
in (9). The diagonal terms in the energy-momentum ten-
sor are [33]

T 2
jj =

�
2c2

a2V 2

(
∂R

∂θj

)2

, T00 =
E
V
R2. (49)

They should represent colour quark densities3 contribut-
ing to the interior pressure in the proton in the laboratory
system and to the total mass density respectively [33].

Figure 3 shows an average of 60 transverse gluon densi-
ties as calculated from an exemplar toroidal wave function
for the proton [24] (normalisation over θj ∈ [−2π, 2π] gives
N2 = 96π3)

R =
1
N

∣∣∣∣∣∣∣∣
1 1 1

sin
1
2
θ1 sin

1
2
θ2 sin

1
2
θ3

cos θ1 cos θ2 cos θ3

∣∣∣∣∣∣∣∣
. (50)

The average density for I = 60 contractions in fig. 3 is
constructed by random rotations D through angles α, β, γ
in the space of toroidal angles as

R2
⊥ =

1
I

I∑
i=1

∫ 2π

−2π

d
(z
a

)
R2

⎛
⎝D−1(αi, βi, γi)

⎛
⎝x/ay/a
z/a

⎞
⎠
⎞
⎠,

αi, βi, γi = random ∈ [−π, π]
D(α, β, γ) =⎛
⎝ cos γ sinγ

− sinγ cos γ
1

⎞
⎠
⎛
⎝ cosβ sinβ

1
− sinβ cosβ

⎞
⎠
⎛
⎝1

cosα sinα
− sinα cosα

⎞
⎠.

(51)

The volume V over which to distribute the gluon densi-
ties underlying fig. 3 needs some comments. The wave
function R has period doubling on U(3) and is there-
fore normalised over the angular box [−2π, 2π]3 with
N2 = 96π3. But we want to distribute over the intrinsic
torus using our length scale a from (2). The angular box
is mapped by the exponential function into the maximal
torus of U(3)

U0 =

⎛
⎝eiθ1

eiθ2

eiθ3

⎞
⎠ , θj ∈ [−π, π]. (52)

3The two diagonal gluon degrees of freedom also contribute here.

With J2 from (6) included in the volume element [26] and
xj = aθj from (2) we find the torus volume in physical
units

V0 = a3

∫ π

−π

∫ π

−π

∫ π

−π

J2 dθ1dθ2dθ3 = a3 · 96π3. (53)

The density scale from (48) in fig. 3 is then

�c/a

3V
= 0.102 GeV/fm3, for V = V0/N

2 = a3. (54)

I have inserted the scale πa = 2.82 fm in fig. 3 to get a
sense of the order of magnitude corresponding to the rela-
tion (2) between spatial and angular variables. It should
be stressed, though, that fig. 3 represents the angular
space and not directly laboratory space size for which (54)
implies a box normalisation on V = a3.

Given the average over random orientations in (51), one
might had expected4 azimuthal isotropy in fig. 3. How-
ever, we observe azimuthal anisotropy which reflects the
toroidal structure of the configuration space used for the
proton mass eigenstate in (1) when projected on labora-
tory space in scattering experiments.

Figure 3 for proton gluon densities seems apt for com-
paring with scattering data analyses based on hot spot
models [9]. In the energy-dependent edition of the hot
spot model the profile factor Tp(b) for particle p at impact
parameter b is written as a sum over a varying number
Nhs of hot spots increasing with energy and the hot spots
located at different positions bi inside the particle

Tp(b) =
1
Nhs

Nhs∑
i=1

Ths(b −bi). (55)

Bendova et al. [9] use Gaussian profiles of sizes Bhs =
0.8 GeV−2

Ths(b) =
1

2πBhs
exp

(
−b2
2Bhs

)
∼ rhs ≈ 0.18 fm. (56)

It would be interesting to see extensions from “one-
dimensional” energy-dependent charged particle multiplic-
ities to transverse proton profiles analysed with the hot
spot model (55) starting out, e.g., with Nhs = 6 as im-
plied in fig. 3.

Conclusion. – We have derived transverse gluon den-
sities with azimuthal anisotropy for the proton interior.
The densities result from a conception of the proton mass
eigenstate as originating in a compact intrinsic configu-
ration space, the Lie group U(3) which carries a toroidal
structure. Experimental analyses of scattering data for
instance along the lines of hot spot models may disclose
an intrinsic structural origin behind the Standard Model.

4I thank Jakob Bohr for an open mind on this in a private dis-
cussion in 2019.
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